生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 2041-2049.DOI: 10.16258/j.cnki.1674-5906.2023.11.014
李双双1,3(), 蔡铭灿1, 汪庆1, 齐丽英1, 魏贺红1, 王纯2,3,*(
)
收稿日期:
2022-12-09
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
* 王纯。E-mail: chun_wang@btbu.edu.cn作者简介:
李双双(1987年生),女,副教授,博士,研究方向为生物膜介导的水生态物质循环及其水污染防治理论与技术研究。E-mail: lishuangshuang@hebeu.edu.cn
基金资助:
LI Shuangshuang1,3(), CAI Mingcan1, WANG Qing1, QI Liying1, WEI Hehong1, WANG Chun2,3,*(
)
Received:
2022-12-09
Online:
2023-11-18
Published:
2024-01-17
摘要:
环境中微塑料正成为威胁全球水生态系统安全的重要新兴污染物之一,受到世界各国的高度重视。微塑料进入淡水环境中,不但表面容易形成生物膜,而且容易与水体中已存在生物膜发生接触。但目前针对淡水中微塑料与生物膜的相互作用及影响研究尚缺乏坚实基础。文章系统综述了淡水中微塑料分布状况、生物膜对微塑料迁移转化的影响、微塑料对生物膜微生物群落结构的影响,揭示了微塑料对生物膜碳氮循环等生态功能的影响与潜在作用机理。微塑料广泛分布在淡水河流湖泊中,生物膜和微塑料之间的相互作用可以显著改变微塑料的性质,进而影响微塑料在水生态系统中的环境行为和归趋。生物膜可以富集微塑料颗粒,增加微塑料沉降的速度和深度,加快微塑料的降解。环境中的微塑料,不但对生物膜起到毒害作用,导致生物膜出现生长减缓等负面影响,还会改变生物膜微生物群落结构,影响微生物酶活性和功能基因丰度等。微塑料可以通过作为生物膜的载体和碳源等途径增强生物膜碳循环功能,但也会导致生物膜因受损而减弱其介导的碳循环功能。微塑料还可以改变生物膜的生存环境、生物膜总量以及氮代谢相关的酶活性和基因丰度,进而影响生物膜氮循环功能。该文提出需在真实水生态条件下,开展生物膜对微塑料吸附、降解的动力学过程及其影响微塑料的“水-沉积物-生物体”迁移转化的内在机理、微塑料对生物膜碳氮循环功能微生物群落结构与功能的深入研究,以深入评估微塑料污染对淡水生态系统的潜在影响及风险。
中图分类号:
李双双, 蔡铭灿, 汪庆, 齐丽英, 魏贺红, 王纯. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 2023, 32(11): 2041-2049.
LI Shuangshuang, CAI Mingcan, WANG Qing, QI Liying, WEI Hehong, WANG Chun. Research Progress on the Interaction Between Microplastics and Biofilms and Their Ecological Effects on Freshwater Environment[J]. Ecology and Environment, 2023, 32(11): 2041-2049.
