生态环境学报 ›› 2024, Vol. 33 ›› Issue (5): 812-823.DOI: 10.16258/j.cnki.1674-5906.2024.05.014
收稿日期:
2023-11-09
出版日期:
2024-05-18
发布日期:
2024-06-27
通讯作者:
* 胡喜生。E-mail: xshu@fafu.edu.cn作者简介:
陈晓辉(1997年生),男,助教,硕士,主要研究方向为道路交通环境影响评价。E-mail: ChenXiaoHui_home@163.com
基金资助:
CHEN Xiaohui1(), HU Xisheng2,*(
)
Received:
2023-11-09
Online:
2024-05-18
Published:
2024-06-27
摘要:
城市的生态环境质量受到诸多因素的共同影响,其中以道路建设最为显著,客观分析道路网络及其他因素对生态环境质量的驱动机制,对最大限度减少对生态系统的负面作用具有重要的参考意义。基于道路网络、Landsat系列遥感影像、夜间灯光、数字高程模型、气象和土地利用等多源数据集,在3S技术的支持下,首先采用增量空间自相关和核密度估算(KDE)计算福州市2015年和2020年的道路核密度,利用主成分分析法构建福州市2000、2009和2020年的遥感生态指数(RSEI),在此基础上,分析两者的时空动态变化,接着采用探索性回归(ER)筛选关键影响因子,最后运用地理加权回归模型(GWR)揭示关键影响因子对福州市生态环境质量的驱动机制。结果表明,1)2015年和2020年最佳带宽下KDE的变化范围分别是0-4.090 km∙km−2和0-3.765 km∙km−2;高KDE值在2015年主要聚集在福州市区周围和各区县的中心,而至2020年,高KDE值的范围逐渐扩大,呈现向沿海地区蔓延的趋势。2)从时间上看,福州市2000-2020年期间的RSEI呈现先上升后下降的趋势,生态状况整体上相对稳定;从空间上看,生态环境质量好的等级分布在永泰县和闽清县等山区,较差的等级主要分布在市区中心、各区县的中心区、东部沿海区域及沿江两侧。3)对探索性回归筛选出的最佳因子进行拟合,GWR模型拟合效果优于OLS模型。GWR结果表明道路欧氏距离、高程、坡度、林地比例和草地比例与RSEI主要呈正相关关系,道路核密度、夜间灯光、城乡用地比例与RSEI主要呈负相关关系,回归系数的分布呈现明显的空间分异特征。研究结果可为福州市以及其他城市路网规划和生态环境质量提升提供参考依据。
中图分类号:
陈晓辉, 胡喜生. 耦合ER和GWR的福州市生态环境质量的驱动力分析[J]. 生态环境学报, 2024, 33(5): 812-823.
CHEN Xiaohui, HU Xisheng. Analysis of the Driving Forces of Ecological Environment Quality in Fuzhou City Coupled with ER and GWR[J]. Ecology and Environment, 2024, 33(5): 812-823.
