生态环境学报 ›› 2024, Vol. 33 ›› Issue (11): 1708-1716.DOI: 10.16258/j.cnki.1674-5906.2024.11.005
崔盼盼1(), 于洋1, 曲波2, 苏芳莉1,3,4,*(
)
收稿日期:
2024-08-27
出版日期:
2024-11-18
发布日期:
2024-12-06
通讯作者:
*苏芳莉。E-mail: sufangli@syau.edu.cn作者简介:
崔盼盼(1997年生),男,博士研究生,主要从事水土保持与湿地生态研究。E-mail: cuipanpan3@163.com
基金资助:
CUI Panpan1(), YU Yang1, QU Bo2, SU Fangli1,3,4,*(
)
Received:
2024-08-27
Online:
2024-11-18
Published:
2024-12-06
摘要:
充分认识生态系统植物多样性和植被覆盖度退化过程是开展和实现退化生态系统修复的关键。封育是恢复受损草地生态系统的一种简单有效的策略,但不同封育年限对退化河岸草地植物多样性和景观斑块的影响尚不清楚。以中国建立的第一个河流封育区——辽河为研究对象,沿河岸设置21个监测样地,连续13年记录河岸草地植物密度、盖度和种类,探讨了河岸草地退化下植物群落结构、物种多样性和植被景观特性的变化及其相互关系,为河岸带草地退化管理和退化草地恢复年限提供理论依据。结果表明,1)随着封育年限增加,物种丰富度和多样性显著提高(p<0.05),物种丰富度、Shannon-Wiener指数、Pielou均匀度指数和Simpson优势度指数均在封育12年后达到峰值,分别为36、2.87、0.81和1.02。2)随着封育年限的增加,群落物种组成差异也在增大,封育第8年与其他围封年限的物种组成相比差异较大(p<0.05),辽河封育区的优势植物种类主要为菊科、禾本科和豆科植物。3)封育12年后,以自然景观为主的植被斑块分布均匀,植被覆盖度提高10.71%,景观破碎化程度降低了42.18%。此外,河岸植物物种多样性和植被覆盖度正相关(p<0.001),而植物物种多样性和景观破碎度负相关(p<0.001)。综上,12年围栏封育阈值提高了退化辽河干流河岸草地物种多样性、物种组成和植被覆盖度。
中图分类号:
崔盼盼, 于洋, 曲波, 苏芳莉. 封育对退化河岸草地植物多样性和植被景观的影响[J]. 生态环境学报, 2024, 33(11): 1708-1716.
CUI Panpan, YU Yang, QU Bo, SU Fangli. Effects of Enclosure on Plant Diversity and Vegetation Landscape in Degraded Riparian Grassland[J]. Ecology and Environment, 2024, 33(11): 1708-1716.
图3 辽河干流不同封育年限物种组成的非度量多维尺度排序
Figure 3 Non-metric multidimensional scaling ordination plots of species composition at different enclosure years in the mainstem of the Liao River
科 | 优势种 (特有种) | 区域 | |
---|---|---|---|
禾本科Gramineae | 芦苇 | Phragmites australis | 上游 福德店-通江口段 |
禾本科Gramineae | 狗尾草 | Setaria viridis | |
禾本科Gramineae | 茭草 | Zizania latifolia | |
禾本科Gramineae | 牛鞭草 | Hemarthria altissima | |
香蒲科Typhaceae | 香蒲 | Typha orientalis | |
睡菜科Menyanthaceae | 荇菜 | Nymphoides peltata | |
莎草科Cyperaceae | 翼果苔草 | Carex neurocarpa | |
苋科Amaranthaceae | 藜 | Chenopodium album | |
菊科Asteraceae | 林中蒿 | Artemisia sylvatica | |
菊科Asteraceae | 野艾蒿 | Artemisia lavandulifolia | |
菊科Asteraceae | 黄花蒿 | Artemisia annua | |
菊科Asteraceae | 茵陈蒿 | Artemisia capillaris | |
紫草科Boraginaceae | 大果琉璃草 | Cynoglossum divaricatum | |
豆科Fabaceae | 野大豆 | Glycine soja | |
豆科Fabaceae | 黄芪 | Astragalus membranaceus | 上游 通江口-石佛寺水库段 |
马齿苋科Portulacaceae | 马齿苋 | Portulaca oleracea | |
豆科Fabaceae | 草木犀 | Melilotus officinalis | |
鼠李科 Rhamnaceae | 酸枣 | Ziziphus jujuba var. spinosa | |
菊科Asteraceae | 土三七 | Gynura segetum | |
苋科Amaranthaceae | 地肤 | Bassia scoparia | 中游 石佛寺水库-柳河入河口段 |
黎科Chenopodiaceae | 猪毛菜 | Salsola collina | |
锦葵科Malvaceae | 苘麻 | Abutilon theophrasti | |
禾本科Gramineae | 长刺蒺藜草 | Cenchrus longispinus | |
菊科Asteraceae | 三裂叶豚草 | Ambrosia trifida | |
菊科Asteraceae | 豚草 | Ambrosia artemisiifolia | |
菊科Asteraceae | 意大利苍耳 | Xanthium italicum | |
菊科Asteraceae | 大狼把草 | Bidens frondosa | |