地点 | 丰度范围/(ind∙m−3) | 平均丰度/(ind∙m−3) | 微塑料主要的种类 | 参考文献 |
---|---|---|---|---|
北京市北运河河水 | (1941±201)-(8155±1781) | 4160 | 聚氨酯,乙烯-醋酸乙烯酯共聚物 | 胡嘉敏等, |
春季乌梁素海 | (4700±1500)-(16800±4000) | 9800±1200 | 聚乙烯,聚苯乙烯 | 王志超等, |
丹江口水库 | 无 | 7248 | 尼龙,聚乙烯,聚丙烯 | 潘雄等, |
湟水河(湟源县) | 665-8780 | 5414±1213 | 聚乙烯 | 范梦苑等, |
苏州古城区河道 | 3500-12000 | 7150±2520 | 无 | 吴香香等, |
青藏高原北部祁连山地区 | 0-1916.66 | 277.33 | 聚丙烯 | 冯三三等, |
渭河 | (2900±800)-(10300±2800) | 5800±1600 | 聚乙烯,聚丙烯,聚苯乙烯 | 山泽萱等, |
海河 | 0.69-74.95 | 14.17±14.64 | 聚乙烯,发泡聚苯乙烯 | Liu et al., |
鄱阳湖 | 5000-34000 | 无 | 聚丙烯,聚乙烯 | Yuan et al., |
洞庭湖 | 900-2800 | 无 | 聚乙烯,聚丙烯 | Wang et al., |
Kodaikanal Lake | 无 | 24420±3220 | 聚乙烯、聚丙烯 | Laju et al., |
the Thames River | 无 | 51200 | 氯丁二烯、聚氯乙烯、聚乙烯 | Devereux et al., |
the Garonne river catchment | 0-3.4 | 0.15 | 聚乙烯、聚苯乙烯、聚丙烯 | de Carvalho et al., |
Lake Simcoe | 0.4-1.3 | 无 | 聚乙烯、聚丙烯 | Felismino et al., |
the Ob River | 无 | 51.2 | 无 | Frank et al., |
The Elbe River | 0.88-13.24 | 5.57±4.33 | 聚乙烯、聚丙烯 | Scherer et al., |
表1 国内外淡水环境中微塑料调查情况
Table 1 Investigation of microplastics in freshwater environment at home and abroad
地点 | 丰度范围/(ind∙m−3) | 平均丰度/(ind∙m−3) | 微塑料主要的种类 | 参考文献 |
---|---|---|---|---|
北京市北运河河水 | (1941±201)-(8155±1781) | 4160 | 聚氨酯,乙烯-醋酸乙烯酯共聚物 | 胡嘉敏等, |
春季乌梁素海 | (4700±1500)-(16800±4000) | 9800±1200 | 聚乙烯,聚苯乙烯 | 王志超等, |
丹江口水库 | 无 | 7248 | 尼龙,聚乙烯,聚丙烯 | 潘雄等, |
湟水河(湟源县) | 665-8780 | 5414±1213 | 聚乙烯 | 范梦苑等, |
苏州古城区河道 | 3500-12000 | 7150±2520 | 无 | 吴香香等, |
青藏高原北部祁连山地区 | 0-1916.66 | 277.33 | 聚丙烯 | 冯三三等, |
渭河 | (2900±800)-(10300±2800) | 5800±1600 | 聚乙烯,聚丙烯,聚苯乙烯 | 山泽萱等, |
海河 | 0.69-74.95 | 14.17±14.64 | 聚乙烯,发泡聚苯乙烯 | Liu et al., |
鄱阳湖 | 5000-34000 | 无 | 聚丙烯,聚乙烯 | Yuan et al., |
洞庭湖 | 900-2800 | 无 | 聚乙烯,聚丙烯 | Wang et al., |
Kodaikanal Lake | 无 | 24420±3220 | 聚乙烯、聚丙烯 | Laju et al., |
the Thames River | 无 | 51200 | 氯丁二烯、聚氯乙烯、聚乙烯 | Devereux et al., |
the Garonne river catchment | 0-3.4 | 0.15 | 聚乙烯、聚苯乙烯、聚丙烯 | de Carvalho et al., |
Lake Simcoe | 0.4-1.3 | 无 | 聚乙烯、聚丙烯 | Felismino et al., |
the Ob River | 无 | 51.2 | 无 | Frank et al., |
The Elbe River | 0.88-13.24 | 5.57±4.33 | 聚乙烯、聚丙烯 | Scherer et al., |
[1] |
ANDRADY A L, 2017. The plastic in microplastics: A review[J]. Marine Pollution Bulletin, 119(1): 12-22.
DOI PMID |
[2] |
ARIAS-ANDRES M, KETTNER M T, MIKI T, et al., 2018. Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems[J]. Science of the Total Environment, 635: 1152-1159.
DOI URL |
[3] |
BATTIN T J, BESEMER K, BENGTSSON M M, et al., 2016. The ecology and biogeochemistry of stream biofilms[J]. Nature Reviews Microbiology, 14(4): 251-263.
DOI PMID |
[4] |
BHAGWAT G, TRAN T K A, LAMB D, et al., 2021. Biofilms Enhance the Adsorption of Toxic Contaminants on Plastic Microfibers under Environmentally Relevant Conditions[J]. Environmental Science & Technology, 55(13): 8877-8887.
