生态环境学报 ›› 2023, Vol. 32 ›› Issue (10): 1873-1888.DOI: 10.16258/j.cnki.1674-5906.2023.10.016
丁胜杰1(), 徐香茹2, 朱菲菲3, 王仁霞4, 潘纲5, 崔溢1, 胡新娟1, 穆斯塔法1, 霍书豪1,*(
)
收稿日期:
2023-06-29
出版日期:
2023-10-18
发布日期:
2024-01-16
通讯作者:
*霍书豪。E-mail: huo@ujs.edu.cn作者简介:
丁胜杰(1998年生),男,硕士研究生,主要从事固氮蓝藻对土壤改良研究。E-mail: jshadsj@163.com
基金资助:
DING Shengjie1(), XU Xiangru2, ZHU Feifei3, WANG Renxia4, PAN Gang5, CUI Yi1, HU Xinjuan1, Mostafa 1, HUO Shuhao1,*(
)
Received:
2023-06-29
Online:
2023-10-18
Published:
2024-01-16
摘要:
土壤藻是一类广泛存在于土壤中的微型生物。近年来,关于土壤藻的研究取得了显著的进展。首先,不同生境(荒漠、耕地、盐碱地、矿山、林地和冻原等)的土壤藻组成和丰度有所差异,这反映了其对特定环境因子的适应能力,但缺乏对多种生境的比较和综合。因此,目前对于不同生境中土壤藻的多样性、功能和适应策略的对比等问题仍然知之甚少。而土壤藻对高温、高盐、干旱和强紫外辐射等非生物因子的响应是当前研究的热点,一些研究已经揭示了土壤藻可以分泌一些营养物质来应对这些胁迫的适应机制,这些分泌物既可以改善土壤环境,还可以促进其他作物生长。文章总结了土壤藻的生理生态功能,例如,固氮作用可以吸收大气中的氮气并提高土壤藻的氮素含量,固碳作用可以通过光合作用吸收大气中的二氧化碳从而增加土壤中的碳含量,泌糖作用可以分泌胞外多糖提高土壤团聚性和吸附有害的重金属物质,溶磷作用可以溶解土壤藻难溶的磷素并将其转化为可供植物直接吸收的磷素。未来,可在不同土壤生境中,筛选出其中的优势藻种,通过富集培养再接种至土壤中,探究它与其他土壤生物群落之间的相互关系,以揭示其多样性、群落结构和适应机制的差异。随着全球气候变化的加剧,土壤藻的研究可以为人们评估和预测土壤生态系统在未来气候变化下的响应和适应能力提供新线索。
中图分类号:
丁胜杰, 徐香茹, 朱菲菲, 王仁霞, 潘纲, 崔溢, 胡新娟, 穆斯塔法, 霍书豪. 不同生境中土壤藻类的分布特征与生理生态学功能研究[J]. 生态环境学报, 2023, 32(10): 1873-1888.
DING Shengjie, XU Xiangru, ZHU Feifei, WANG Renxia, PAN Gang, CUI Yi, HU Xinjuan, Mostafa , HUO Shuhao. Distribution Characteristics and Physiological and Ecological Functions of Soil Algae in Different Habitats[J]. Ecology and Environment, 2023, 32(10): 1873-1888.
藻类 | 特点 | 作用 |
---|---|---|
具鞘微鞘藻 Microcoleus vaginatus | 单列丝状体藻, 末端细胞常具帽状体 | 与天然结皮下的砂粒和土壤颗粒结合, 在稳定土壤方面具有最强的凝聚力 |
爪哇伪枝藻 Scytonema javanicum | 单列假分枝的丝体, 整条丝体宽度相等 | 生物结皮的先锋拓殖优势物种之一, 对生物结皮的形成和发育具有十分重要的作用 |
念珠藻 Nostoc commune Vauch. | 具有异形胞念珠状的蓝藻 | 具有较强的抗逆性, 能够在干旱、紫外辐射、高低温等极端环境中成为先锋物种, 为生态系统演替提供第一生产力 |
表1 中国沙漠地区几种固沙藻类
Table 1 Several types of sand-fixing algae in desert areas in China
藻类 | 特点 | 作用 |
---|---|---|
具鞘微鞘藻 Microcoleus vaginatus | 单列丝状体藻, 末端细胞常具帽状体 | 与天然结皮下的砂粒和土壤颗粒结合, 在稳定土壤方面具有最强的凝聚力 |
爪哇伪枝藻 Scytonema javanicum | 单列假分枝的丝体, 整条丝体宽度相等 | 生物结皮的先锋拓殖优势物种之一, 对生物结皮的形成和发育具有十分重要的作用 |
念珠藻 Nostoc commune Vauch. | 具有异形胞念珠状的蓝藻 | 具有较强的抗逆性, 能够在干旱、紫外辐射、高低温等极端环境中成为先锋物种, 为生态系统演替提供第一生产力 |
荒漠地理位置 | 代表藻类 | 参考文献 |
---|---|---|
中国库布齐沙漠的 东部边缘 | 爪哇伪枝藻 Scytonema javanicum | Wu et al., |
中国中卫县沙坡头沙漠 | 纤细席藻 Phormidium tenue | Xu et al., |
中国古尔班通 古特沙漠 | 具鞘微鞘藻 Microcoleus vaginatus | Zhang et al., |
印度喜马恰尔邦的 寒冷沙漠 | 球果节球藻 Nodularia sphaerocarpa | Kaushal et al., |
以色列内盖夫沙漠 | 拟色球藻属 Chroococcopsis | Baqué et al., 2013 |
阿曼北部 马斯喀特沙漠 | 眉藻属 Calothrix、 伪枝藻属 Scytonema | Abed et al., |
南美洲阿塔卡马沙漠 | 拟色球藻属 Chroococcopsis | Vıtek et al., 2014 |
美国科罗拉多 沙漠高原 | 克里藻属 Klebsormidium | Donner et al., |
美国沙漠土壤 | Xerochlorella olmiae | Mikhailyuk et al., |
表2 不同地区荒漠的代表藻类
Table 2 Algae representative of deserts in different regions
荒漠地理位置 | 代表藻类 | 参考文献 |
---|---|---|
中国库布齐沙漠的 东部边缘 | 爪哇伪枝藻 Scytonema javanicum | Wu et al., |
中国中卫县沙坡头沙漠 | 纤细席藻 Phormidium tenue | Xu et al., |
中国古尔班通 古特沙漠 | 具鞘微鞘藻 Microcoleus vaginatus | Zhang et al., |
印度喜马恰尔邦的 寒冷沙漠 | 球果节球藻 Nodularia sphaerocarpa | Kaushal et al., |
以色列内盖夫沙漠 | 拟色球藻属 Chroococcopsis | Baqué et al., 2013 |
阿曼北部 马斯喀特沙漠 | 眉藻属 Calothrix、 伪枝藻属 Scytonema | Abed et al., |
南美洲阿塔卡马沙漠 | 拟色球藻属 Chroococcopsis | Vıtek et al., 2014 |
美国科罗拉多 沙漠高原 | 克里藻属 Klebsormidium | Donner et al., |
美国沙漠土壤 | Xerochlorella olmiae | Mikhailyuk et al., |
农作物 | 藻类 | 作用 | 参考 |
---|---|---|---|
番茄 | 小球藻 Chlorella vulgaris | 促进嫩枝和根部生长 | Bumandalai et al., |
盐生杜氏藻 Dunaliella salina、椭圆小球藻 Chlorella ellipsoidea、隐状蓝藻 Aphanothece、极大节螺藻 Arthrospira maxima | 微藻-蓝藻制剂可以促进番茄的耐盐反应、养分吸收和生长, 尤其是在低盐度下生长的番茄 | Mutale-joan et al., | |
洋葱 | 钝顶螺旋藻 Spirulina platensis、普通小球藻 Chlorella vulgaris | 促进生长, 提高产量和叶片色素的含量 | Dineshkumar et al., |
近具棘栅藻 Scenedesmus subspicatus | 促进鳞茎早期根系生长, 提高鳞茎中糖和蛋白质的含量 | Gemin et al., | |