夹竹桃科Apocynaceae | 罗布麻 | Apocynum venetum | 下游 柳河入河口-辽河口段 |
夹竹桃科Apocynaceae | 鹅绒藤 | Cynanchum chinense | |
白花丹科Plumbaginaceae | 补血草 | Limonium sinense | |
黎科Chenopodiaceae | 盐地碱蓬 | Suaeda salsa |
表1 辽河干流封育样地的物种组成
Table 1 Species composition of the enclosure sites in the mainstem of the Liaohe River
科 | 优势种 (特有种) | 区域 | |
---|---|---|---|
禾本科Gramineae | 芦苇 | Phragmites australis | 上游 福德店-通江口段 |
禾本科Gramineae | 狗尾草 | Setaria viridis | |
禾本科Gramineae | 茭草 | Zizania latifolia | |
禾本科Gramineae | 牛鞭草 | Hemarthria altissima | |
香蒲科Typhaceae | 香蒲 | Typha orientalis | |
睡菜科Menyanthaceae | 荇菜 | Nymphoides peltata | |
莎草科Cyperaceae | 翼果苔草 | Carex neurocarpa | |
苋科Amaranthaceae | 藜 | Chenopodium album | |
菊科Asteraceae | 林中蒿 | Artemisia sylvatica | |
菊科Asteraceae | 野艾蒿 | Artemisia lavandulifolia | |
菊科Asteraceae | 黄花蒿 | Artemisia annua | |
菊科Asteraceae | 茵陈蒿 | Artemisia capillaris | |
紫草科Boraginaceae | 大果琉璃草 | Cynoglossum divaricatum | |
豆科Fabaceae | 野大豆 | Glycine soja | |
豆科Fabaceae | 黄芪 | Astragalus membranaceus | 上游 通江口-石佛寺水库段 |
马齿苋科Portulacaceae | 马齿苋 | Portulaca oleracea | |
豆科Fabaceae | 草木犀 | Melilotus officinalis | |
鼠李科 Rhamnaceae | 酸枣 | Ziziphus jujuba var. spinosa | |
菊科Asteraceae | 土三七 | Gynura segetum | |
苋科Amaranthaceae | 地肤 | Bassia scoparia | 中游 石佛寺水库-柳河入河口段 |
黎科Chenopodiaceae | 猪毛菜 | Salsola collina | |
锦葵科Malvaceae | 苘麻 | Abutilon theophrasti | |
禾本科Gramineae | 长刺蒺藜草 | Cenchrus longispinus | |
菊科Asteraceae | 三裂叶豚草 | Ambrosia trifida | |
菊科Asteraceae | 豚草 | Ambrosia artemisiifolia | |
菊科Asteraceae | 意大利苍耳 | Xanthium italicum | |
菊科Asteraceae | 大狼把草 | Bidens frondosa | |
夹竹桃科Apocynaceae | 罗布麻 | Apocynum venetum | 下游 柳河入河口-辽河口段 |
夹竹桃科Apocynaceae | 鹅绒藤 | Cynanchum chinense | |
白花丹科Plumbaginaceae | 补血草 | Limonium sinense | |
黎科Chenopodiaceae | 盐地碱蓬 | Suaeda salsa |
[1] | CHEN F X, LU S Y, HU X Z, et al., 2019. Multi-dimensional habitat vegetation restoration mode for lake riparian zone, Taihu, China[J]. Ecological Engineering, 134: 56-64. |
[2] | CHEN X P, ZHANG T, GUO R Y, et al., 2021. Fencing enclosure alters nitrogen distribution patterns and tradeoff strategies in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Catena, 197: 104948. |
[3] | CUI P P, SU F L, ZHOU F, 2022. Inundation Depth Shape Phenotypic Variability of Phragmites australis in Liaohe Estuary Wetland, Northeast China[J]. Sustainability, 14(22): 14911. |
[4] | DING J Y, ZHAO W W, FU B J, et al., 2018. Variability of Tamarix spp. characteristics in riparian plant communities are affected by soil properties and accessibility of anthropogenic disturbance in the lower reaches of Heihe River, China[J]. Forest Ecology and Management, 410: 174-186. |
[5] |
FAHRIG L, BAUDRY J, BROTONS L, et al., 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[J]. Ecology Letters, 14(2): 101-112.