DOI URL |
[5] |
CHEN X C, CHEN X F, ZHAO Y H, et al., 2020. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems[J]. Science of The Total Environment, 719: 137276.
DOI URL |
[6] |
CHEN X, WANG Y, CHEN S, et al., 2021. Microplastics as carbon-nutrient sources and shaper for microbial communities in stagnant water[J]. Journal of Hazardous Materials, 420: 126662.
DOI URL |
[7] |
CHEN Y, WANG X B, WANG X L, et al., 2022. Biofilm structural and functional features on microplastic surfaces in greenhouse agricultural soil[J]. Sustainability, 14(2): 7024.
DOI URL |
[8] |
CONAN P, PHILIP L, ORTEGA-RETUERTA E, et al., 2022. Evidence of coupled autotrophy and heterotrophy on plastic biofilms and its influence on surrounding seawater[J]. Environmental Pollution, 315: 120463.
DOI URL |
[9] |
DAI H H, GAO J F, WANG Z Q, et al., 2020. Behavior of nitrogen,phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system[J]. Journal of Cleaner Production, 256: 120402.
DOI URL |
[10] |
DE CARVALHO A R, GARCIA F, RIEM-GALLIANO L, et al., 2021. Urbanization and hydrological conditions drive the spatial and temporal variability of microplastic pollution in the Garonne River[J]. Science of the Total Environment, 769: 144479.
DOI URL |
[11] |
DEVEREUX R, WESTHEAD E K, JAYARATNE R, et al., 2022. Microplastic abundance in the Thames River during the New Year period[J]. Marine Pollution Bulletin, 177: 113534.
DOI URL |
[12] |
FELISMINO M E L, HELM P A, ROCHMAN C M, 2020. Microplastic and other anthropogenic microparticles in water and sediments of Lake Simcoe[J]. Journal of Great Lakes Research, 47(1): 180-189.
DOI URL |
[13] |
FRANK Y. A, VOROBIEV E D, VOROBIEV D S, et al., 2020. Preliminary Screening for Microplastic Concentrations in the Surface Water of the Ob and Tom Rivers in Siberia, Russia[J]. Sustainability, 13(1): 80.
DOI URL |
[14] |
FRANZELLITTI S, CANES L, AUGUSTE M, et al., 2019. Microplastic exposure and effects in aquatic organisms: A physiological perspective[J]. Environmental Toxicology and Pharmacology, 68: 37-51.
DOI PMID |
[15] |
HARRISON P, SCHRATZBERGER M, SAPP M, et al., 2014. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms[J]. BMC Microbiology, 14: 232.
DOI PMID |
[16] |
HU Y X, KANG Y Y, HUANG F, et al., 2022. Distinct responses of Pseudomonas aeruginosa PAO1 exposed to different levels of polystyrene nanoplastics[J]. Science of The Total Environment, 852: 158214.
DOI URL |
[17] |
HUANG J N, WEN B, MIAO L, et al., 2022. Microplastics drive nitrification by enriching functional microorganisms in aquaculture pond waters[J]. Chemosphere, 309(Part 1): 136646.
DOI URL |
[18] |
HUANG S, PENG C R, WANG Z C, et al., 2021. Spatiotemporal distribution of microplastics in surface water, biofilms, and sediments in the world’s largest drinking water diversion project[J]. Science of the Total Environment, 789: 148001.
DOI URL |
[19] |
HUANG Y, ZHAO Y R, WANG J, et al., 2019. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 254(Part A): 112983.
DOI URL |
[20] |
KALČÍKOVÁA G, BUNDSCHUH M, 2021. Aquatic Biofilms - Sink or Source of Microplastics? A Critical Reflection on Current Knowledge[J]. Environmental Toxicology and Chemistry, 41(4): 838-843.
DOI PMID |
[21] |
KATIJA K, ANELA CHOY C, SHERLOCK R E, et al., 2017. From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea[J]. Science Advances, 3(8): e1700715.