黄瓜 | 卷曲鱼腥藻 Anabaena circinalis、四尾栅藻 Scenedesmus quadricauda | 显著提高黄瓜的株高、叶片数、花芽数和茎粗 | LÜ et al., |
生菜 | 四尾栅藻 Scenedesmus quadricauda | 通过激活与N, C和次生代谢相关的关键酶来提高植物生长和叶片蛋白质含量 | Puglisi et al., |
水稻 | 鱼腥藻 Anabaena | 水稻的生长、叶绿、叶面积、氮含量和蛋白质都显著提高 | Priya et al., |
栅藻 ScenedesmusMeyen | 结果表明可以通过增加土壤中N、P和K的有效性, 从而提高了水稻产量和品质 | Nayak et al., | |
普通小球藻 Chlorella vulgaris、钝顶螺旋藻 Spirulina platensis | 可以提高土壤的生物和化学性质, 从而对水稻的特性产生积极影响, 从而提高产量 | Dineshkumar et al., | |
长心卡帕藻 Kappaphycus alvarezii、食用江蓠 Gracilaria | 提高了水稻的发芽和秧苗活力, 可显著提高谷物的产量和质量 | Layek et al., | |
念珠藻 Nostoc commune Vauch、固氮鱼腥藻 Anabaena azotica | 促进稻苗叶绿素合成、显著增加根的表面积和平均直径 | 兰彪等, | |
菜豆 | 小球藻 Chlorella、四链藻 Tetradesmus、钝顶节螺藻 Arthrospira platensis | 可以促进生长和提高结果期的株高、鲜重、干重和叶片数以及产量 | Refaay et al., |
小球藻 Chlorella vulgaris | 有利于种子萌发和幼苗生长, 提高种子中硒的浓度 | Li et al., |
表3 微藻肥料对不同农作物生长作用
Table 3 Role of microalgae fertilizers on the growth of different crops
农作物 | 藻类 | 作用 | 参考 |
---|---|---|---|
番茄 | 小球藻 Chlorella vulgaris | 促进嫩枝和根部生长 | Bumandalai et al., |
盐生杜氏藻 Dunaliella salina、椭圆小球藻 Chlorella ellipsoidea、隐状蓝藻 Aphanothece、极大节螺藻 Arthrospira maxima | 微藻-蓝藻制剂可以促进番茄的耐盐反应、养分吸收和生长, 尤其是在低盐度下生长的番茄 | Mutale-joan et al., | |
洋葱 | 钝顶螺旋藻 Spirulina platensis、普通小球藻 Chlorella vulgaris | 促进生长, 提高产量和叶片色素的含量 | Dineshkumar et al., |
近具棘栅藻 Scenedesmus subspicatus | 促进鳞茎早期根系生长, 提高鳞茎中糖和蛋白质的含量 | Gemin et al., | |
黄瓜 | 卷曲鱼腥藻 Anabaena circinalis、四尾栅藻 Scenedesmus quadricauda | 显著提高黄瓜的株高、叶片数、花芽数和茎粗 | LÜ et al., |
生菜 | 四尾栅藻 Scenedesmus quadricauda | 通过激活与N, C和次生代谢相关的关键酶来提高植物生长和叶片蛋白质含量 | Puglisi et al., |
水稻 | 鱼腥藻 Anabaena | 水稻的生长、叶绿、叶面积、氮含量和蛋白质都显著提高 | Priya et al., |
栅藻 ScenedesmusMeyen | 结果表明可以通过增加土壤中N、P和K的有效性, 从而提高了水稻产量和品质 | Nayak et al., | |
普通小球藻 Chlorella vulgaris、钝顶螺旋藻 Spirulina platensis | 可以提高土壤的生物和化学性质, 从而对水稻的特性产生积极影响, 从而提高产量 | Dineshkumar et al., | |
长心卡帕藻 Kappaphycus alvarezii、食用江蓠 Gracilaria | 提高了水稻的发芽和秧苗活力, 可显著提高谷物的产量和质量 | Layek et al., | |
念珠藻 Nostoc commune Vauch、固氮鱼腥藻 Anabaena azotica | 促进稻苗叶绿素合成、显著增加根的表面积和平均直径 | 兰彪等, | |
菜豆 | 小球藻 Chlorella、四链藻 Tetradesmus、钝顶节螺藻 Arthrospira platensis | 可以促进生长和提高结果期的株高、鲜重、干重和叶片数以及产量 | Refaay et al., |
小球藻 Chlorella vulgaris | 有利于种子萌发和幼苗生长, 提高种子中硒的浓度 | Li et al., |
非生物因子 | 理化活性变化 | 参考文献 |
---|---|---|
干旱 | 光合作用、呼吸作用下降, 短期内合成类胡萝卜素等保护色素免受丙二醛 (Malondialdehyde, MDA) 造成的膜伤害 | 杨红, |
游离脯氨酸的含量和可溶性蛋白的含量都呈现出先上升后下降的趋势。保护酶活性降低, MDA质量摩尔浓度呈现下降的趋势 | 包艳丽, | |
紫外辐射 | UV-A促进荒漠藻的生长和发育, UV-B抑制荒漠藻的生长和发育 | 谢作明, |
温度 | 降低藻的光合色素含量, 减少藻的净光合速率 | 饶本强等, |
低温导致生物量和光合活性的显著降低, 提高了细胞内可溶性蛋白的含量, 但是对丙二醛的含量影响不大, 且明显降低了细胞膜的相对透性, 但促进了胞外多糖的合成高温促进了叶绿素和藻胆素含量的增加, 但类胡萝卜素和伪枝藻素含量在低温和高温下相对较低 | 王伟波等, | |
低温可以增强藻对干旱胁迫下的生存能力 | Rippin et al., | |
盐度 | 高盐浓度下会破坏藻的细胞。高盐浓度降低了藻的生物量、叶绿素含量和光合作用活性, 但同时增加了自由基氧物种的产生以及类脂和类胡萝卜素的含量。在高盐浓度下会释放活性氧来威胁藻的细胞 | Bazzani et al., |
表4 非生物因子对藻的理化活性变化
Table 4 Changes in physicochemical activities of abiotic factors on algae
非生物因子 | 理化活性变化 | 参考文献 |
---|---|---|
干旱 | 光合作用、呼吸作用下降, 短期内合成类胡萝卜素等保护色素免受丙二醛 (Malondialdehyde, MDA) 造成的膜伤害 | 杨红, |
游离脯氨酸的含量和可溶性蛋白的含量都呈现出先上升后下降的趋势。保护酶活性降低, MDA质量摩尔浓度呈现下降的趋势 | 包艳丽, | |
紫外辐射 | UV-A促进荒漠藻的生长和发育, UV-B抑制荒漠藻的生长和发育 | 谢作明, |
温度 | 降低藻的光合色素含量, 减少藻的净光合速率 | 饶本强等, |
低温导致生物量和光合活性的显著降低, 提高了细胞内可溶性蛋白的含量, 但是对丙二醛的含量影响不大, 且明显降低了细胞膜的相对透性, 但促进了胞外多糖的合成高温促进了叶绿素和藻胆素含量的增加, 但类胡萝卜素和伪枝藻素含量在低温和高温下相对较低 | 王伟波等, | |
低温可以增强藻对干旱胁迫下的生存能力 | Rippin et al., | |
盐度 | 高盐浓度下会破坏藻的细胞。高盐浓度降低了藻的生物量、叶绿素含量和光合作用活性, 但同时增加了自由基氧物种的产生以及类脂和类胡萝卜素的含量。在高盐浓度下会释放活性氧来威胁藻的细胞 | Bazzani et al., |
微藻作用 | 研究结果 | 参考文献 |
---|---|---|
增加土壤有机质和提高土壤生物活性 | 外源物质如微藻可以改变土壤水溶性有机碳 (water soluble organic carbon, WSOC) 和土壤溶解性有机质 (soil dissolved organic matter, SDOM) 的含量, 从而增强土壤的腐殖化和生物活力 | Song et al., |
在水稻土中, 微藻存在于土壤-水表面和水稻根际。它们的生长有助于土壤中CO2的固定和有机质的积累等 | Naveed et al., | |