数据类型 | 数据介绍 | 分辨率 | 数据来源 |
---|---|---|---|
道路数据 | 道路网络空间分布矢量数据 | ‒ | Open Street Map开源街道地图数据集( |
Landsat数据 | Landsat5TM (成像时间: 2000-06-29, 云量: 0.82%; 成像时间: 2009-06-06, 云量: 0.06%), Landsat8OLI (成像时间: 2020-07-22, 云量: 11.77%) | 30 m×30 m | 地理空间数据云 ( |
矢量数据 | 福建省行政区划边界 | ‒ | 国家基础地理信息中心( |
夜间灯光数据 | “类NPP-VIIRS” 数据 | 1 km×1 km | 国家地球系统科学数据中心( |
DEM数据 | SRTM数据 | 30 m×1 km | 美国国家航空航天局陆地过程分布式活动档案中心的数字资源镜像网站( |
气象数据 | 逐月平均气温数据和逐月降水量数据 | 1 km×1 km | 国家地球系统科学数据中心 ( |
土地利用数据 | 6种一级地类土地覆盖数据 | 30 m×30 m | 中科院资源环境科学数据中心 ( |
表1 数据类型及来源
Table 1 Data types and sources
数据类型 | 数据介绍 | 分辨率 | 数据来源 |
---|---|---|---|
道路数据 | 道路网络空间分布矢量数据 | ‒ | Open Street Map开源街道地图数据集( |
Landsat数据 | Landsat5TM (成像时间: 2000-06-29, 云量: 0.82%; 成像时间: 2009-06-06, 云量: 0.06%), Landsat8OLI (成像时间: 2020-07-22, 云量: 11.77%) | 30 m×30 m | 地理空间数据云 ( |
矢量数据 | 福建省行政区划边界 | ‒ | 国家基础地理信息中心( |
夜间灯光数据 | “类NPP-VIIRS” 数据 | 1 km×1 km | 国家地球系统科学数据中心( |
DEM数据 | SRTM数据 | 30 m×1 km | 美国国家航空航天局陆地过程分布式活动档案中心的数字资源镜像网站( |
气象数据 | 逐月平均气温数据和逐月降水量数据 | 1 km×1 km | 国家地球系统科学数据中心 ( |
土地利用数据 | 6种一级地类土地覆盖数据 | 30 m×30 m | 中科院资源环境科学数据中心 ( |
指标 | RSEI | KDE | ED | NL | DEM | SA | SLOP | AAT | AAR | CLP | FLP | GLP | URLP | ULP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSEI | 1 | −0.450** 2) | 0.386** | −0.513** | 0.545** | 0.083** | 0.526** | −0.512** | 0.438** | −0.469** | 0.621** | 0.084** | −0.552** | −0.017 |
KDE | 1 | −0.397** | 0.767** | −0.458** | −0.018 | −0.328** | 0.453** | −0.344** | 0.179** | −0.433** | −0.105** | 0.646** | −0.008 | |
ED | 1 | −0.286** | 0.445** | 0.004 | 0.321** | −0.386** | 0.207** | −0.329** | 0.388** | 0.031** | −0.272** | −0.002 | ||
NL | 1 | −0.410** | −0.035** | −0.352** | 0.402** | −0.326** | 0.166** | −0.481** | −0.121** | 0.772** | −0.011 | |||
DEM | 1 | 0.031** | 0.356** | −0.917** | 0.723** | −0.423** | 0.493** | 0.100** | −0.386** | 0.003 | ||||
SA | 1 | 0.076** | −0.013 | 0.020*1) | −0.087** | 0.104** | −0.017 | −0.046** | −0.013 | |||||
SLOP | 1 | −0.317** | 0.269** | −0.477** | 0.509** | 0.102** | −0.356** | −0.009 | ||||||
AAT | 1 | −0.825** | 0.378** | −0.456** | −0.089** | 0.371** | −0.01 | |||||||
AAR | 1 | −0.334** | 0.380** | 0.090** | −0.295** | 0.021* | ||||||||
CLP | 1 | −0.674** | −0.227** | 0.109** | −0.007 | |||||||||
FLP | 1 | −0.321** | −0.528** | −0.012 | ||||||||||
GLP | 1 | −0.150** | 0.001 | |||||||||||
URLP | 1 | 0.016 | ||||||||||||
ULP | 1 |
表2 RSEI与各解释变量的相关系数
Table 2 Correlation coefficients between RSEI and various explanatory variables
指标 | RSEI | KDE | ED | NL | DEM | SA | SLOP | AAT | AAR | CLP | FLP | GLP | URLP | ULP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSEI | 1 | −0.450** 2) | 0.386** | −0.513** | 0.545** | 0.083** | 0.526** | −0.512** | 0.438** | −0.469** | 0.621** | 0.084** | −0.552** | −0.017 |
KDE | 1 | −0.397** | 0.767** | −0.458** | −0.018 | −0.328** | 0.453** | −0.344** | 0.179** | −0.433** | −0.105** | 0.646** | −0.008 | |
ED | 1 | −0.286** | 0.445** | 0.004 | 0.321** | −0.386** | 0.207** | −0.329** | 0.388** | 0.031** | −0.272** | −0.002 | ||
NL | 1 | −0.410** | −0.035** | −0.352** | 0.402** | −0.326** | 0.166** | −0.481** | −0.121** | 0.772** | −0.011 | |||
DEM | 1 | 0.031** | 0.356** | −0.917** | 0.723** | −0.423** | 0.493** | 0.100** | −0.386** | 0.003 | ||||