DOI URL |
[22] |
KUMAR A, ALAM A, RANI M, et al., 2017. Biofilms: Survival and defense strategy for pathogens[J]. International Journal of Medical Microbiology, 307(8): 481-489.
DOI PMID |
[23] |
LAGARDE F, OLIVIER O, ZANELLA M, et al., 2016. Microplastic interactions with freshwater microalgae: Heteroaggregation and changes in plastic density appear strongly dependent on polymer type[J]. Environmental Pollution, 215: 331-339.
DOI URL |
[24] |
LAJU R L, JAYANTHI M, IMMACULATE JEYASANTA K, et al., 2022. Spatial and vertical distribution of microplastics and their ecological risk in an Indian freshwater lake ecosystem[J]. Science of The Total Environment, 820: 153337.
DOI URL |
[25] | LAMBERT S, WAGNER M, 2018. Microplastics are contaminants of emerging concern in freshwater environments: An overview[C]// Wagner M Lambert S, Freshwater Microplastics. Cham: Springer International Publishing: 1-23. |
[26] |
LI J Y, LIU H H, CHEN J PAUL, 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 137: 362-374.
DOI PMID |
[27] |
LIU J Z, TANG J, WAN J J, et al., 2019. Functional sustainability of periphytic biofilms in organic matter and Cu2+ removal during prolonged exposure to TiO2 nanoparticles[J]. Journal of Hazardous Materials, 370: 4-12.
DOI URL |
[28] |
LIU S Q, FANG S T, XIANG Z M, et al., 2021. Combined effect of microplastics and DDT on microbial growth: A bacteriological and metabolomics investigation in Escherichia coli[J]. Journal of Hazardous Materials, 407: 124849.
DOI URL |
[29] |
LIU Y, ZHANG J D, CAI C Y, et al., 2020. Occurrence and characteristics of microplastics in the Haihe River: An investigation of a seagoing river flowing through a megacity in northern China[J]. Environmental Pollution, 262: 114261.
DOI URL |
[30] |
LONG M, MORICEAU B, GALLINARI M, et al., 2015. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates[J]. Marine Chemistry, 175: 39-46.
DOI URL |
[31] | MAJUMDAR U, ALEXANDER T, WASKAR M, et al., 2014. Effect of biofilm on colloid attachment in saturated porous media[J]. Water Science & Technology, 70(2): 241-249. |
[32] |
MCCORMICK A, HOELLEIN T J, MASON S A, et al., 2014. Microplastic is an abundant and distinct microbial habitat in an urban river[J]. Environmental Science & Technology, 48(20): 11863-11871.
DOI URL |
[33] |
MERBT S. N, KROLL A, TAMMINEN M, et al., 2022. Influence of microplastics on microbial structure, function, and mechanical properties of stream periphyton[J]. Frontiers in Environmental Science, 10: 928247.
DOI URL |
[34] |
MIAO L Z, GAO Y X, ADYEL T M, et al., 2021a. Effects of biofilm colonization on the sinking of microplastics in three freshwater environments[J]. Journal of Hazardous Materials, 413: 125370.
DOI URL |
[35] |
MIAO L Z, WANG P F, HOU J, et al., 2019b. Distinct community structure and microbial functions of biofilms colonizing microplastics[J]. Science of the Total Environment, 650(Part 2): 2395-2402.
DOI URL |
[36] |
MIAO L Z, YU Y, ADYEI T M, et al., 2021b. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems[J]. Journal of Hazardous Materials, 403: 123577.
DOI URL |
[37] |
MIAO L, HOU J, YOU G, et al., 2019a. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification[J]. Environmental Pollution, 255: 113300.
DOI URL |
[38] |
NAVA V, LEONI B, 2021. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function[J]. Water Research, 188: 116476.
DOI URL |
[39] |
NIU L H, LI Y Y, LI Y, et al., 2021. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments[J]. Water Research, 188: 116449.
DOI URL |
[40] |
PENG L C, FU D D, QI H Y, et al., 2020. Micro- and nano-plastics in marine environment: Source, distribution and threats: A review[J]. Science of the Total Environment, 698: 134254.