土壤肥料 | 绿藻Asterarcys quadricellulare作为肥料增加了洋葱的鳞茎直径和产量, 增加了叶片中的叶绿素、类胡萝卜素、氨基酸和硝酸还原酶的活性, 以及鳞茎中的游离氨基酸和总糖含量 | Cordeiro et al., |
在干旱土地上, 藻类可以通过提供一些营养物质来促进微生物活动和提高植物生长 | Al-Maliki et al., | |
生物刺激剂 | 两种绿藻莱茵衣藻和小球藻对玉米根的刺激能力很有效, 从而促进了玉米的生长 | Martini et al., |
从微藻和蓝藻中获得的18种粗制生物提取物对番茄的生长、叶绿素含量、养分吸收和代谢物谱的生物刺激作用很明显 | Mutale-joan et al., | |
将来自3种微藻中的粗多糖提取物通过灌溉施用于番茄, 发现它们对枝条的根长、节数和根干重有很大影响 | Rachidi et al., | |
稳定土壤结构 | 成功的蓝藻接种会导致蓝藻生物结皮的形成, 其原因是蓝藻可以分泌的胞外多糖 (EPS), 可将松散的沙土形成一个稳定的状态 | Mugnai et al., |
蓝藻除了在土壤表面形成保护层外, 它本身还能通过分泌胞外多糖和在土壤颗粒之间形成了牢固的结合, 从而提高了沙子抵御风力的能力和沙土的稳定性 | Kheirfam et al., | |
念珠藻 (Nostoc commune Vauch.) 产生的EPS不仅可以改善胁迫条件, 还可以提高土壤稳定性 | Román et al., | |
防止害虫和病菌的侵害 | 部分藻类具有独特的产生氰化氢 (HCN) 的能力, 已被发现对土壤中的病原真菌、杂草、昆虫、白蚁和线虫的生长具有抑制作用 | Sehrawat et al., |
螺旋藻和微拟球藻提取物中含有很高的绿原酸, 因此可以有效地对抗禾谷镰刀菌病 | Scaglioni et al., | |
斜生栅藻、小球藻和稻田鱼腥藻单独或联合使用明显减少了土壤中的根结线虫 | Hamouda et al., |
表5 微藻在农业系统作用
Table 5 The role of microalgae in agricultural systems
微藻作用 | 研究结果 | 参考文献 |
---|---|---|
增加土壤有机质和提高土壤生物活性 | 外源物质如微藻可以改变土壤水溶性有机碳 (water soluble organic carbon, WSOC) 和土壤溶解性有机质 (soil dissolved organic matter, SDOM) 的含量, 从而增强土壤的腐殖化和生物活力 | Song et al., |
在水稻土中, 微藻存在于土壤-水表面和水稻根际。它们的生长有助于土壤中CO2的固定和有机质的积累等 | Naveed et al., | |
土壤肥料 | 绿藻Asterarcys quadricellulare作为肥料增加了洋葱的鳞茎直径和产量, 增加了叶片中的叶绿素、类胡萝卜素、氨基酸和硝酸还原酶的活性, 以及鳞茎中的游离氨基酸和总糖含量 | Cordeiro et al., |
在干旱土地上, 藻类可以通过提供一些营养物质来促进微生物活动和提高植物生长 | Al-Maliki et al., | |
生物刺激剂 | 两种绿藻莱茵衣藻和小球藻对玉米根的刺激能力很有效, 从而促进了玉米的生长 | Martini et al., |
从微藻和蓝藻中获得的18种粗制生物提取物对番茄的生长、叶绿素含量、养分吸收和代谢物谱的生物刺激作用很明显 | Mutale-joan et al., | |
将来自3种微藻中的粗多糖提取物通过灌溉施用于番茄, 发现它们对枝条的根长、节数和根干重有很大影响 | Rachidi et al., | |
稳定土壤结构 | 成功的蓝藻接种会导致蓝藻生物结皮的形成, 其原因是蓝藻可以分泌的胞外多糖 (EPS), 可将松散的沙土形成一个稳定的状态 | Mugnai et al., |
蓝藻除了在土壤表面形成保护层外, 它本身还能通过分泌胞外多糖和在土壤颗粒之间形成了牢固的结合, 从而提高了沙子抵御风力的能力和沙土的稳定性 | Kheirfam et al., | |
念珠藻 (Nostoc commune Vauch.) 产生的EPS不仅可以改善胁迫条件, 还可以提高土壤稳定性 | Román et al., | |
防止害虫和病菌的侵害 | 部分藻类具有独特的产生氰化氢 (HCN) 的能力, 已被发现对土壤中的病原真菌、杂草、昆虫、白蚁和线虫的生长具有抑制作用 | Sehrawat et al., |
螺旋藻和微拟球藻提取物中含有很高的绿原酸, 因此可以有效地对抗禾谷镰刀菌病 | Scaglioni et al., | |
斜生栅藻、小球藻和稻田鱼腥藻单独或联合使用明显减少了土壤中的根结线虫 | Hamouda et al., |
[1] |
ABED R M M, PALINSKA K A, KÖSTER J, 2018. Characterization of microbial mats from a desert wadi ecosystem in the Sultanate of Oman[J]. Geomicrobiology Journal, 35(7): 601-611.
DOI URL |
[2] |
AL-MALIKI S, EBREESUM H, 2020. Changes in soil carbon mineralization, soil microbes, roots density and soil structure following the application of the arbuscular mycorrhizal fungi and green algae in the arid saline soil[J]. Rhizosphere, 14: 100203.
DOI URL |
[3] |
ALVAREZ A L, WEYERS S L, GOEMANN H M, et al., 2021. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture[J]. Algal Research, 54: 102200.
DOI URL |
[4] |
AMMAR E E, AIOUB A A A, ELESAWY A E, et al., 2022. Algae as bio-fertilizers: Between current situation and future prospective[J]. Saudi Journal of Biological Sciences, 29(5): 3083-3096.
DOI PMID |
[5] |
ASCHONITIS V G, LEKAKIS E H, PETRIDOU M C, et al., 2013. Nutrients fixation by algae and limiting factors of algal growth in flooded rice fields under semi-arid mediterranean conditions: Case study in Thessaloniki plain in Greece[J]. Nutrient Cycling in Agroecosystems, 96: 1-13.
DOI URL |
[6] |
BABU S, PRASANNA R, BIDYARANI N, et al., 2015. Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools[J]. Journal of Applied Phycology, 27: 327-338.
DOI URL |
[7] |
BAQUÉ M, VIAGGIU E, SCALZI G, et al., 2013. Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation[J]. Extremophiles, 17: 161-169.
DOI URL |
[8] |
BAZZANI E, LAURITANO C, MANGONI O, et al., 2021. Chlamydomonas responses to salinity stress and possible biotechnological exploitation[J]. Journal of Marine Science and Engineering, 9(11): 1242.