DOI PMID |
[6] | GOLODETS C, KIGEL J, STERNBERG M, 2010. Recovery of plant species composition and ecosystem function after cessation of grazing in a Mediterranean grassland[J]. Plant and Soil, 329: 365-378. |
[7] | GU Y Y, LIN N F, CAO B S, et al., 2023. Assessing the effectiveness of Ecological Conservation Red Line for mitigating anthropogenic habitat degradation in river corridors[J]. Ecological Indicators, 154: 110742. |
[8] | HALE R, REICH P, DANIEL T, et al., 2018. Assessing changes in structural vegetation and soil properties following riparian restoration[J]. Agriculture, Ecosystems & Environment, 252: 22-29. |
[9] | HOUGH-SNEE N, ROPER B B, WHEATON J M, et al., 2013. Riparian vegetation communities change rapidly following passive restoration at a northern Utah stream[J]. Ecological Engineering, 58: 371-377. |
[10] | HUANG F F, ZHOU G H, LIAO H X, et al., 2022. Simulated nitrogen deposition induces shifts in growth and resource-use strategies during range expansion of an invasive plant[J]. Biological Invasions, 24: 621-633. |
[11] | JING Z B, CHENG J M, SU J S, et al., 2014. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland[J]. Ecological Engineering, 64: 171-178. |
[12] | JU W L, MOORHEAD D L, SHEN G T, et al., 2023. Soil aggregate development and associated microbial metabolic limitations alter grassland carbon storage following livestock removal[J]. Soil Biology and Biochemistry, 177: 108907. |
[13] | MULLER I, DELISLE M, OLLITRAULT M, et al., 2016. Responses of riparian plant communities and water quality after 8 years of passive ecological restoration using a BACI design[J]. Hydrobiologia, 781: 67-79. |
[14] | NATHAN R, KATUL G G, HORN H S, et al., 2002. Mechanisms of long-distance dispersal of seeds by wind[J]. Nature, 418(6896): 409-413. |
[15] | ODADI W O, FARGIONE J, RUBENSTEIN D I, 2017. Vegetation, wildlife, and livestock responses to planned grazing management in an African pastoral landscape[J]. Land Degradation & Development, 28(7): 2030-2038. |
[16] | OSEM Y, PEREVOLOTSKY A, KIGEL J, 2004. Site productivity and plant size explain the response of annual species to grazing exclusion in a Mediterranean semi‐arid rangeland[J]. Journal of Ecology, 92(2): 297-309. |
[17] | PAN Y, HERSPERGER A M, KIENAST F, et al., 2022. Spatial and temporal scales of landscape structure affect the biodiversity-landscape relationship across ecologically distinct species groups[J]. Landscape Ecology, 37(9): 2311-2325. |
[18] | PENG Y, HE G J, WANG G Z, 2022. Spatial-temporal analysis of the changes in Populus euphratica distribution in the Tarim National Nature Reserve over the past 60 years[J]. International Journal of Applied Earth Observation and Geoinformation, 113: 103000. |
[19] | PRICE J N, SITTERS J, OHLERT T, et al., 2022. Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity[J]. Nature Ecology & Evolution, 6(9): 1290-1298. |
[20] | RAITIF J, PLANTEGENEST M, ROUSSEL J M, 2019. From stream to land: Ecosystem services provided by stream insects to agriculture[J]. Agriculture, Ecosystems & Environment, 270-271: 32-40. |
[21] | RIVA F, FAHRIG L, 2023. Landscape-scale habitat fragmentation is positively related to biodiversity, despite patch‐scale ecosystem decay[J]. Ecology Letters, 26(2): 268-277. |
[22] | SMITH A T, WILSON M C, HOGAN B W, 2019. Functional-trait ecology of the plateau pika Ochotona curzoniae in the Qinghai-Tibetan Plateau ecosystem[J]. Integrative Zoology, 14(1): 87-103. |