DOI URL |
[41] |
PRATA J C, DA COSTA J P, LOPES I, et al., 2019. Effects of microplastics on microalgae populations: A critical review[J]. Science of the Total Environment, 665: 400-405.
DOI |
[42] |
QIANG L, CHENG J, MIRZOYAN S, KERKHOF L J, et al., 2021. Characterization of microplastic-associated biofilm development along a freshwater-estuarine gradient[J]. Environmental Science & Technology, 55(24): 16402-16412
DOI URL |
[43] | RUMMEL C D, JAHNKE A, GOROKHOVA E, et al., 2017. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 4(7): 258-267. |
[44] |
SCHERER C, WEBER A, STOCK F, et al., 2020. Comparative assessment of microplastics in water and sediment of a large European river[J]. Science of The Total Environment, 738: 139866.
DOI URL |
[45] |
SEELEY M E, SONG B K, PASSIE R, et al., 2020. Microplastics affect sedimentary microbia communities and nitrogen cycling[J]. Nature Communications, 11(1): 2372.
DOI |
[46] |
SHABBIR S, FAHEEM M, ALI N, et al., 2020. Periphytic biofilm: An innovative approach for biodegradation of microplastics[J]. Science of The Total Environment, 717: 137064.
DOI URL |
[47] |
TANG J, WU Y H, ESQUIVEL-ELIZONDO S, et al., 2018. How microbial aggregates protect against nanoparticle toxicity[J]. Trends Biotechnol, 36(11): 1171-1182.
DOI PMID |
[48] |
VAKSMAA A, KNITTEL K, ABDALA ASBUN A, et al., 2021. Microbial communities on plastic polymers in the mediterranean sea[J]. Frontiers in Microbiology, 12: 673553.
DOI URL |
[49] |
WANG L F, TONG J X, LI Y, et al., 2021a. Bacterial and fungal assemblages and functions associated with biofilms differ between diverse types of plastic debris in a freshwater system[J]. Environmental Research, 196: 110371.
DOI URL |
[50] |
WANG S, XU M Y, JIN B, et al., 2022. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water[J]. Water Research, 211: 118046.
DOI URL |
[51] |
WANG W F, YUAN W K, CHEN Y L, et al., 2018. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of the Total Environment, 633: 539-545.
DOI URL |
[52] |
WANG Z Q, GAO J F, DAI H H, et al., 2021b. Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes[J]. Journal of Hazardous Materials, 409: 124981.
DOI URL |
[53] |
WEN G, KTZSCH S, VITAL M, et al., 2015. Affiliations expand et al. BioMig—A method to evaluate the potential release of compounds from and the formation of biofilms on polymeric materials in contact with drinking water[J]. Environmental Science & Technology, 49(19): 11659-11669.
DOI URL |
[54] |
WU C, TANAKA K, TANI Y K, et al., 2022. Effect of particle size on the colonization of biofilms and the potential of biofilm-covered microplastics as metal carriers[J]. Science of The Total Environment, 821: 153265.
DOI URL |
[55] |
WU X J, PAN J, LI M, et al., 2019. Selective enrichment of bacterial pathogens by microplastic biofilm[J]. Water Research, 165: 114979.
DOI URL |
[56] |
WU Y H, LIU J Z, RENE E R, 2018. Periphytic biofilms: A promising nutrient utilization regulator in wetlands[J]. Bioresource Technology, 248(Part B): 44-48.
DOI URL |
[57] |
YANG X Y, HE Q, LIU T, et al., 2022. Impact of microplastics on the treatment performance of constructed wetlands: Based on substrate characteristics and microbial activities[J]. Water Research, 217: 118430.
DOI URL |
[58] |
YOKOTA K, WATERFIELD H, HASTINGS C, et al., 2017. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics[J]. Limnology and Oceanography Letters, 2(4): 91-104.
DOI URL |
[59] |
YUAN J H, MA J, SUN Y R, et al., 2020. Microbial degradation and other environmental aspects of microplastics/plastics[J]. Science of the Total Environment, 715: 136968.