DOI URL |
[9] |
BHARTI A, PRASANNA R, KUMAR G, et al., 2019. Co-cultivation of cyanobacteria for raising nursery of chrysanthemum using a hydroponic system[J]. Journal of Applied Phycology, 31: 3625-3635.
DOI |
[10] |
BILLAH M, KHAN M, BANO A, et al., 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture[J]. Geomicrobiology Journal, 36(10): 904-916.
DOI URL |
[11] |
BORAH D, ROUT J, NOORUDDIN T, 2022. Distribution and diversity of algal communities in rice terrace agroecosystem of a hilly district of southern Assam, north-east India[J]. Tropical Ecology, 63: 75-93.
DOI |
[12] |
BORCHHARDT N, BAUM C, MIKHAILYUK T, et al., 2017. Biological soil crusts of Arctic Svalbard-water availability as potential controlling factor for microalgal biodiversity[J]. Frontiers in Microbiology, 8: 01485.
DOI URL |
[13] |
BORCHHARDT N, GRÜNDLING-PFAFF S, 2020. Ecophysiological response against temperature in Klebsormidium (Streptophyta) strains isolated from biological soil crusts of Arctic and Antarctica indicate survival during global warming[J]. Frontiers in Ecology and Evolution, 8: 153.
DOI URL |
[14] | BUMANDALAI O, TSERENNADMID R, 2019. Effect of Chlorella vulgaris as a biofertilizer on germination of tomato and cucumber seeds[J]. International Journal of Aquatic Biology, 7(2): 95-99. |
[15] | CABALA J, RAHMONOV O, JABLONSKA M, et al., 2010. Soil algal colonization and its ecological role in an environment polluted by past Zn-Pb mining and smelting activity[J]. Water, Air, & Soil Pollution, 215(1): 339-348. |
[16] |
CANO-DÍAZ C, MAESTRE F T, ELDRIDGE D J, et al., 2020. Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe[J]. Global Ecology and Biogeography, 29(11): 2025-2038.
DOI URL |
[17] |
CASTRO J D S, LÚCIACALIJURI M, FERREIRA J, et al., 2020. Microalgae based biofertilizer: A life cycle approach[J]. Science of The Total Environment, 724: 138138.
DOI URL |
[18] |
CHAMIZO S, MUGNAI G, ROSSI F, et al., 2018. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: Gaining insights for applicability in soil restoration[J]. Frontiers in Environmental Science, 6: 00049.
DOI URL |
[19] |
COLESIE C, GREEN T G A, RAGGIO J, et al., 2018. Summer activity patterns of Antarctic and high alpine lichendominated biological soil crusts—Similar but different?[J]. Arctic, Antarctic, and Alpine Research, 48(3): 449-460.
DOI URL |
[20] |
CORDEIRO E C N, MÓGOR Á F, AMATUSSI J D O, et al., 2022. Microalga biofertilizer triggers metabolic changes improving onion growth and yield[J]. Horticulturae, 8(3): 223.
DOI URL |
[21] |
DINESHKUMAR R, KUMARAVEL R, GOPALSAMY J, et al., 2018a. Microalgae as bio-fertilizers for rice growth and seed yield productivity[J]. Waste and Biomass Valorization, 9: 793-800.
DOI URL |
[22] |
DINESHKUMAR R, SUBRAMANIAN J, ARUMUGAM A, et al., 2018b. Exploring the microalgae biofertilizer effect on onion cultivation by field experiment[J]. Waste and Biomass Valorization, 11: 77-87.
DOI |
[23] |
DODDS W, GUDDER D, MOLLENHAUER D, 1995. The ecology of Nostoc[J]. Journal of Phycology, 31(1): 2-18.
DOI URL |
[24] |
DONNER A, RYŠÁNEK D, MIKHAILYUK T, et al., 2017. Ecophysiological traits of various genotypes of a green key alga in biological soil crusts from the semi-arid Colorado Plateau, USA[J]. Journal of Applied Phycology, 29: 2911-2923.
DOI URL |
[25] | DOROKHOVA M F, 2019. Biodiversity of algae and cyanobacteria in soils of Moscow[C]// Urbanization: Challenge and opportunity for soil functions and ecosystem services: Proceedings of the 9th SUITMA congress 9. Springer International Publishing: 135-144. |
[26] |
DVORNIK A, SHAMAL N, BACHURA Y, et al., 2021. Post-fire redistribution of 137Cs and algal communities in contaminated forest soils in Belarus[J]. Journal of Environmental Radioactivity, 227: 106505.
DOI URL |
[27] |
EL ARROUSSI H, BENHIMA R, ELBAOUCHI A, et al., 2018. Dunaliella salina exopolysaccharides: A promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum)[J]. Journal of Applied Phycology, 30: 2929-2941.
DOI |
[28] |
ELBERT W, WEBER B, BURROWS S, et al., 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J]. Nature Geoscience, 5(7): 459-462.
DOI |
[29] |
ESTEVES-FERREIRA A A, INABA M, FORT A, et al., 2018. Nitrogen metabolism in cyanobacteria: Metabolic and molecular control, growth consequences and biotechnological applications[J]. Critical Reviews in Microbiology, 44(5): 541-560.
DOI URL |
[30] |
ETESAMI H, ALIKHANI H A, 2016. Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant[J]. Rhizosphere, 2: 5-12.
DOI URL |
[31] |
FU D G, WU X N, DUAN C Q, et al., 2020. Different life-form plants exert different rhizosphere effects on phosphorus biogeochemistry in subtropical mountainous soils with low and high phosphorus content[J]. Soil and Tillage Research, 199: 104516.
DOI URL |
[32] |
GAO X, LIU L T, LIU B, 2019. Dryland cyanobacterial exopolysaccharides show protection against acid deposition damage[J]. Environmental Science and Pollution Research, 26(23): 24300-24304.
DOI |
[33] |
GEMIN L G, MÓGOR Á F, DE OLIVEIRA AMATUSSI J, et al., 2019. Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield[J]. Scientia Horticulturae, 256: 108560.
DOI URL |
[34] |
GHEDA S F, AHMED D A, 2014. Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica [J]. Rendiconti Lincei, 26: 121-131.
DOI URL |
[35] |
GLASER K, BAUMANN K, LEINWEBER P, et al., 2018. Algal richness in BSCs in forests under different management intensity with some implications for P cycling[J]. Biogeosciences, 15(13): 4181-4192.
DOI URL |
[36] | GLASER K, BAUMANNN K, LEINWEBER P, et al., 2017. Algal diversity of temperate biological soil crusts depends on land use intensity and affects phosphorus biogeochemical cycling[J/OL]. Biogeosciences Discuss: 1-24. [2017-09-27]. https://doi.org/10.5194/bg-2017-365. |
[37] |
GR S, YADAV R K, CHATRATH A, et al., 2021. Perspectives on the potential application of cyanobacteria in the alleviation of drought and salinity stress in crop plants[J]. Journal of Applied Phycology, 33(6): 3761-3778.
DOI |
[38] |
GUADIE A, TIZAZU S, MELESE M, et al., 2017. Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake[J]. Biotechnology Reports, 15: 92-100.
DOI URL |
[39] |
HACHIYA T, SAKAKIBARA H, 2017. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants[J]. Journal of Experimental Botany, 68(10): 2501-2512.
DOI PMID |
[40] | HAMOUDA R A, EL-ANSARY M S M, 2017. Potential of plant-parasitic nematode control in banana plants by microalgae as a new approach towards resistance[J]. Egyptian Journal of Biological Pest Control, 27(2): 165-172. |
[41] |
HINOJOSA-VIDAL E, MARCO F, MARTINEZ-ALBEROLA F, et al., 2018. Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9[J]. Planta, 248(6): 1473-1486.