[23] | SONG S S, ZHU J L, ZHENG T L, et al., 2020. Long-term grazing exclusion reduces species diversity but increases community heterogeneity in an alpine grassland[J]. Frontiers in Ecology and Evolution, 8: 66. |
[24] | STUTTER M, BAGGALEY N, WANG C, 2021. The utility of spatial data to delineate river riparian functions and management zones: A review[J]. Science of the Total Environment, 757: 143982. |
[25] | TEALDI S, CAMPOREALE C, RIDOLFI L, 2013. Inter-species competition- facilitation in stochastic riparian vegetation dynamics[J]. Journal of Theoretical Biology, 318: 13-21. |
[26] | UROY L, ERNOULT A, MONY C, 2019. Effect of landscape connectivity on plant communities: A review of response patterns[J]. Landscape Ecology, 34: 203-225. |
[27] | WU C Y, CHEN W, 2020. Indicator system construction and health assessment of wetland ecosystem: Taking Hongze Lake Wetland, China as an example[J]. Ecological Indicators, 112: 106164. |
[28] | WU N C, ZHOU S C, ZHANG M, et al., 2021a. Spatial and local environmental factors outweigh geo‐climatic gradients in structuring taxonomically and trait‐based β‐diversity of benthic algae[J]. Journal of Biogeography, 48(8): 1842-1857. |
[29] | WU X W, WANG Y C, SUN S C, 2021b. Long-term fencing decreases plant diversity and soil organic carbon concentration of the Zoige alpine meadows on the eastern Tibetan plateau[J]. Plant and Soil, 458(1-2): 191-200. |
[30] | XIA H J, KONG W J, SUN J X, et al., 2018. Spatial-temporal dynamics of vegetation cover before and after establishment of Liaohe River Reserve based on MODIS NDVI[J]. Acta Ecologica Sinica, 38(15): 5434-5442. |
[31] | YAO X X, WU J P, GONG X Y, et al., 2019. Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai-Tibet Plateau[J]. Ecological Engineering, 130: 80-93. |
[32] | ZHANG Z J, LIU Y J, YUAN L, et al., 2021. Effect of allelopathy on plant performance: A meta‐analysis[J]. Ecology Letters, 24(2): 348-362. |
[33] | ZHAO J X, LI X, LI R C, et al., 2016. Effect of grazing exclusion on ecosystem respiration among three different alpine grasslands on the central Tibetan Plateau[J]. Ecological Engineering, 94: 599-607. |
[34] | ZHU Y J, DELGADO-BAQUERIZO M, SHAN D, et al., 2021. Grazing impacts on ecosystem functions exceed those from mowing[J]. Plant and Soil, 464(1): 579-591. |
[35] | 陈智勇, 谢迎新, 刘苗, 2019. 围栏封育高寒草地植物地上生物量和物种多样性对关键调控因子的响应[J]. 草业科学, 36(4): 1000-1009. |
CHEN Z Y, XIE Y X, LIU M, 2019. Responses of aboveground biomass and species richness to environmental factors in a fenced alpine grassland[J]. Pratacultural Science, 36(4): 1000-1009. | |
[36] | 段亮, 宋永会, 张临绒, 等, 2014. 辽河保护区河岸带生态恢复技术研究[J]. 环境工程技术学报, 4(1): 8-12. |
DUAN L, SONG Y H, ZHANG L R, et al., 2014. The ecological restoration technologies of riparian area in Liaohe conservation area[J]. Journal of Environmental Engineering Technology, 4(1): 8-12. | |
[37] | 郭凡嫡, 潘俊, 孙丽娜, 等, 2018. 辽河干流河岸带土壤中多环芳烃的污染特征与生态风险评价研究[J]. 环境工程, 36(7): 155-160. |
GUO F D, PAN J, SUN L N, et al., 2018. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in riparian soil of Liaohe River[J]. Environmental Engineering, 36(7): 155-160. | |
[38] | 李霞, 张国壮, 陈永昊, 等, 2022. 农牧交错带辽河流域2010-2019年植被覆盖变化及驱动因素分析[J]. 农业工程学报, 38(22): 63-72. |
LI X, ZHANG G Z, CHEN Y H, et al., 2022. Vecetation cover chance and driving factors in the aropastoral ecotone of Liaohe River Basin of China from 2010 to 2019[J]. Transactions of the Chinese Society of Agricultural Engineering, 38(22): 63-72. | |
[39] |
马富龙, 韩路, 冯秀花, 等, 2023. 封育对昆仑山北坡温性草原植物、土壤及微生物的影响[J]. 草地学报, 31(11): 3364-3375.
