生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 831-840.DOI: 10.16258/j.cnki.1674-5906.2024.06.001
• 研究论文【生态学】 •
下一篇
收稿日期:
2024-01-22
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
* 邓玉娇。E-mail: yujiao_d@163.com作者简介:
王捷纯(1980年生),女,高级工程师,硕士,主要从事生态气象研究。E-mail: 54964758@qq.com
基金资助:
WANG Jiechun(), DENG Yujiao*(
), ZHU Huaiwei, KONG Yunqi
Received:
2024-01-22
Online:
2024-06-18
Published:
2024-07-30
摘要:
广东省具有丰富的植被类型,研究不同生态系统植被净初级生产力(NPP)对气候因子的响应,对提升全省生态环境质量具有重要意义。基于植被净初级生产力、地面观测数据和土地利用分类等数据,制作广东省生态系统分类数据,分析广东省不同生态系统植被NPP的时空特征及其对气候因子的响应规律。结果表明,从年变化规律看,2000—2020年广东省年平均气温、年降水量呈微弱上升趋势,正增长区面积占比分别为86.8%、64.8%;日照时数呈下降趋势,负增长区面积占比为82.4%。植被NPP呈波动上升趋势,多年平均值为1011 g∙m−2,年增长值为6.7 g∙m−2∙a−1,正增长区面积占全省面积的91.9%。其中,森林生态系统NPP多年平均值及正增长区占比均最高,分别为1107 g∙m−2、95.6%,湿地生态系统NPP多年平均值及正增长区占比均最小,分别为686 g∙m−2、89.5%。从影响程度看,植被NPP与温度、降水、日照时数均呈显著正相关关系,相关系数分别为0.81、0.48、0.68,均通过p=0.001的显著性检验,可见气温是对植被NPP影响最为显著的气候因子,其次是日照、降水。气温和日照时数对森林生态系统NPP影响最大、对湿地生态系统NPP影响最小,降水对农田生态系统影响最大、对湿地生态系统影响最小。从响应时间而言,NPP与气温、日照时数的相关系数均在当月达到最大,而NPP与降水量的相关系数在滞后1个月时达到最大,可见NPP对气温、日照时数的响应不存在滞后。从影响持续时间而言,气温与NPP的相关系数在当月到滞后2个月时均较高,日照时数与NPP的相关系数仅在当月较高,降水量与NPP的相关系数则在当月到滞后3个月时均较高,表明降水对NPP影响持续时间最长。
中图分类号:
王捷纯, 邓玉娇, 朱怀卫, 孔蕴淇. 广东省不同生态系统植被NPP时空变化及对气候因子的响应[J]. 生态环境学报, 2024, 33(6): 831-840.
WANG Jiechun, DENG Yujiao, ZHU Huaiwei, KONG Yunqi. Spatiotemporal Variations of Vegetation NPP of Different Ecosystems in Guangdong Province and Its Response to Climate Factors[J]. Ecology and Environment, 2024, 33(6): 831-840.
图1 2000—2020年广东省平均气温、降水量、日照时数空间分布与变化趋势
Figure 1 Spatial distributions and changing trends of average air temperature, precipitation and sunshine duration from 2000 to 2020 in Guangdong Province
图2 2000—2020年广东省平均气温、降水量、日照时数变化曲线
Figure 2 Changing curves of average air temperature, precipitation and sunshine duration from 2000 to 2020 in Guangdong Province
图5 2000—2020年广东省植被月NPP与气温、降水、日照时数相关系数空间分布与不同生态系统植被NPP与气温、降水、日照时数相关系数统计
Figure 5 Correlation coefficients between monthly average NPP and air temperature, precipitation and sunshine duration, and correelation coefficients between monthly average NPP of different ecological system and air temperature, precipitation and sunshine duration from 2000 to 2020 in Guangdong Province
[1] | GE W Y, DENG L Q, WANG F, et al., 2021. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 773: 145648. |
[2] | GONG H B, CAO L, DUAN Y F, et al., 2023. Multiple effects of climate changes and human activities on NPP increase in the Three-north Shelter Forest Program area[J]. Forest Ecology and Management, 529: 120732. |
[3] | JACKSON R B, RANDERSON J T, CANADELL J G, et al., 2008. Protecting climate with forests[J]. Environmental Research Letters, 3(4): 269. |
[4] | LEITH H, WHITTAKER R H, 1975. Primary productivity of the biosphere[M]. New York: Springer Verlag Press. |
[5] | LIU Q, PIAO S L, FU Y H, et al., 2019. Climatic warming increases spatial synchrony in spring vegetation phenology across the Northern Hemisphere[J]. Geophysical Research Letters, 46(3): 1641-1650. |
[6] | MELILLO J M, MCGUIRE A D, KICKLIGHTER D W, et al., 1993. Global climate change and terrestrial net primary production[J]. Nature, 363: 234-240. |
[7] | PARK H S, SOHN B J, 2010. Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations[J/OL]. Journal of Geophysical Research, 115(D14). [2010-07-17]. https:// doi.org/10.1029/2009JD012752. |