DOI |
[42] |
HU C X, LIU Y D, SONG L R, et al., 2002. Effect of desert soil algae on the stabilization of fine sands[J]. Journal of Applied Phycology, 14(4): 281-292.
DOI URL |
[43] |
HUERTAS M J, LOPEZ-MAURY L, GINER-LAMIA J, et al., 2014. Metals in cyanobacteria:Analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms[J]. Life, 4(4): 865-886.
DOI URL |
[44] |
KAUSHAL S, SINGH Y, KHATTAR J I S, et al., 2017. Phycobiliprotein production by a novel cold desert cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1[J]. Journal of Applied Phycology, 29(4): 1819-1827.
DOI URL |
[45] |
KHEIRFAM H, ASADZADEH F, 2020. Stabilizing sand from dried-up lakebeds against wind erosion by accelerating biological soil crust development[J]. European Journal of Soil Biology, 98: 103189.
DOI URL |
[46] |
KOLLMEN J, STRIETH D, 2022. The beneficial effects of cyanobacterial co-culture on plant growth[J]. Life, 12(2): 223.
DOI URL |
[47] |
KUMAR D, KASTANEK P, ADHIKARY S P, 2018. Exopolysaccharides from cyanobacteria and microalgae and their commercial application[J]. Current Science, 115(2): 234-241.
DOI URL |
[48] |
LAYEK J, DAS A, IDAPUGANTI R G, et al., 2017. Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas[J]. Journal of Applied Phycology, 30(1): 547-558.
DOI URL |
[49] |
LI J, LENS P N L, FERRER I, et al., 2021. Evaluation of selenium-enriched microalgae produced on domestic wastewater as biostimulant and biofertilizer for growth of selenium-enriched crops[J]. Journal of Applied Phycology, 33(5): 3027-3039.
DOI |
[50] |
LI L, ZHANG X, HE N, et al., 2019. Transcriptome profiling of the salt-stress response in the halophytic green alga Dunaliella salina[J]. Plant Molecular Biology Reporter, 37(5-6): 421-435.
DOI |
[51] |
LI S L, BOWKER M A, XIAO B, 2022a. Impacts of moss-dominated biocrusts on rainwater infiltration, vertical water flow, and surface soil evaporation in drylands[J]. Journal of Hydrology, 612(Part B): 128176.
DOI URL |
[52] |
LI S, XIAO B, 2022b. Cyanobacteria and moss biocrusts increase evaporation by regulating surface soil moisture and temperature on the northern Loess Plateau, China[J]. Catena, 212: 106068.
DOI URL |
[53] |
LIU X, LU X, ZHAO W Q, et al., 2022. The rhizosphere effect of native legume Albizzia julibrissin on coastal saline soil nutrient availability, microbial modulation, and aggregate formation[J]. Science of The Total Environment, 806(Part 2): 150705.
DOI URL |
[54] |
LÜ J P, GUO B W, FENG J, et al., 2019. Integration of wastewater treatment and flocculation for harvesting biomass for lipid production by a newly isolated self-flocculating microalga Scenedesmus rubescens SX[J]. Journal of Cleaner Production, 240: 118211.
DOI URL |
[55] | LÜ J P, LIU S F, FENG J, et al., 2020. Effects of microalgal biomass as biofertilizer on the growth of cucumber and microbial communities in the cucumber rhizosphere[J]. Turkish Journal of Botany, 44(2): 167-177. |
[56] |
LUO J Y, ZHANG S, ZHU X Z, et al., 2017. Effects of soil salinity on rhizosphere soil microbes in transgenic Bt cotton fields[J]. Journal of Integrative Agriculture, 16(7): 1624-1633.
DOI URL |
[57] |
Ma C, CUI H L, REN C G, et al., 2022. The seed primer and biofertilizer performances of living Chlorella pyrenoidosa on Chenopodium quinoa under saline-alkali condition[J]. Journal of Applied Phycology, 34(3): 1621-1634.
DOI |
[58] |
MA C, CUI H L, REN C G, et al., 2022a. The seed primer and biofertilizer performances of living Chlorella pyrenoidosa on Chenopodium quinoa under saline-alkali condition[J]. Journal of Applied Phycology, 34(3): 1621-1634.
DOI |
[59] |
MA C, LEI C Y, ZHU X L, et al., 2022b. Saline-alkali land amendment and value development: Microalgal biofertilizer for efficient production of a halophytic crop-Chenopodium quinoa [J]. Land Degradation & Development, 34(4): 956-968.
DOI URL |
[60] |
MALTSEV Y, MALTSEVA I, 2018. The influence of forest-forming tree species on diversity and spatial distribution of algae in forest litter[J]. Folia Oecologica, 45(2): 72-81.
DOI URL |
[61] |
MALTSEV Y, MALTSEVA S, MALTSEVA I, 2022. Diversity of cyanobacteria and algae during primary succession in iron ore tailing dumps[J]. Microbial Ecology, 83(2): 408-423.
DOI |
[62] |
MALTSEVA I A, MALTSEV Y I, 2021. Diversity of cyanobacteria and algae in dependence to forest-forming tree species and properties rocks of dump[J]. International Journal of Environmental Science and Technology, 18(3): 545-560.
DOI |
[63] |
MALTSEVA I A, MALTSEV Y I, SOLONENKO A N, 2017. Soil algae of the oak groves of the steppe zone of Ukraine[J]. International Journal on Algae, 19(3): 215-226.
DOI URL |
[64] |
MANDAL B, VLEK P L G, MANDAL L N, 1999. Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields:A review[J]. Biology and Fertility of Soils, 28(4): 329-342.
DOI URL |
[65] |
MARTINI F, BEGHINI G, ZANIN L, et al., 2021. The potential use of Chlamydomonas reinhardtii and Chlorella sorokiniana as biostimulants on maize plants[J]. Algal Research, 60: 102515.
DOI URL |
[66] |
MIKHAILYUK T, HOLZINGER A, TSARENKO P, et al., 2020. Dictyosphaerium-like morphotype in terrestrial algae: What is Xerochlorella (Trebouxiophyceae, Chlorophyta)?1[J]. Journal of Phycology, 56(3): 671-686.
DOI URL |
[67] | MINAOUI F, HAKKOUM Z, DOUMA M, et al., 2021. Diatom communities as bioindicators of human disturbances on suburban soil quality in arid Marrakesh Area (Morocco)[J]. Water, Air, & Soil Pollution, 232: 1-19. |
[68] | MONTAÑO N M, AYALA F, BULLOCK S H, et al., 2016. Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: Síntesis y perspectivas[J]. Terra Latinoamericana, 34(1): 39-59. |
[69] |
MUGNAI G, ROSSI F, CHAMIZO S, et al., 2020. The role of grain size and inoculum amount on biocrust formation by Leptolyngbya ohadii[J]. Catena, 184: 104248.
DOI URL |
[70] |
MUKHERJEE C, CHOWDHURY R, SUTRADHAR T, et al., 2016. Parboiled rice effluent: A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization[J]. Algal Research, 19: 225-236.
DOI URL |
[71] |
MUTALE-JOAN C, RACHIDI F, MOHAMED H A, et al., 2021. Microalgae-cyanobacteria-based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress[J]. Journal of Applied Phycology, 33(6): 3779-3795.
DOI |
[72] |
MUTALE-JOAN C, REDOUANE B, NAJIB E, et al., 2020. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L[J]. Scientific Reports, 10(1): 2820.