DOI URL |
[60] |
YUAN W K, LIUA X N, WANG, W F, et al., 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 170: 180-187.
DOI PMID |
[61] |
ZHANG B, HUANG S C, WU L, et al. 2023. Micro (nano) plastic size and concentration co-differentiate the treatment performance and toxicity mechanism in aerobic granular sludge systems[J]. Chemical Engineering Journal, 457: 141212.
DOI URL |
[62] |
ZHANG J, HUANG D, DENG H, et al., 2022. Responses of submerged plant Vallisneria natans growth and leaf biofilms to water contaminated with microplastics[J]. Science of the Total Environment, 818: 151750.
DOI URL |
[63] |
ZHU L X, ZHAO S Y, BITTAR T B, et al., 2020. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: Rates and microbial impacts[J]. Journal of Hazardous Materials, 383: 121065.
DOI URL |
[64] | 陈涛, 2021. 近海微塑料表面生物膜的形成及其对微塑料理化性质的影响[D]. 烟台: 中国科学院大学. |
CHEN T, 2018. Formation of biofilm on microplastics and its influences on physicochemical properties of microplastics in the coastal sea[D]. Yantai University of Chinese Academy of Sciences. | |
[65] | 段巍岩, 黄昌, 2021. 河流湖泊碳循环研究进展[J]. 中国环境科学, 41(8): 3792-3807. |
DUAN W Y, HUANG C, 2021. Research progress on the carbon cycle of rivers and lakes[J]. China Environmental Science, 41(8): 3792-3807. | |
[66] | 范梦苑, 黄懿梅, 张海鑫, 等, 2022. 湟水河流域地表水体微塑料分布、风险及影响因素[J]. 环境科学, 43(10): 4430-4439. |
FAN M Y, HUANG Y M, ZHANG H X, et al., 2022. Distribution, risk, and influencing factors of microplastics in surface water of Huangshui River basin[J]. Environmental Science, 43(10): 4430-4439. | |
[67] |
冯三三, 卢宏玮, 姚天次, 等, 2021. 青藏高原典型区微塑料分布特征及来源分析[J]. 地理学报, 76(9): 2130-2141.
DOI |
FENG S S, LU H G, YAO T C, et al., 2021. Distribution and source analysis of microplastics in typical areas of Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 76(9): 2130-2141.
DOI |
|
[68] | 付茜茜, 李大圳, 章宇晴, 等, 2021. 城市红树林系统中微塑料表面细菌群落结构特征分析[J]. 热带作物学报, 42(12): 3692-3698. |
FU Q Q, LI D Z, ZHANG Y Q, et al., 2021. Microbial colonization and communities on microplastics in urban mangrove system[J]. Chinese Journal of Tropical Crops, 42(12): 3692-3698. | |
[69] | 胡嘉敏, 左剑恶, 李頔, 等, 2021. 北京城市河流河水和沉积物中微塑料的组成与分布[J] 环境科学, 42(11): 5275-5283. |
HU J M, ZUO J E, LI D, et al., 2021. Composition and distribution of microplastics in the water and sediments of Urban Rivers in Beijing[J] Environmental Science, 42(11): 5275-5283. | |
[70] | 黄艺, 贾薇茜, 李康, 等, 2022. 土壤微塑料与微生物的相互作用关系[J]. 环境科学学报, 42(4): 64-74. |
HUANG Y, JIA W X, LI K, et al., 2022. Interaction between soil microplastics and microorganisms[J]. Acta Scientiae Circumstantiae, 42(4): 64-74. | |