SA | 1 | 0.076** | −0.013 | 0.020*1) | −0.087** | 0.104** | −0.017 | −0.046** | −0.013 | |||||
SLOP | 1 | −0.317** | 0.269** | −0.477** | 0.509** | 0.102** | −0.356** | −0.009 | ||||||
AAT | 1 | −0.825** | 0.378** | −0.456** | −0.089** | 0.371** | −0.01 | |||||||
AAR | 1 | −0.334** | 0.380** | 0.090** | −0.295** | 0.021* | ||||||||
CLP | 1 | −0.674** | −0.227** | 0.109** | −0.007 | |||||||||
FLP | 1 | −0.321** | −0.528** | −0.012 | ||||||||||
GLP | 1 | −0.150** | 0.001 | |||||||||||
URLP | 1 | 0.016 | ||||||||||||
ULP | 1 |
解释变量数 | 影响因子组合模型 | 调整的r2 | AIC | VIF |
---|---|---|---|---|
5 | +SLOP***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.55 | −13526.69 | 2.76 |
+SLOP***, +CLP***, +FLP***, +GLP***, +DEM*** | 0.54 | −13486.63 | 4.39 | |
+SLOP***, −CLP***, +FLP***, −URLP***, +DEM*** | 0.55 | −13457.75 | 3.03 | |
6 | +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.55 | −13564.46 | 2.77 |
+ED***, +SLOP***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.55 | −13563.09 | 2.87 | |
−NL***, +SLOP***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.55 | −13652.34 | 2.87 | |
7 | +ED***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13631.16 | 2.88 |
−NL***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13687.69 | 2.88 | |
+ED***, −NL***, +SLOP***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13686.59 | 2.88 | |
8 | +ED***, −NL***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13641.24 | 2.88 |
−KDE***, +ED***, −NL***, +DEM***, +SLOP***, +FLP***, +GLP***, −URLP*** | 0.56 | −13621.03 | 2.83 | |
9 | −KDE***, +ED***, −NL***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13672.98 | 3.62 |
+ED***, −NL***, +SA***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13649.47 | 2.88 | |
10 | −KDE***, +ED***, −NL***, +SA***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13680.74 | 3.62 |
−KDE***, +ED***, −NL***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, −ULP, +DEM*** | 0.56 | −13673.94 | 3.63 | |
11 | −KDE***, +ED***, −NL***, +SA***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, −ULP, +DEM*** | 0.56 | −13681.58 | 3.63 |
表3 探索性回归分析结果
Table 3 Results of exploratory regression analysis
解释变量数 | 影响因子组合模型 | 调整的r2 | AIC | VIF |
---|---|---|---|---|
5 | +SLOP***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.55 | −13526.69 | 2.76 |
+SLOP***, +CLP***, +FLP***, +GLP***, +DEM*** | 0.54 | −13486.63 | 4.39 | |
+SLOP***, −CLP***, +FLP***, −URLP***, +DEM*** | 0.55 | −13457.75 | 3.03 | |
6 | +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.55 | −13564.46 | 2.77 |
+ED***, +SLOP***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.55 | −13563.09 | 2.87 | |
−NL***, +SLOP***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.55 | −13652.34 | 2.87 | |
7 | +ED***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13631.16 | 2.88 |
−NL***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13687.69 | 2.88 | |
+ED***, −NL***, +SLOP***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13686.59 | 2.88 | |
8 | +ED***, −NL***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13641.24 | 2.88 |
−KDE***, +ED***, −NL***, +DEM***, +SLOP***, +FLP***, +GLP***, −URLP*** | 0.56 | −13621.03 | 2.83 | |
9 | −KDE***, +ED***, −NL***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13672.98 | 3.62 |