DOI |
[73] |
MYERS P E, DAVIS J S, 2003. Recolonization of soils by algae in a northcentral Florida pine forest after controlled fire and soil sterilization[J]. Nova Hedwigia, 76(1-2): 207-219.
DOI URL |
[74] |
NAVEED S, DONG B, ZHANG C, et al., 2018. Microalgae and their effects on metal bioavailability in paddy fields[J]. Journal of Soils and Sediments, 18(3): 936-945.
DOI URL |
[75] |
NAYAK M, SWAIN D K, SEN R, 2019. Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop[J]. Science of The Total Environment, 682: 475-484.
DOI URL |
[76] |
NISHA R, KIRAN B, KAUSHIK A, et al., 2017. Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity[J]. International Journal of Environmental Science and Technology, 15: 571-580.
DOI URL |
[77] |
NOVAKOVSKAYA I V, PATOVA E N, DUBROVSKIY Y A, et al., 2022. Distribution of algae and cyanobacteria of biological soil crusts along the elevation gradient in mountain plant communities at the northern Urals (Russian European Northeast)[J]. Journal of Mountain Science, 19(3): 637-646.
DOI |
[78] |
OLIVERIO A M, GEISEN S, DELGADO-BAQUERIZO M, et al., 2020. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 6(4): 8787.
DOI PMID |
[79] |
PAN Y, BORJIGIN S, LIU Y, et al., 2022. Role of key-stone microbial taxa in algae amended soil for mediating nitrogen transformation[J]. Science of The Total Environment, 823: 153547.
DOI URL |
[80] | PENTECOST A, WHITTON B, 2000. The ecology of cyanobacteria. Their diversity in time and space[M]. Dordrecht: Kluwer Academic Press: 257- 279. |
[81] |
PERERA I, SUBASHCHANDRABOSE S R, VENKATESWARLU K, et al., 2018. Consortia of cyanobacteria/microalgae and bacteria in desert soils: An underexplored microbiota[J]. Applied Microbiology and Biotechnology, 102(17): 7351-7363.
DOI PMID |
[82] |
POTNIS A A, RAGHAVAN P S, RAJARAM H, 2021. Overview on cyanobacterial exopolysaccharides and biofilms: Role in bioremediation[J]. Reviews in Environmental Science and Bio/Technology, 20(3): 781-794.
DOI |
[83] |
PRASANNA R, BABU S, BIDYARANI N, et al., 2015a. Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton[J]. Experimental Agriculture, 51(1): 42-65.
DOI URL |
[84] |
PRASANNA R, HOSSAIN F, BABU S, et al., 2015b. Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids[J]. South African Journal of Plant and Soil, 32(4): 199-207.
DOI URL |
[85] |
PRASANNA R, KANCHAN A, RAMAKRISHNAN B, et al., 2016. Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids[J]. European Journal of Soil Biology, 75: 15-23.
DOI URL |
[86] |
PRIYA H, DHAR D W, SINGH R, et al., 2022. Co-cultivation approach to decipher the influence of nitrogen-fixing cyanobacterium on growth and N uptake in rice crop[J]. Current Microbiology, 79(2): 53.
DOI PMID |
[87] |
PUGLISI I, LA BELLA E, ROVETTO E I, et al., 2020. Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract[J]. Plants, 9(1): 123.
DOI URL |
[88] |
PUPPE D, HÖHN A, KACZOREK D, et al., 2017. How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil-plant system[J]. Biogeosciences, 14(22): 5239-5252.
DOI URL |
[89] |
PUSHKAREVA E, WILMOTTE A, LÁSKA K, et al., 2019. Comparison of microphototrophic communities living in different soil environments in the High Arctic[J]. Frontiers in Ecology and Evolution, 7: 393.
DOI URL |
[90] |
QU D H, SHOW P L, MIAO X L, 2021. Transcription factor ChbZIP1 from alkaliphilic microalgae Chlorella sp. BLD enhancing alkaline tolerance in transgenic Arabidopsis thaliana [J]. International Journal of Molecular Sciences, 22(5): 2387.
DOI URL |
[91] |
RACHIDI F, BENHIMA R, SBABOU L, et al., 2020. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution[J]. Biotechnology Reports, 25: e00426.
DOI URL |
[92] |
REFAAY D A, EL-MARZOKI E M, ABDEL-HAMID M I, et al., 2021. Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean[J]. Journal of Applied Phycology, 33(6): 3807-3815.
DOI |
[93] |
RENUKA N, GULDHE A, PRASANNA R, et al., 2018. Microalgae as multi-functional options in modern agriculture: Current trends, prospects and challenges[J]. Biotechnology Advances, 36(4): 1255-1273.
DOI PMID |
[94] |
RENUKA N, PRASANNA R, SOOD A, et al., 2016. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat[J]. Environmental Science and Pollution Research, 23(7): 6608-6620.
DOI URL |
[95] |
RIPPIN M, BORCHHARDT N, KARSTEN U, et al., 2019. Cold acclimation improves the desiccation stress resilience of polar strains of Klebsormidium (Streptophyta)[J]. Frontiers in Microbiology, 10: 1730.
DOI URL |
[96] |
ROBERTI R, GALLETTI S, BURZI P L, et al., 2015. Induction of defence responses in zucchini (Cucurbita pepo) by Anabaena sp. water extract[J]. Biological Control, 82: 61-68.
DOI URL |
[97] |
ROMÁN J R, RONCERO-RAMOS B, RODRÍGUEZ-CABALLERO E, et al., 2021. Effect of water availability on induced cyanobacterial biocrust development[J]. Catena, 197: 104988.
DOI URL |
[98] |
SANDOVAL PÉREZ A L, CAMARGO-RICALDE S L, MONTAÑO N M, et al., 2016. Biocrusts, inside and outside resource islands of Mimosa luisana (Leguminosae), improve soil carbon and nitrogen dynamics in a tropical semiarid ecosystem[J]. European Journal of Soil Biology, 74: 93-103.
DOI URL |
[99] |
SCAGLIONI P T, PAGNUSSATT F A, LEMOS A C, et al., 2019. Nannochloropsis sp. and Spirulina sp. as a source of antifungal compounds to mitigate contamination by Fusarium graminearum species complex[J]. Current Microbiology, 76(8): 930-938.
DOI |
[100] |
SCHREIBER C, SCHIEDUNG H, HARRISON L, et al., 2018. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants[J]. Journal of Applied Phycology, 30(5): 2827-2836.
DOI |
[101] |
SCHULZ K, MIKHAILYUK T, DRESSLER M, et al., 2016. Biological soil crusts from coastal dunes at the Baltic Sea: Cyanobacterial and algal biodiversity and related soil properties[J]. Microbial Ecology, 71(1): 178-193.
DOI PMID |
[102] |
SEEMA B SHARMA, RIYAZ Z SAYYED, TRIVEDI M H, et al., 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils[J]. SpringerPlus, 2(1): 587.
DOI |
[103] |
SEHRAWAT A, SINDHU S S, GLICK B R, 2022. Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture[J]. Pedosphere, 32(1): 15-38.
DOI URL |
[104] |
SINGH A K, SINGH P P, TRIPATHI V, et al., 2018. Distribution of cyanobacteria and their interactions with pesticides in paddy field: A comprehensive review[J]. Journal of Environmental Management, 224: 361-375.
DOI PMID |
[105] |
SOLOVCHENKO A, VERSCHOOR A M, JABLONOWSKI N D, et al., 2016. Phosphorus from wastewater to crops: An alternative path involving microalgae[J]. Biotechnology Advances, 34(5): 550-564.
DOI PMID |
[106] |
SOMMER V, KARSTEN U, GLASER K, 2020. Halophilic algal communities in biological soil crusts isolated from potash tailings pile areas[J]. Frontiers in Ecology and Evolution, 8: 46.