[8] | PIAO S L, SITCH S, CIAIS P, et al., 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J]. Global Change Biology, 19(7): 2117-2132. |
[9] | PIAO S L, YIN G D, TAN J G, et al., 2015. Detection and attribution of vegetation greening trend in China over the last 30 years[J]. Global Change Biology, 21(4): 1601-1609. |
[10] | RAUPACH M R, CANADELL J G, LE Q C, 2008. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction[J]. Biogeosciences, 5(4): 2867-2896. |
[11] | SUDIPTA S, MENAS K, 2004. Interannual Variability of vegetation over the Indian Sub-continent and its relation to the different meteorological parameters[J]. Remote Sensing of Environment, 90(2): 268-280. |
[12] | YUAN W P, LIU S G, YU G R, et al., 2010. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 114(7): 1416-1431. |
[13] | YUAN W P, PIAO S L, QIN D H, et al., 2018. Influence of vegetation growth on the enhanced seasonality of atmospheric CO2[J]. Global Biogeochemical Cycles, 32(1): 32-41. |
[14] |
ZHU Z C, PIAO S L, MYNENI R B, et al., 2016. Greening of the earth and its drivers[J]. Nature Climate Change, 6(8): 791-795.
DOI |
[15] |
邓玉娇, 王捷纯, 徐杰, 等, 2021. 广东省NDVI时空变化特征及其对气候因子的响应[J]. 生态环境学报, 30(1): 37-43.
DOI |
DENG Y J, WANG J C, XU J, et al., 2021. Spatiotemporal variation of NDVI and its response to climatic factors in Guangdong Province[J]. Ecology and Environmental Sciences, 30(1): 37-43. | |
[16] |
邓玉娇, 王捷纯, 徐杰, 等, 2022. 广东省植被固碳量时空变化及气象贡献率研究[J]. 生态环境学报, 31(1): 1-8.
DOI |
DENG Y J, WANG J C, XU J, et al., 2022. Spatiotemporal variation of vegetation carbon sequestration and its meteorological contribution in Guangdong Province[J]. Ecology and Environmental Sciences, 31(1): 1-8. | |
[17] | 广东省统计局, 国家统计局广东调查总队, 2020. 广东统计年鉴—2020[M]. 北京: 中国统计出版社: 4-5. |
Statistics Bureau of Guangdong Province, Guangdong General Survey Team of National Bureau of Statistics, 2020. Guangdong statistical yearbook—2020[M]. Beijing: China Statistics Press: 4-5. | |
[18] | 贾建辉, 龙晓君, 2018. 广东省极端降水时空分布特征研究[J]. 水利水电技术, 49(12): 43-51. |
JIA J H, LONG X J, 2018. Study on spatio-temporal distribution characteristics of extreme precipitation in Guangdong Province[J]. Water Resources and Hydropower Engineering, 49(12): 43-51. | |
[19] | 雷茜, 胡忠文, 王敬哲, 等, 2023. 1985-2015年中国不同生态系统NDVI时空变化及其对气候因子的响应[J]. 生态学报, 43(15): 6378-6391. |
LEI Q, HU Z W, WANG J Z, et al., 2023. Spatiotemporal dynamics of NDVI in China from 1985 to 2015: Ecosystem variation, regional differences, and response to climatic factors[J]. Acta Ecologica Sinica, 43(15): 6378-6391. | |
[20] | 李红英, 张存桂, 汪生珍, 等, 2022. 近40年青藏高原植被动态变化对水热条件的响应[J]. 生态学报, 42(12): 4770-4783. |
LI H Y, ZHANG C G, WANG S Z, et al., 2022. Response of vegetation dynamics to hydrothermal condition on the Qinghai-Tibet Plateau in the last 40years[J]. Acta Ecologica Sinica, 42(12): 4770-4783. | |
[21] |
刘纪远, 宁佳, 匡文慧, 等, 2018. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 73(5): 789-802.
DOI |
LIU J Y, NING J, KUANG W H, et al., 2018. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015[J]. Acta Geographica Sinica, 73(5): 789-802.
DOI |
|
[22] |
卢乔倩, 江涛, 柳丹丽, 等, 2020. 中国不同植被覆盖类型NDVI对气温和降水的响应特征[J]. 生态环境学报, 29(1): 23-34.