+ED***, −NL***, +SA***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13649.47 | 2.88 | |
10 | −KDE***, +ED***, −NL***, +SA***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, +DEM*** | 0.56 | −13680.74 | 3.62 |
−KDE***, +ED***, −NL***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, −ULP, +DEM*** | 0.56 | −13673.94 | 3.63 | |
11 | −KDE***, +ED***, −NL***, +SA***, +SLOP***, +AAR***, +FLP***, +GLP***, −URLP***, −ULP, +DEM*** | 0.56 | −13681.58 | 3.63 |
模型 | 调整的r2 | AIC | 残差平方和 | 残差Moran’s I | |
---|---|---|---|---|---|
2020年RSEI与KDE、ED、NL、DEM、SLOP、 SA、AAR、AAT、CLP、FLP、GLP、URLP | GWR | 0.351 | −15605 | 177.034 | 0.138 |
OLS | 0.298 | −15987 | 169.389 | 0.213 | |
2020年RSEI与KDE、ED、NL、 DEM、SLOP、FLP、GLP、URLP | GWR | 0.594 | −14308 | 147.025 | 0.024 |
OLS | 0.558 | −13587 | 166.215 | 0.091 |
表4 GWR与OLS的参数估计结果
Table 4 Parameter estimation results of GWR and OLS
模型 | 调整的r2 | AIC | 残差平方和 | 残差Moran’s I | |
---|---|---|---|---|---|
2020年RSEI与KDE、ED、NL、DEM、SLOP、 SA、AAR、AAT、CLP、FLP、GLP、URLP | GWR | 0.351 | −15605 | 177.034 | 0.138 |
OLS | 0.298 | −15987 | 169.389 | 0.213 | |
2020年RSEI与KDE、ED、NL、 DEM、SLOP、FLP、GLP、URLP | GWR | 0.594 | −14308 | 147.025 | 0.024 |
OLS | 0.558 | −13587 | 166.215 | 0.091 |
[1] | CHE M L, YANG F, SUN J L, et al., 2023. Influence of road network expansion on the landscape ecological risk in the Yangtze River Delta region over the past two decades[J]. Ecological Indicators, 156: 111178. |
[2] | CHEN Z Q, YU B L, YANG C S, et al., 2019. An extended time series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 13(3): 889-906. |
[3] | FORMAN R T T, ALEXANDER L E, 1998. Roads and their major ecological effects[J]. Annual Review of Ecology and Systematics, 29: 207-231. |
[4] | GENG J W, YU K Y, XIE Z, et al., 2022. Analysis of spatiotemporal variation and drivers of ecological quality in fuzhou based on RSEI[J]. Remote Sensing, 14(19): 4900. |
[5] | HU X S, XU H Q, 2018. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: a case from Fuzhou City, China[J]. Ecological Indicators, 89: 11-21. |
[6] |
HU X S, XU H Q, 2019. A new remote sensing index based on the pressure-state-response framework to assess regional ecological change[J]. Environmental Science and Pollution Research International, 26(6): 5381-5393.
DOI PMID |
[7] | LI Y, YE H P, GAO X, et al., 2021. Spatiotemporal patterns of urbanization in the three most developed urban agglomerations in China based on continuous nighttime light data (2000-2018)[J]. Remote Sensing, 13(12): 2245-2245. |
[8] | MO W B, WANG Y, ZHANG Y X, et al., 2017. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing[J]. Science of the Total Environment, 574: 1000-1011. |
[9] | PENG S Z, DING Y X, LIU W Z, et al., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 11(4): 1931-1946. |
[10] | SPURR B D, SILVERMAN B W, 1988. Density estimation for statistics and data analysis[J]. Biometrics, 44(3): 914. |
[11] | XU H Q, 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 27(14): 3025-3033. |
[12] |
YANG S Q, JIN Z, LUO D, et al., 2023. Road network expansion and its impact on landscape patterns in the Dongzhi tableland of the Chinese Loess Plateau[J]. Journal of Geographical Sciences, 33(12): 2549-2566.