DOI URL |
[107] |
SONG P, LI J, LIANG Y H, et al., 2022. Research of the influences of utilization of sediment and exogenous materials on the changes of SDOM and WSOC of soil[J]. Ecological Indicators, 136: 108689.
DOI URL |
[108] |
SONG Y S, SHU W S, WANG A D, et al., 2014. Characters of soil algae during primary succession on copper mine dumps[J]. Journal of Soils and Sediments, 14(3): 577-583.
DOI URL |
[109] |
SOSA-QUINTERO J, GODÍNEZ-ALVAREZ H, CAMARGO-RICALDE S L, et al., 2022. Biocrusts in mexican deserts and semideserts: A review of their species composition, ecology, and ecosystem function[J]. Journal of Arid Environments, 199: 104712.
DOI URL |
[110] |
SPENCER D F, LINQUIST B A, 2014. Reducing rice field algae and cyanobacteria abundance by altering phosphorus fertilizer applications[J]. Paddy and Water Environment, 12(1): 147-154.
DOI URL |
[111] |
TIAN J, GE F, ZHANG D Y, et al., 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle[J]. Biology, 10(2): 158.
DOI URL |
[112] |
TRZCIŃSKA M, PAWLIK-SKOWROŃSKA B, 2008. Soil algal communities inhabiting zinc and lead mine spoils[J]. Journal of Applied Phycology, 20(4): 341-348.
DOI URL |
[113] |
UHLIARIKOVA I, MATULOVA M, CAPEK P, 2020. Structural features of the bioactive cyanobacterium Nostoc sp. exopolysaccharide[J]. International Journal of Biological Macromolecules, 164: 2284-2292.
DOI URL |
[114] |
VAISHAMPAYAN A, SINHA R P, HADER D P, et al., 2001. Cyanobacterial biofertilizers in rice agriculture[J]. The Botanical Review, 67(4): 453-516.
DOI URL |
[115] |
VEAUDOR T, BLANC-GARIN V, CHENEBAULT C, et al., 2020. Recent advances in the photoautotrophic metabolism of cyanobacteria: Biotechnological implications[J]. Life, 10(5): 71.
DOI URL |
[116] |
VITEK P, JEHLICKA J, ASCASO C, et al., 2014. Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile[J]. Fems Microbiology Ecology, 90(2): 351-366.
DOI PMID |
[117] | WANG R F, PENG B, HUANG K Y, 2015. The research progress of CO2 sequestration by algal bio-fertilizer in China[J]. Journal of CO2 Utilization, 11: 67-70. |
[118] |
WANNER M, BIRKHOFER K, FISCHER T, et al., 2020. Soil testate amoebae and diatoms as bioindicators of an old heavy metal contaminated floodplain in Japan[J]. Microbial Ecology, 79(1): 123-133.
DOI PMID |
[119] |
WILLIAMS W, CHILTON A, SCHNEEMILCH M, et al., 2019. Microbial biobanking-cyanobacteria-rich topsoil facilitates mine rehabilitation[J]. Biogeosciences, 16(10): 2189-2204.
DOI URL |
[120] |
WU L, ZHU Q H, YANG L, et al., 2018. Nutrient transferring from wastewater to desert through artificial cultivation of desert cyanobacteria[J]. Bioresource Technology, 247: 947-953.
DOI PMID |
[121] |
XU H K, ZHANG Y J, SHAO X Q, et al., 2022. Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A meta-analysis[J]. Science of The Total Environment, 803: 150030.
DOI URL |
[122] |
XU Y H, ROSSI F, COLICA G, et al., 2012. Use of cyanobacterial polysaccharides to promote shrub performances in desert soils:A potential approach for the restoration of desertified areas[J]. Biology and Fertility of Soils, 49: 143-152.
DOI URL |
[123] | YANDIGERI M S, YADAVA A K, SRINIVASAN R, et al., 2011. Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena [J]. Microbiology, 80(4): 552-559. |
[124] |
YANG Y J, LIU L, SINGH R P, et al., 2020. Nodule and root zone microbiota of salt-tolerant wild soybean in coastal sand and saline-alkali soil[J]. Frontiers in Microbiology, 11: 2178.
DOI PMID |
[125] |
YE S S, GAO L, ZHAO J, et al., 2020. Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2[J]. Bioresource Technology, 302: 122903.
DOI URL |
[126] |
ZHANG B C, ZHANG Y M, SU Y G, et al., 2013. Responses of microalgal-microbial biomass and enzyme activities of biological soil crusts to moisture and inoculated Microcoleus vaginatus gradients[J]. Arid Land Research and Management, 27(3): 216-230.
DOI URL |
[127] |
ZHANG S Y, ZHAO F J, SUN G X, et al., 2015. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China[J]. Environmental Science & Technology, 49(7): 4138-4146.
DOI URL |
[128] |
ZHANG Y K, OUYANG S Q, NIE L J, et al., 2020. Soil diatom communities and their relation to environmental factors in three types of soil from four cities in central-west China[J]. European Journal of Soil Biology, 98: 103175.
DOI URL |
[129] | ZHENG H, WANG X, CHEN L, et al., 2018. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation[J]. Plant, Cell & Environment, 41(3): 517-532. |
[130] |
ZHENG Z H, XIONG K N, RONG L, et al., 2021. Effects of biological crust on soil properties under different karst rocky desertification habitats[J]. Polish Journal of Environmental Studies, 30(4): 3405-3418.
DOI URL |
[131] |
ZHOU L X, LIU W, DUAN H J, et al., 2023. Improved effects of combined application of nitrogen-fixing bacteria Azotobacter beijerinckii and microalgae Chlorella pyrenoidosa on wheat growth and saline-alkali soil quality[J]. Chemosphere, 313: 137409.