[71] | 鞠志成, 金德才, 邓晔, 2021. 土壤中塑料与微生物的相互作用及其生态效应[J]. 中国环境科学, 41(5): 2352-2361. |
JU Z C, JIN D C, DENG Y, 2021. The interaction between plastics and microorganisms in soil and their ecological effects[J]. China Environmental Science, 41(5): 2352-2361. | |
[72] | 李晨曦, 高雨萱, 张佳祺, 等. 2020. 附着在不同微塑料表面的藻类结构与群落组成[J]. 中国环境科学, 40(8): 3360-3366 |
LI C X, GAO Y X, ZHANG J Q, et al., 2020. Structure and community composition of algae attached to different microplastic substrates[J]. China Environmental Science, 40(8): 3360-3366. | |
[73] | 骆永明, 施华宏, 涂晨, 等, 2021. 环境中微塑料研究进展与展望[J]. 科学通报, 66(13): 1547-1562. |
LUO Y M, SHI H H, TU C, et al., 2021. Research progresses and prospects of microplastics in the environment[J]. Science Bulletin, 66(13): 1547-1562. | |
[74] | 马新刚, 宛博, 孙佳雯, 等, 2022. 污水处理厂中两种典型微塑料表面生物膜分析[J]. 环境污染与防治, 44(10): 1291-1335. |
MA X G, WAN B, SUN J W, et al., 2022. Analysis of biofilms on the surface of two typical microplastics in the wastewater treatment plant[J]. Environmental Pollution & Control, 44(10): 1291-1335. | |
[75] | 潘雄, 林莉, 张胜, 等, 2021. 丹江口水库及其入库支流水体中微塑料组成与分布特征[J]. 环境科学, 42(3): 1372-1379. |
PAN X, LIN L, ZHANG S, et al., 2021. Composition and distribution characteristics of microplastics in Danjiangkou Reservoir and its tributaries[J]. Environmental Science, 42(3): 1372-1379. | |
[76] | 山泽萱, 张妍, 张成前, 等, 2023. 渭河微塑料污染现状与风险评价[J]. 环境科学, 44(1): 231-242. |
SHAN Z X, ZHANG Y, ZHANG C Q, et al., 2022. Microplastic pollution status and ecological risk evaluation in Weihe River[J]. Environmental Science, 44(1): 231-242. | |
[77] | 陶辉, 戚怡婷, 于多, 等, 2021. 微塑料对变形杆菌生物膜生长发育的影响[J]. 环境科学, 43(3): 1455-1462. |
TAO H, QI Y T, YU D, et al., 2021. Influence of microplastics on the development of proteus biofilm[J]. Environmental Science, 43(3): 1455-1462.
DOI URL |
|
[78] | 王琪, 瞿金平, 石碧, 等, 2021. 我国废弃塑料污染防治战略研究[J]. 中国工程科学, 23(1): 160-166. |
WANG Q, QU J P, SHI B, et al., 2021. Prevention and control of waste plastics pollution in China[J]. Engineering, 23(1): 160-166. | |
[79] | 王晓卉, 2020. 微塑料污染的危害及防治[J]. 微量元素与健康研究, 37(2): 74-75. |
WANG X H, 2019. Hazards and prevention of microplastic pollution[J]. Studies of Trace Elements and Health, 37(2): 74-75. | |
[80] | 王志超, 杨建林, 杨帆, 等, 2021. 春季乌梁素海水体微塑料分布特征及影响因素[J]. 农业环境科学学报, 40(10): 2189-2197. |
WANG Z C, YANG J L, YANG F, et al., 2021. Spatial distribution characteristics and influencing factors of microplastics in Lake Ulansuhai during the Spring[J]. Journal of Agro-Environment Science, 40(10): 2189-2197. | |
[81] |
王朱珺, 王尚, 刘洋荧, 等, 2018. 宏基因组技术在氮循环功能微生物分子检测研究中的应用[J]. 生物技术通报, 34(1): 1-14.