DOI |
[13] | 蔡雪娇, 吴志峰, 程炯, 2012. 基于核密度估算的路网格局与景观破碎化分析[J]. 生态学杂志, 31(1): 158-164. |
CAI X J, WU Z F, CHENG J, 2012. Analysis of road network pattern and landscape fragmentation based on kernel density estimation[J]. Chinese Journal of Ecology, 31(1): 158-164. | |
[14] | 陈晓辉, 曾晓莹, 赵超超, 等, 2021. 基于遥感生态指数的道路网络生态效应分析———以福州市为例[J]. 生态学报, 41(12): 4732-4745. |
CHEN X H, ZENG X Y, ZHAO C C, et al., 2021. The ecological effect of road network based on remote sensing ecological index: A case study of Fuzhou City, Fujian Province[J]. Acta Ecologica Sinica, 41(12): 4732-4745. | |
[15] | 陈田田, 黄强, 王强, 2022. 基于地理探测器的喀斯特山区生态系统服务关系分异特征及驱动力解析——以贵州省为例[J]. 生态学报, 42(17): 6959-6972. |
CHEN T T, HUANG Q, WANG Q, 2022. Differentiation characteristics and driving factors of ecosystem services relationships in karst mountainous area based on geographic detector modeling: A case study of Guizhou Province[J]. Acta Ecologica Sinica, 42(17): 6959-6972. | |
[16] | 程诺, 高文晶, 杨鸿飞, 等. 2023. 闽江流域生态环境质量动态变化及其驱动力[J]. 水土保持通报, 43(2): 310-318. |
CHENG N, GAO W J, YANG H F, et al., 2023. Dynamic change and driving factors of ecological environment quality in Minjiang River basin[J]. Bulletin of Soil and Water Conservation, 43(2): 310-318. | |
[17] | 樊亚鹏, 徐涵秋, 李乐, 等, 2014. 广州市城市扩展及其城市热岛效应分析[J]. 遥感信息, 29(1): 23-29. |
FAN Y P, XU H Q, LI L, et al., 2014. Analysis of urban expansion and urban heat island effect in Guangzhou City[J]. Remote Sensing Information, 29(1): 23-29. | |
[18] |
冯娴慧, 曾芝琳, 2022. 粤港澳大湾区植被覆盖特征与变化趋势的自然驱动力研究[J]. 生态环境学报, 31(9): 1713-1724.
DOI |
FENG X H, ZENG Z L, 2022. Natural driving forces of vegetation cover characteristics and change trends in the Guangdong Hong Kong-Macao Greater Bay Area[J]. Ecology and Environmental Sciences, 31(9): 1713-1724. | |
[19] | 高艺宁, 赵萌莉, 王宏亮, 等, 2019. 景观生态视角下草地生态质量的空间差异及其影响因素——以内蒙古四子王旗为例[J]. 生态学报, 39(14): 5288-5300. |
GAO Y N, ZHAO M L, WANG H L, et al., 2019. Analysis of spatial differentiation of grassland ecological quality and its affecting factors based on landscape ecology perspective: A case study of Siziwang Banner[J]. Acta Ecologica Sinica, 39(14): 5288-5300. | |
[20] |
郭远智, 周扬, 刘彦随, 2020. 中国农村人口外流的时空演化及其驱动机制[J]. 地理科学, 40(1): 50-59.
DOI |
GUO Y Z, ZHOU Y, LIU Y S, 2020. Spatial-temporal evolution of rural population outflow and its mechanism in China[J]. Scientia Geographica Sinica, 40(1): 50-59.
DOI |
|
[21] | 李月辉, 吴志丰, 陈宏伟, 等, 2012. 大兴安岭林区道路网络对景观格局的影响[J]. 应用生态学报, 23(8): 2087-2092. |
LI Y H, WU Z F, CHEN H W, et al., 2012. Impacts of road network on forest landscape pattern in Great Xing’an Mountains of North-east China[J]. Chinese Journal of Applied Ecology, 23(8): 2087-2092. | |
[22] | 李振洪, 李鹏, 丁咚, 等, 2018. 全球高分辨率数字高程模型研究进展与展望[J]. 武汉大学学报 (信息科学版), 43(12):1927-1942. |
LI Z H, LI P, DING D, et al., 2018. Research progress and prospects of global high-resolution digital elevation models[J]. Geomatics and Information Science of Wuhan University, 43(12): 1927-1942. | |
[23] | 林金煌, 胡国建, 祁新华, 等, 2018. 闽三角城市群生态环境脆弱性及其驱动力[J]. 生态学报, 38(12): 4155-4166. |
LIN J H, HU G J, QI X H, et al., 2018. Ecological environmental vulnerability and its driving forces in urban agglomeration in the Fujian Delta region[J]. Acta Ecologica Sinica, 38(12): 4155-4166. | |
[24] | 刘锐, 胡伟平, 王红亮, 等, 2011. 基于核密度估计的广佛都市区路网演变分析[J]. 地理科学, 31(1): 81-86. |
LIU R, HU W P, WANG H L, et al., 2011. The road network evolution of Guangzhou-Foshan metropolitan area based on kernel density estimation[J]. Scientia Geographica Sinica, 31(1): 81-86.