DOI |
LU Q Q, JIANG T, LIU D L, et al., 2020. The response characteristics of NDVI with different vegetation cover types to temperature and precipitation in China[J]. Ecology and Environmental Sciences, 29(1): 23-34. | |
[23] | 毛智慧, 黎丽莉, 程露, 等, 2023. 广东省植被叶面积指数时空变化特征及其影响因素[J]. 地球科学与环境学报, 45(4): 907-919. |
MAO Z H, LI L L, CHENG L, et al., 2023. Spatio-temporal variation of vegetation leaf area index and its influencing factors in Guangdong province, China[J]. Journal of Earth Sciences and Environment, 45(4): 907-919. | |
[24] | 朴世龙, 方精云, 郭庆华, 2001. 1982-1999年我国植被净第一性生产力及其时空变化[J]. 北京大学学报(自然科学版), 37(4): 563-569. |
PIAO S L, FANG J Y, GUO Q H, et al., 2001. Terrestrial net primary production and its spatio-temporal patterns in China during 1982-1999[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(4): 563-569. | |
[25] | 朴世龙, 张宪洲, 汪涛, 等, 2019. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 64(27): 2842-2855. |
PIAO S L, ZHANG X Z, WANG T, et al., 2019. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change[J]. Chinese Science Bulletin, 64(27): 2842-2855. | |
[26] |
孙应龙, 钱拴, 延昊, 等, 2019. 2000-2018年云南省典型矿区植被生态时空变化特征——以临沧市为例[J]. 生态环境学报, 28(12): 2381-2389.
DOI |
SUN Y L, QIAN S, YAN H, et al., 2019. Spatial-temporal dynamics of vegetation ecosystem in typical coal mining area of Yunnan Province during 2000-2018: A case study in Lincang[J]. Ecology and Environmental Sciences, 28(12): 2381-2389. | |
[27] | 王升红, 陆东芳, 陈雨如, 等, 2024. 2001-2020年厦漳泉地区植被净初级生产力时空演变特征及其影响因素[J]. 生态学杂志, 43 (3): 823-832. |
WANG S H, LU D F, CHEN Y R, et al., 2024. Spatial-temporal evolution characteristics and influencing factors of net primary vegetation productivity in Xiamen-Zhangzhou-Quanzhou Region from 2001 to 2020[J]. Chinese Journal of Ecology, 43(3): 823-832. | |
[28] | 王爽, 李庆旭, 张彪, 2021. 锡林郭勒盟净初级生产力时空变化及其气候影响[J]. 生态学杂志, 40(3): 825-834. |
WANG S, LI Q X, ZHANG B, 2021. Spatiotemporal variation of net primary production and its climatic driving factors in Xilingol League[J]. Chinese Journal of Ecology, 40(3): 825-834. | |
[29] | 王文静, 延军平, 刘永林, 等, 2016. 华南地区气候变化与旱涝灾害响应关系[J]. 华东师范大学学报(自然科学版) (2): 81-89. |
WANG W J, YAN J P, LIU Y L et al., 2016. Climate change and drought-flood disasters responses in south China[J]. Journal of East China Normal University (Natural Science) (2): 81-89. | |
[30] | 吴林霖, 王思远, 马元旭, 等, 2022. 中亚地区植被对气候变化的响应机制初探[J]. 遥感学报, 26(11): 2248-2267. |
WU L L, WANG S Y, MA Y X, et al., 2022. Response of vegetation to climate change in Central Asia with remote sensing and meteorological data[J]. National Remote Sensing Bulletin, 26(11): 2248-2267. | |
[31] | 邢文渊, 石玉, 韩勇, 等, 2011. 巴里坤植被覆盖动态变化及气象因素分析[J]. 气象与环境科学, 34(1): 62-66. |
XING W Y, SHI Y, HAN Y, et al., 2011. Analysis of dynamic change of vegetation coverage and meteorological condition in Barkol[J]. Meteorological and Environmental Sciences, 34(1): 62-66. | |
[32] |
许玉凤, 潘网生, 张永雷, 2020. 贵州高原NDVI变化及其对气候变化的响应[J]. 生态环境学报, 29(8): 1507-1518.