DOI |
MA F L, HAN L, FENG X H, et al., 2023. Effects of enenclosure on the plants, soil, and microorganisms of temperate grasslands on the northern slope of Kunlun Mountains[J]. Acta Agrestia Sinica, 31(11): 3364-3375. | |
[40] |
蒙仲举, 陈颜洁, 包斯琴, 2021. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征[J]. 草业学报, 30(4): 13-23.
DOI |
MENG Z J, CHEN Y J, BAO S Q, 2021. Characteristics of community patches under three grazing modes in Sunite Desert-steppe[J]. Acta Prataculturae Sinica, 30(4): 13-23. | |
[41] | 聂莹莹, 杜广明, 王国庆, 等, 2016. 围栏封育对呼伦贝尔草甸草原群落物种多样性的影响[J]. 中国草地学报, 38(6): 106-110. |
NIE Y Y, DU G M, WANG G Q, et al., 2016. Effects of enenclosure on species diversity of community in Hunlunbuir meadow steppe[J]. Chinese Journal of Grassland, 38(6): 106-110. | |
[42] | 彭文甫, 王广杰, 周介铭, 等, 2016. 基于多时相Landsat5/8影像的岷江汶川-都江堰段植被覆盖动态监测[J]. 生态学报, 36(7): 1975-1988. |
PENG W F, WANG G J, ZHOU J M, et al., 2016. Dynamic monitoring of fractional vegetation cover along Minjiang River from Wenchuan County to Dujiangyan City using multi-temporal landsat 5 and 8 images[J]. Acta Ecologica Sinica, 36(7): 1975-1988. | |
[43] | 乔羽, 赵允格, 马昕昕, 等, 2022. 放牧强度对黄土丘陵沟壑区生物土壤结皮分布格局的影响[J]. 西北农林科技大学学报(自然科学版), 50(8): 122-130. |
QIAO Y, ZHAO Y G, MA X X, et al., 2022. Effects of grazing intensity on distribution pattern of biological soil crusts in loess hilly and gully region of the Loess Plateau in China[J]. Journal of Northwest A & F University (Natural Science Edition), 50(8): 122-130. | |
[44] | 涂响, 彭剑峰, 段亮, 等, 2013. 辽河保护区干流自然生境恢复措施研究[J]. 环境工程技术学报, 3(6): 503-507. |
TU X, PENG J F, DUAN L, et al., 2013. Study on measures of natural habitat restoration in the mainstream of Liaohe conservation area[J]. Journal of Environmental Engineering Technology, 3(6): 503-507. | |
[45] | 王娟, 张登山, 肖元明, 2023. 物种多样性和功能性状驱动高寒草原地上生物量对长期禁牧的响应[J]. 生态学报, 43(6): 2465-2475. |
WANG J, ZHANG D S, XIAO Y M, 2023. Diversity of species and functional traits drive jointly responses of aboveground biomass to long-term grazing exclusion at alpine steppe[J]. Acta Ecologica Sinica, 43(6): 2465-2475. | |
[46] |
王瑞泾, 冯琦胜, 金哲人, 等, 2022. 青藏高原退化草地的恢复潜势研究[J]. 草业学报, 31(6): 11-22.
DOI |
WANG R J, FENG Q S, JIN Z R, et al., 2022. A study on restoration potential of degraded grassland on the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 31(6): 11-22. | |
[47] |
吴婷, 宋乃平, 陈晓莹, 等, 2019. 围栏封育和放牧对盐池荒漠草原植物群落特征的影响[J]. 草地学报, 27(3): 651-660.