DOI |
|
[25] | 刘彦文, 刘成武, 何宗宜, 等, 2020. 基于地理加权回归模型的武汉城市圈生态用地时空演变及影响因素[J]. 应用生态学报, 31(3): 987-998. |
LIU Y W, LIU C W, HE Z Y, et al., 2020. Spatial-temporal evolution of ecological land and influence factors in Wuhan urban agglomeration based on geographically weighted regression model[J]. Chinese Journal of Applied Ecology, 31(3): 987-998. | |
[26] | 刘泽云, 王骏, 2017. 中国城镇居民教育回报率的长期趋势[J]. 华中师范大学学报 (人文社会科学版), 56(4): 157-168. |
LIU Z Y, WANG J, 2017. Long term trends in the return on education for urban residents in China[J]. Journal of Central China Normal University (Humanities and Social Sciences), 56(4): 157-168. | |
[27] | 陆晴, 刘根林, 闫冰, 等, 2022. 道路网络对景观格局及景观生态风险的影响——以瑞兴于地区为例[J]. 生态学杂志, 41(11): 2236-2244. |
LU Q, LIU G L, YAN B, et al., 2022. Impacts of road network on landscape pattern and landscape ecological risk: A case study of Ruijin-Xingguo-Yudu region[J]. Chinese Journal of Ecology, 41(11): 2236-2244.
DOI |
|
[28] | 马永康, 姜怡, 凌成星, 等, 2022. 基于RSEI指数的雄安新区生态质量评价[J]. 四川林业科技, 43(4): 8-16. |
MA Y K, JIANG Y, LING C X, et al., 2022. Evaluation of ecological quality in Xiong’an New Area based on RSEI index[J]. Journal of Sichuan Forestry Science and Technology, 43(4): 8-16. | |
[29] | 农兰萍, 王金亮, 玉院和, 2021. 基于改进型遥感生态指数 (MRSEI) 模型的滇中地区生态环境质量研究[J]. 生态与农村环境学报, 37(8): 972-982. |
NONG L P, WANG J L, YU Y H, 2021. Research on ecological environment quality in Central Yunnan based on MRSEI model[J]. Journal of Ecology and Rural Environment, 37(8): 972-982. | |
[30] |
施智勇, 胡晓婷, 谢慧黎, 等, 2023. 基于RSEI的生态环境质量评价及驱动力分析———以闽江流域 (福州段) 为例[J]. 测绘通报 (2): 28-33.
DOI |
SHI Z Y, HU X T, XIE H L, et al., 2023. Eco-environmental quality assessment and driving force analysis based on RSEI: A case study of the Minjiang River basin (Fuzhou section)[J]. Bulletin of Surveying and Mapping (2): 28-33.
DOI |
|
[31] | 宋美杰, 罗艳云, 段利民, 2019. 基于改进遥感生态指数模型的锡林郭勒草原生态环境评价[J]. 干旱区研究, 36(6): 1521-1527. |
SONG M J, LUO Y Y, DUAN L M, 2019. Evaluation of ecological environment in the Xilin Gol Steppe based on modified remote sensing ecological index model[J]. Arid Zone Research, 36(6): 1521-1527. | |
[32] | 王娟, 崔保山, 刘世梁, 等, 2007. 公路网对纵向岭谷区生态系统服务价值的影响[J]. 科学通报, 52(S2): 155-165. |
WANG J, CUI B S, LIU S L, et al., 2007. The impact of highway network on the value of ecosystem services in vertical ridge valley regions[J]. Chinese Science Bulletin, 52(S2): 155-165. | |
[33] | 王丽春, 焦黎, 来风兵, 等, 2019. 基于遥感生态指数的新疆玛纳斯湖湿地生态变化评价[J]. 生态学报, 39(8): 2963-2972. |
WANG L C, JIAO L, LAI F B, et al., 2019. Evaluation of ecological changes based on a remote sensing ecological index in a Manas Lake wetland, Xinjiang[J]. Acta Ecologica Sinica, 39(8): 2963-2972. | |
[34] | 吴熙, 真诗泳, 左雪漫, 等, 2023. 闽南地区植被恢复动态及其对道路网络的响应[J]. 中国环境科学, 43(S1): 288-300. |
WU X, ZHEN S Y, ZUO X M, et al., 2023. Vegetation restoration dynamics and its response to road network in southern Fujian[J]. China Environmental Science, 43(S1): 288-300. | |
[35] | 徐涵秋, 2013. 城市遥感生态指数的创建及其应用[J]. 生态学报, 33(24): 7853-7862. |
XU H Q, 2013. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 33(24): 7853-7862. | |
[36] |
徐涵秋, 邓文慧, 2022. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用, 37(1): 1-7.