DOI URL |
[132] | 包艳丽, 2011. 青藏高原东缘沙化区生物结皮中荒漠藻抗旱生理特性的研究[D]. 兰州: 兰州理工大学. |
BAO Y L, 2011. Study on physiological characteristics of drought resistance of desert algae in biological crusts of sandy areas on the eastern edge of the Qinghai Tibet Plateau[D]. Lanzhou: Lanzhou University of Technology. | |
[133] | 陈兰周, 刘永定, 李敦海, 2003. 荒漠藻类及其结皮的研究[J]. 中国科学基金, 17(2): 28-31. |
CHEN L Z, LIU Y D, LI D H, 2003. Research on desert algae and their crusts[J]. Chinese Science Foundation, 17(2): 28-31. | |
[134] | 冯佳, 李博, 2021. 助友为乐——漫话共生藻[J]. 生命世界 (4): 16-19. |
FENG J, LI B, 2021. Helping friends for joy: A random talk on symbiotic algae[J]. Life World, (4): 16-19. | |
[135] | 龚萍, 党晓宏, 蒙仲举, 等, 2022. 生物结皮对沙质土壤水含量和水分入渗的影响[J]. 干旱区资源与环境, 36(9): 120-125. |
GONG P, DANG X H, MENG Z J, et al., 2022. The effect of biological crust on water content and infiltration in sandy soil[J]. Resources and Environment in Arid Areas, 36(9): 120-125. | |
[136] | 兰彪, 贾佳欢, 孙广仁, 2022. 微藻生物肥对稻苗生长的影响[J]. 山西农业科学, 50(3): 391-397. |
LAN B, JIA J H, SUN G R, 2022. Effect of microalgae bio fertilizer on rice seedling growth[J]. Agricultural science of Shanxi, 50(3): 391-397. | |
[137] | 李玉领, 2017. 沙蒿胶-微藻联合固沙效果的试验研究[D]. 衡阳: 南华大学. |
LI Y L, 2017. Experimental study on the effect of sand fixation by sa-son seed gum-microalgae combination[D]. Hengyang: University of South China. | |
[138] | 李云飞, 都军, 张雪, 等, 2020. 腾格里沙漠东南缘不同类型生物土壤结皮对土壤有机碳矿化的影响[J]. 生态学报, 40(5): 1580-1589. |
LI Y F, DU J, ZHANG X, et al., 2020. Effects of different types of biological soil crust on soil organic carbon mineralization in the southeast edge of Tengger Desert[J]. Journal of Ecology, 40(5): 1580-1589. | |
[139] | 刘太坤, 高班, 谢作明, 等, 2022. 人工藻结皮对河套平原盐碱土理化性质和酶活性的影响[J]. 水土保持研究, 29(4): 133-139. |
LIU T K, GAO B, XIE Z M, et al., 2022. Effects of artificial algae crust on the physicochemical properties and enzyme activity of saline alkali soil in the Hetao Plain[J]. Soil and Water Conservation Research, 29(4): 133-139. | |
[140] | 龙菲平, 迟庆雷, 2022. 微藻生物固碳技术研究和应用情况[J]. 智能建筑与智慧城市 (4): 126-129. |
LONG F P, CHI Q L, 2022. Research and application of microalgae biological carbon fixation technology[J]. Intelligent Buildings and Smart Cities (4): 126-129. | |
[141] | 麻云霞, 李钢铁, 郭欣宇, 等, 2022. 干旱沙漠地区防止微型生物结皮截流降水下渗的方法[P]. 内蒙古自治区:CN111567175B. |
MA Y X, LI G, GUO X Y, et al., 2022. Methods for preventing precipitation infiltration of micro biological crust interception in arid desert areas[P]. Inner Mongolia: CN111567175B. | |
[142] |
麻云霞, 王月林, 李钢铁, 等, 2019. 生物地毯治沙工程——生物结皮现状的研究进展[J]. 草地学报, 27(3): 531-538.
DOI |
MA Y X, WANG Y L, LI G G, et al., 2019. Biological carpet desertification control project-research progress on the current status of biological crust[J]. Journal of Grassland, 27(3): 531-538. | |
[143] | 饶本强, 刘永定, 2011b. 荒漠生态系统中的先行者——荒漠藻类[J]. 生物学通报, 46(5): 7-10. |
RAO B Q, LIU Y D, 2011b. Pioneers in desert ecosystems -Desert algae[J]. Biology Bulletin, 46(5): 7-10. | |
[144] | 饶本强, 吴沛沛, 李敦海, 等, 2011a. 低温驯化和外源糖对爪哇伪枝藻冷胁迫的影响[J]. 生态科学, 30(2): 128-134. |
RAO B Q, WU P P, LI D H, et al., 2011a. The effects of low-temperature domestication and exogenous sugars on cold stress in Scytonema javanicum[J]. Ecological Science, 30(2): 128-134. | |
[145] | 苏延桂, 李新荣, 赵昕, 等, 2011. 紫外辐射增强对不同发育阶段荒漠藻结皮光合作用的影响[J]. 中国沙漠, 31(4): 889-893. |
SU Y G, LI X R, ZHAO X, et al., 2011. The effect of enhanced ultraviolet radiation on the photosynthesis of desert algal crusts at different developmental stages[J]. Desert of China, 31(4): 889-893. | |
[146] | 王伟波, 饶本强, 沈银武, 等, 2010. 几种固沙荒漠藻的温度适应性[J]. 水生生物学报, 34(3): 489-494. |
WANG W B, RAO B Q, SHEN Y W, et al., 2010. Temperature adaptability of several sand fixing desert algae[J]. Journal of Aquatic Biology, 34(3): 489-494. | |
[147] | 魏江春, 2005. 沙漠生物地毯工程——干旱沙漠治理的新途径[J]. 干旱区研究, 22(3): 287-288. |
WEI J C, 2005. Desert biological carpet project: A new approach to drought desert management[J]. Arid Area Research, 22(3): 287-288. | |
[148] | 夏奡, 叶文帆, 富经纬, 等, 2020. 燃煤烟气微藻固碳减排技术现状与展望[J]. 煤炭科学技术, 48(1): 108-119. |
XIA Y, YE W F, FU J W, et al., 2020. Current status and prospects of carbon fixation and emission reduction technology by microalgae in coal fired flue gas[J]. Coal Science and Technology, 48(1): 108-119. | |
[149] | 谢作明, 2006. 荒漠藻类对紫外辐射的响应及其结皮形成的研究[D]. 武汉: 中国科学院研究生院 (水生生物研究所). |
XIE Z M, 2006. Research on the response of desert algae to ultraviolet radiation and their crust formation[D]. Wuhan: Graduate School of Chinese Academy of Sciences (Institute of Hydrobiology). | |
[150] | 徐嘉男, 2018. 耐盐碱水高效固碳微藻种选育[D]. 青岛: 青岛科技大学. |
XU J N, 2018. Breeding of efficient carbon fixation microalgae species resistant to saline alkali water[D]. Qingdao: Qingdao University of Science and Technology. | |
[151] | 徐连满, 秦志娇, 郝喆, 等, 2020. 基质改良对铁尾矿藻类结皮性能影响的试验研究[J]. 安全与环境学报, 20(6): 2440-2449. |
XU L M, QIN Z J, HAO Z, et al., 2020. Experimental study on the effect of matrix improvement on the algal crusting performance of iron tailings[J]. Journal of Safety and Environment, 20(6): 2440-2449. | |
[152] | 杨红, 2015. 具鞘微鞘藻对干旱胁迫的响应机理[D]. 武汉: 武汉理工大学. |
YANG H, 2015. Response mechanism of Microcoleus vaginatus to drought stress[D]. Wuhan: Wuhan University of Technology. | |
[153] |
岳艳鹏, 成龙, 孙迎涛, 等, 2022. 毛乌素沙地生物结皮覆盖区土壤水分收支变化特征[J]. 应用生态学报, 33(7): 1861-1870.
DOI |
YUE Y P, JACKIE C, SUN Y T, et al., 2022. Characteristics of soil water budget changes in biological crust covered areas of Maowusu sandy land[J]. Journal of Applied Ecology, 33(7): 1861-1870. | |
[154] | 周素航, 徐连满, 郝喆, 等, 2019. 藻类结皮改良尾矿基质的实验研究[J]. 环境科学导刊, 38(1): 52-57. |
ZHOU S H, XU L M, HAO Z, et al., 2019. Experimental study on improving tailings matrix with algae crust[J]. Environmental Science Journal, 38(1): 52-57.
DOI URL |
[1] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[2] | 易浪, 孙颖, 尹少华, 魏晓. 生态安全格局构建:概念、框架与展望[J]. 生态环境学报, 2022, 31(4): 845-856. |
[3] | 梁嘉伟, 余炜敏, 姚钰玲, 胡绮琪, 陆丹绵, 王荣萍, 廖新荣, 黄赛花. 生物有机肥对土壤质量及蔬菜产量的影响[J]. 生态环境学报, 2022, 31(3): 497-503. |
[4] | 丁洪, 余居华, 郑祥洲, 张玉树, 钟云峰. 中国城市污泥应用对作物产量、品质和土壤质量的影响[J]. 生态环境学报, 2021, 30(9): 1933-1942. |
[5] | 王丽霞, 史园莉, 张宏伟, 毕晓玲, 申文明, 马万栋. 2000—2020年北方农牧交错区植被生态功能变化及驱动因子分析[J]. 生态环境学报, 2021, 30(10): 1990-1998. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||