DOI |
XU Y F, PAN W S, ZHANG Y L, 2020. Vegetation NDVI change and its response to climate change in Guizhou Plateau[J]. Ecology and Environmental Sciences, 29(8): 1507-1518. | |
[33] | 徐勇, 卢云贵, 戴强玉, 等, 2023. 气候变化和土地利用变化对长江中下游地区植被NPP变化相对贡献分析[J]. 中国环境科学, 43(9): 4988-5000. |
XU Y, LU Y G, DAI Q Y, et al., 2023. Assessment of the relative contribution of climate change and land use change on net primary productivity variation in the middle and lower reaches of the Yangtze River Basin[J]. China Environmental Science, 43(9): 4988-5000. | |
[34] | 闫新霞, 戴翠贤, 2013. 天山北麓植被指数变化特征及其与气温和降水的关系[J]. 气象与环境科学, 36(2): 42-46. |
YAN X X, DAI C X, 2013. Change characteristics of the vegetation index in the north of Tianshan mountains and the relation with the temperature and precipitation[J]. Meteorological and Environmental Sciences, 36(2): 42-46. | |
[35] | 袁换欢, 严家宝, 张建亮, 等, 2023. 上海市气候变化和人类活动对植被物候的影响[J]. 生态学报, 43(21): 8803-8815. |
YUAN H H, YAN J B, ZHANG J L, et al., 2023. Influences of climate change and human activities on vegetation phenology of Shanghai[J]. Acta Ecological Sinica, 43(21): 8803-8815. | |
[36] | 张争胜, 陈朝隆, 廖伟群, 2016. 广东地理[M]. 北京: 北京师范大学出版社: 21-22. |
ZHANG Z S, CHEN C L, LIAO W Q, 2016. Guangdong Geography[M]. Beijing: Beijing Normal University Press: 21-22. | |
[37] |
朱士华, 艳燕, 邵华, 等, 2017. 1980-2014年中亚地区植被净初级生产力对气候和CO2变化的响应[J]. 自然资源学报, 32(11): 1844-1856.
DOI |
ZHU S H, YAN Y, SHAO H, et al., 2017. The responses of the net primary productivity of the dryland ecosystems in Central Asia to the CO2 and climate change during the past 35years[J]. Journal of Natural Resources, 32(11): 1844-1856. |
[1] | 向男, 王明旭, 张宏锋, 廖宝淦. 生态保护重要性分区及其长时间序列生境状况时空分异研究——以广东省为例[J]. 生态环境学报, 2024, 33(6): 958-968. |
[2] | 王鹭莹, 李小马, 甘德欣, 刘鹏翱, 郭胜, 李毅. 长株潭城市群生态系统服务权衡与协同关系的空间异质性及其驱动因素[J]. 生态环境学报, 2024, 33(6): 969-979. |
[3] | 蒋云峰, 严婷, 刘俊男, 马丙增, 王海萌, 窦笑萌. 黑土区农田中型土壤动物群落对免耕玉米秸秆覆盖频率的响应[J]. 生态环境学报, 2024, 33(5): 699-707. |
[4] | 陈晓辉, 胡喜生. 耦合ER和GWR的福州市生态环境质量的驱动力分析[J]. 生态环境学报, 2024, 33(5): 812-823. |
[5] | 卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530. |
[6] | 谷月营, 张赞培, 毛乾兴, 方升佐. 青钱柳无性系对寒驯化的生理响应及其抗寒性初步评价[J]. 生态环境学报, 2024, 33(4): 531-538. |
[7] | 张淼, 王桂霞, 王昌伟, 贺艳云, 许艳芳, 李琪, 许杨, 张俊骁, 张桂芹. 济南市区黑碳污染变化特征及来源解析[J]. 生态环境学报, 2024, 33(4): 560-572. |
[8] | 杨非凡, 何浩. 基于“EVI-ESV”伊犁河谷生态环境评估及生态分区构建[J]. 生态环境学报, 2024, 33(4): 655-664. |
[9] | 翟涌光, 王晓妮, 郝蕾, 戚文超, 王雅崧, 耿佳玉, 兰穹穹, 王志国. 2001-2020年内蒙古净生态系统生产力格局多时间尺度分析[J]. 生态环境学报, 2024, 33(2): 167-179. |
[10] | 李霞, 陈永昊, 陈喆, 张国壮, 唐梦雅. 中国沿海地区植被NDVI时空变化及驱动力分析[J]. 生态环境学报, 2024, 33(2): 180-191. |
[11] | 蓝浚, 陈冠虹, 张俊涛, Hemmat-Jou Mohammad Hossein, 舒小华, 方利平, 李芳柏. 电子穿梭体介导土壤锑还原成矿的微生物机制[J]. 生态环境学报, 2024, 33(2): 272-281. |
[12] | 李荣杰, 李惠梅, 武非非, 赵明德, 王诗涵, 孙雪颖. 青海湖流域生态系统服务空间分异规律及驱动力研究[J]. 生态环境学报, 2024, 33(2): 301-309. |
[13] | 王宁, 刘效东, 甘先华, 苏宇乔, 吴国章, 黄芳芳, 张卫强. 亚热带典型林分降水过程中的水质效应[J]. 生态环境学报, 2023, 32(8): 1365-1375. |
[14] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[15] | 徐梓津, 张雪松, 陈明曼. 山地岩溶区生态系统服务时空演变特征分析——以贵州省为例[J]. 生态环境学报, 2023, 32(7): 1196-1206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||