DOI |
XU H Q, DENG W H, 2022. Rationality analysis of MRSEI and its difference with RSEI[J]. Remote Sensing Technology and Application, 37(1): 1-7. | |
[37] | 徐涵秋, 王美雅, 2016. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 20(5): 1270-1289. |
XU H Q, WANG M Y, 2016. Remote sensing-based retrieval of ground impervious surfaces[J]. Journal of Remote Sensing, 20(5): 1270-1289. | |
[38] | 杨永侠, 王旭, 孟丹, 等, 2016. 基于空间自相关的耕地等别指数检验方法研究[J]. 农业机械学报, 47(5): 328-335. |
YANG Y X, WANG X, MENG D, et al., 2016. Test method of cultivated land grading index based on spatial autocorrelation[J]. Transactions of the Chinese Society for Agricultural Machinery, 47(5): 328-335. | |
[39] |
张文强, 孙从建, 李新功, 2019. 晋西南黄土高原区植被覆盖度变化及其生态效应评估[J]. 自然资源学报, 34(8): 1748-1758.
DOI |
ZHANG W Q, SUN C J, LI X G, 2019. Vegetation cover change and ecological effect assessment in the Loess Plateau of Southwest Shanxi province based on remote sensing image[J]. Journal of Natural Resources, 34(8): 1748-1758. | |
[40] | 张寅, 骆忠祥, 何蕙, 等, 2021. 基于POI和交易数据的住宅特征价格分析——以无锡市为例[J]. 中国房地产 (12): 35-43. |
ZHANG Y, LUO Z X, HE H, et al., 2021. Analysis of residential characteristic prices based on POI and transaction data: A case study of Wuxi City[J]. China Real Estate (12): 35-43. | |
[41] |
张子威, 黄秋昊, 陆羽, 等, 2021. 中国居民预期寿命及其影响因素的空间差异分析[J]. 地球信息科学学报, 23(9): 1575-1585.
DOI |
ZHANG Z W, HUANG Q H, LU Y, et al., 2021. Aanlysis of life expectancy and the spatial differences of its influencing factors of Chinese residents[J]. Journal of Geo-information Science, 23(9): 1575-1585. | |
[42] | 郑希平, 陈竹安, 危小建, 2024. 鄱阳湖生态经济区建设用地扩张对耕地景观破碎化的影响[J]. 农业资源与环境学报, 41(2): 280-291. |
ZHENG X P, CHEN Z A, WEI X J, 2024. The impact of construction land expansion on the landscape fragmentation of cultivated land in the Poyang Lake ecological economic zone[J]. Journal of Agricultural Resources and Environment, 41(2): 280-291. | |
[43] | 祝聪, 彭文甫, 张丽芳, 等, 2019. 2006-2016年岷江上游植被覆盖度时空变化及驱动力[J]. 生态学报, 39(5): 1583-1594. |
ZHU C, PENG W F, ZHANG L F, et al., 2019. Study of temporal and spatial variation and driving force of fractional vegetation cover in upper reaches of Minjiang River from 2006 to 2016[J]. Acta Ecologica Sinica, 39(5): 1583-1594. | |
[44] | 祝慧娜, 袁兴中, 曾光明, 等, 2012. 基于改进的潜在生态风险指数的霞湾港底泥重金属生态风险评价 (英文)[J]. Transactions of Nonferrous Metals Society of China, 22(6): 1470-1477. |
ZHU H N, YUAN X Z, ZENG G M, et al., 2012. Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index[J]. Transactions of Nonferrous Metals Society of China, 22(6): 1470-1477. | |
[45] |
朱青, 国佳欣, 郭熙, 等, 2019. 鄱阳湖区生态环境质量的空间分异特征及其影响因素[J]. 应用生态学报, 30(12): 4108-4116.