DOI |
WU T, SONG N P, CHEN X Y, et al., 2019. Effects of enenclosure and grazing on the characteristics of plant communities in desert steppe of Yanchi[J]. Acta Agrestia Sinica, 27(3): 651-660. | |
[48] | 张鸿龄, 郭鑫, 孙丽娜, 2016. 辽河保护区河岸带自然生境恢复现状[J]. 沈阳大学学报(自然科学版), 28(2): 98-104. |
ZHANG H L, GUO X, SUN L N, 2016. Status of Natural Habitat Restoration of Riparian Zone in Liaohe River Conservation Area[J]. Journal of Shenyang University (Natural Science), 28(2): 98-104. | |
[49] | 张攀, 马婧婧, 程军回, 等, 2021. 围封对天山北坡中段温性草原植被特征和土壤理化性质的影响[J]. 中国草地学报, 43(5): 41-50. |
ZHANG P, MA J J, CHENG J H, et al., 2021. Effects of Enenclosure on Vegetation Characteristics and Soil Physical and Chemical Properties of Temperate Grassland[J]. Chinese Journal of Grassland, 43(5): 41-50. | |
[50] |
张义, 程杰, 苏纪帅, 等, 2022. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 46(2): 176-187.
DOI |
ZHANG Y, CHENG J, SU J S, et al., 2022. Diversity productivity relationship of plant communities in typical grassland during the longterm grazing exclusion succession[J]. Chinese Journal of Plant Ecology, 46(2): 176-187.
DOI |
|
[51] |
张中华, 周华坤, 赵新全, 等, 2018. 青藏高原高寒草地生物多样性与生态系统功能的关系[J]. 生物多样性, 26(2): 111-129.
DOI |
ZHANG Z H, ZHOU H K, ZHAO X Q, et al., 2018. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai Tibet Plateau[J]. Biodiversity Science, 26(2): 111-129. |
[1] | 戴晓爱, 马佳欣, 唐艺菱, 李为乐. 甘肃省植被时空动态变化及其归因分析[J]. 生态环境学报, 2024, 33(8): 1163-1173. |
[2] | 徐佳乐, 杨兴川, 赵文吉, 杨志强, 钟一雪, 师乐颜, 马鹏飞. 气候变化背景下内蒙古中西部植被覆盖度演变特征研究[J]. 生态环境学报, 2024, 33(7): 1008-1018. |
[3] | 汪东川, 李亭蓉, 王康健, 孙苗苗, 俞长锦, 杨菲, 杨琳, 张万恒, 刘云绮, 曾孔鹏. 金沙江观音岩库区植被覆盖度时空差异影响机制分析[J]. 生态环境学报, 2024, 33(7): 997-1007. |
[4] | 宋小龙, 马明德, 王鹏, 李陇堂, 米文宝, 宋永永. 2000—2022年宁夏不同地理分区生长季植被覆盖度时空非平稳性特征[J]. 生态环境学报, 2024, 33(6): 853-868. |
[5] | 王梓晗, 吕世杰, 王忠武, 刘红梅. 放牧强度对优势种群重要值和物种多样性及其二者典型关系的影响[J]. 生态环境学报, 2024, 33(6): 869-876. |
[6] | 关玉亮, 甘先华, 殷祚云, 黄钰辉, 陶玉柱, 李宽, 张卫强, 邓彩琼, 曾祥尧, 黄芳芳. 南岭自然保护区不同海拔梯度植物多样性分布格局[J]. 生态环境学报, 2024, 33(6): 877-887. |
[7] | 卿彩霞, 陈圣宾, 邓杰文, 邓惺位, 李喆, 邱鹭. 生境数量和生境质量以及气象因子对成都市粪食性金龟物种多样性的影响[J]. 生态环境学报, 2024, 33(5): 708-719. |
[8] | 卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530. |
[9] | 梁茂厂, 郭晓华, 张影, 马雨萌, 陈弈铭, 龚复俊. 湖北省生态环境质量的时空演变特征及影响因素分析[J]. 生态环境学报, 2024, 33(10): 1634-1647. |
[10] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[11] | 倪广艳. 外来植物入侵对生态系统碳循环影响的研究概述[J]. 生态环境学报, 2023, 32(7): 1325-1332. |
[12] | 张鐥文, 杨冉, 侯文星, 王丽丽, 刘爽, 宋汉扬, 赵文吉, 李令军. 生态补水前后永定河两岸植被覆盖度变化及驱动力分析[J]. 生态环境学报, 2023, 32(2): 264-273. |
[13] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
[14] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[15] | 李梦华, 韩颖娟, 赵慧, 王云霞. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(7): 1317-1325. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||