DOI |
WANG Z J, WANG S, LIU Y Y, et al., 2018. The applications of metagenomics in the detection of environmental microbes involving in nitrogen cycle[J]. Biotechnology Bulletin, 34(1): 1-14. | |
[82] | 吴国平, 高孟宁, 唐骏, 等, 2019. 自然生物膜对面源污水中氮磷去除的研究进展[J]. 生态与农村环境学报, 35(7): 817-825. |
WU G P, GAO M X, TANG J, et al., 2019. Progress of researches on nitrogen and phosphorus removal by periphytic biofilm from non-point source wastewater[J]. Journal of Ecology and Rural Environment, 35(7): 817-825. | |
[83] | 吴小伟, 黄何欣悦, 石妍琦, 等, 2021. 水环境中微塑料的光老化过程及影响因素研究进展[J]. 科学通报, 66(36): 4619-4632. |
WU X W, HUANG H X Y, SHI Y Q, et al., 2021. Progress on the photo aging mechanism of microplastics and related impact factors in water environment[J]. Science Bulletin, 66(36): 4619-4632. | |
[84] | 吴香香, 李大鹏, 贾海峰, 等, 2022. 江南地区缓流水体中微塑料的表现规律[J]. 中国给水排水, 38(3): 62-67. |
WU X X, LI D P, JIA H F, et al., 2022. Microplastic pollution characteristic in slow-flowing water in the south region of the Yangtze River[J]. China Water & Wastewater, 38(3): 62-67. | |
[85] | 熊雄, 吴辰熙, 2021. 湖泊——内陆水体微塑料污染的热点区域[J]. 自然杂志, 43(4): 243-250. |
XIONG X, WU C X, 2021. Lakes—hotspots of microplastic pollution in inland water bodies[J]. Chinese Journal of Nature, 43(4): 243-250.
DOI |
|
[86] | 曾巾, 杨柳燕, 肖琳, 等, 2007. 湖泊氮素生物地球化学循环及微生物的作用[J]. 湖泊科学, 19(4): 382-389. |
ZENG J, YANG L Y, XIAO L, et al., 2007. Biogeochemical cycling of nitrogen in lakes and the role of microorganisms in conversion of nitrogen compounds[J]. Journal of Lake Sciences, 19(4): 382-389.
DOI URL |
|
[87] | 张利文, 2018. 自然水体生物膜/沉积物对氧氟沙星的吸附特征[D]. 长春: 吉林大学. |
ZHANG L W, 2018. The sorption characteristics of ofloxacin onto biofilms/sediments from natural waters[D]. Changchun: Jilin University. | |
[88] | 周倩, 涂晨, 张晨捷, 等, 2021. 滨海湿地环境中微塑料表面性质及形貌变化[J]. 科学通报, 66(13): 1580-1591. |
ZHOU Q, TU C, ZHANG C J, et al., 2021. Surface properties and changes in morphology of microplastics exposed in-situ to Chinese coastal wetlands[J]. Science Bulletin, 66(13): 1580-1591. | |
[89] | 祝贵兵, 2020. 陆地和淡水生态系统新型微生物氮循环研究进展[J]. 微生物学报, 60(9): 1972-1984. |
ZHU G B, 2020. Novel nitrogen cycles in terrestrial and freshwater ecosystems[J]. Acta Microbiologica Sinica, 60(9): 1972-1984. | |
[90] | 褚献献, 郑波, 何楠, 等, 2021. 微塑料与污染物相互作用的研究进展[J]. 环境化学, 40(2): 427-435. |
CHU X X, ZHENG B, HE L, et al., 2021. Progress on the interaction between microplastics and contaminants[J]. Environmental Chemistry, 40(2): 427-435. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 石润, 李法云, 周纯亮, 王玮, 周艳秋. 凤仙花种子包衣载体固定化微生物修复石油烃污染土壤的效应[J]. 生态环境学报, 2023, 32(9): 1700-1708. |
[3] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[4] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[5] | 梁燚彤, 李泽敏, 吴宇伦, 邱光磊, 吴海珍, 韦朝海. 亚硝酸盐对厌氧氨氧化耦合系统的脱氮效能及微生物群落的影响[J]. 生态环境学报, 2023, 32(7): 1275-1284. |
[6] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[7] | 阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618. |
[8] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
[9] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[10] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[11] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[12] | 吴炜龙, 陈艺杰, 卫婷, 杨贵琼, 阳长洪, 甄珍, 蔺中. 蚯蚓驱动的滨海盐碱农田土壤中多环芳烃生物降解的机制研究[J]. 生态环境学报, 2023, 32(11): 1996-2006. |
[13] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[14] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[15] | 李璇, 钱秀雯, 黄娟, 王鸣宇, 肖君. 纳米氧化镍暴露下人工湿地运行性能及微生物群落的响应[J]. 生态环境学报, 2023, 32(10): 1833-1841. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||