DOI |
ZHU Q, GUO J X, GUO X, et al., 2019. Spatial variation of ecological environment quality and its influencing factors in Poyang Lake area, Jiangxi, China[J]. Chinese Journal of Applied Ecology, 30(12): 4108-4116.
DOI |
|
[46] | 朱舒欣, 何茜, 苏艳, 等, 2023. 不同地理空间城市森林空气负离子浓度及其影响因素研究[J]. 北京林业大学学报, 45(11): 66-77. |
ZHU S X, HE Q, SU Y, et al., 2023. Negative air ion concentration and its influencing factors of urban forest in different geographical spaces[J]. Journal of Beijing Forestry University, 45(11): 66-77. |
[1] | 张淼, 王桂霞, 王昌伟, 贺艳云, 许艳芳, 李琪, 许杨, 张俊骁, 张桂芹. 济南市区黑碳污染变化特征及来源解析[J]. 生态环境学报, 2024, 33(4): 560-572. |
[2] | 杨非凡, 何浩. 基于“EVI-ESV”伊犁河谷生态环境评估及生态分区构建[J]. 生态环境学报, 2024, 33(4): 655-664. |
[3] | 李霞, 陈永昊, 陈喆, 张国壮, 唐梦雅. 中国沿海地区植被NDVI时空变化及驱动力分析[J]. 生态环境学报, 2024, 33(2): 180-191. |
[4] | 冯自贤, 佘璐, 王秀慧, 杨璐, 杨晨. 基于改进遥感生态指数的宁夏生态环境质量时空变化[J]. 生态环境学报, 2024, 33(1): 131-143. |
[5] | 翁升恒, 张玉琴, 姜冬昕, 潘卫华, 李丽纯, 张方敏. 福建省森林植被NEP时空变化及影响因子分析[J]. 生态环境学报, 2023, 32(5): 845-856. |
[6] | 于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765. |
[7] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[8] | 李梦华, 韩颖娟, 赵慧, 王云霞. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(7): 1317-1325. |
[9] | 郝永佩, 宋晓伟, 赵文珺, 向发敏. 汾渭平原大气污染时空分布及相关因子分析[J]. 生态环境学报, 2022, 31(3): 512-523. |
[10] | 石智宇, 王雅婷, 赵清, 张连蓬, 朱长明. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11): 2111-2123. |
[11] | 付乐, 迟妍妍, 于洋, 张丽苹, 刘斯洋, 王夏晖, 许开鹏, 王晶晶, 张信. 2000—2020年黄河流域土地利用变化特征及影响因素分析[J]. 生态环境学报, 2022, 31(10): 1927-1938. |
[12] | 余玉洋, 宋丰艺, 张世杰. 2000—2020年河南省NDVI时空变化及其驱动因素定量分析[J]. 生态环境学报, 2022, 31(10): 1939-1950. |
[13] | 邓玉娇, 王捷纯, 徐杰, 吴永琪, 陈靖扬. 广东省植被固碳量时空变化及气象贡献率研究[J]. 生态环境学报, 2022, 31(1): 1-8. |
[14] | 李圣增, 郝赛梅, 谭路遥, 张怀成, 徐标, 谷树茂, 潘光, 王淑妍, 闫怀忠, 张桂芹. 济南市PM2.5中二次组分的时空变化特征及其影响因素[J]. 生态环境学报, 2022, 31(1): 100-109. |
[15] | 刘强, 杨众养, 陈毅青, 雷金睿, 陈宗铸, 陈小花. 基于CA-Markov多情景模拟的海南岛土地利用变化及其生态环境效应[J]. 生态环境学报, 2021, 30(7): 1522-1531. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||