生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 1-11.DOI: 10.16258/j.cnki.1674-5906.2024.01.001
• 研究论文 •
下一篇
马媛1,2(), 田路露1,2, 吕杰3,*(
), 柳沛1,2, 张旭4, 李二阳1,2, 张清航1,2
收稿日期:
2023-07-10
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
*吕杰。E-mail: xdlvjie163@163.com作者简介:
马媛(1977年生),女,副教授,主要从事土壤微生物方面的研究。E-mail: xjmyuan@sina.com
基金资助:
MA Yuan1,2(), TIAN Lulu1,2, LÜ Jie3,*(
), LIU Pei1,2, ZHANG Xu4, LI Eryang1,2, ZHANG Qinghang1,2
Received:
2023-07-10
Online:
2024-01-18
Published:
2024-03-19
摘要:
土壤微生物是维持森林生态系统平衡与土壤养分的一个重要因素。雪岭云杉林是天山重要的生态屏障和珍贵生物资源,其生态系统的固碳能力持续提升。研究雪岭云杉森林土壤微生物群落特征及微生物与土壤养分之间的互作关系,对维持雪岭云杉森林生态系统质量,促进雪岭云杉森林生态系统可持续发展至关重要。以天山北坡雪岭云杉林表层土为研究对象,利用宏基因组技术,探究天山北坡雪岭云杉林土壤微生物群落组成和多样性及其影响因素。结果表明,天山北坡雪岭云杉林土壤微生物群落特征表现为细菌相对丰度82.5%,真菌1.3%,古菌0.5%,其他15.7%。细菌Alpha多样性在中东部和西部之间有显著性差异;古菌Beta多样性在中部与西部存在显著差异,且中部和东部之间极显著;细菌Beta多样性在3个区域之间均有显著差异,其中西部与东部极显著;真菌Beta多样性仅中部与东部存在极显著差异。古菌多样性主要受有机碳、总氮、pH和土壤湿度的影响;细菌多样性主要受氮素、pH、年均降水量和年均摄氏温度的影响;真菌群落多样性主要受微生物碳和年均摄氏温度的影响。综上说明,土壤因素和水热条件在天山北坡雪岭云杉林土壤微生物群落分布中起主要控制作用,其中pH值和年均摄氏温度是微生物类群空间分异的主导因素。该研究探讨了环境因子对雪岭云杉林土壤微生物分布的调控作用,为今后森林的经营和可持续发展提供依据。
中图分类号:
马媛, 田路露, 吕杰, 柳沛, 张旭, 李二阳, 张清航. 天山北坡雪岭云杉森林土壤微生物群落及影响因素研究[J]. 生态环境学报, 2024, 33(1): 1-11.
MA Yuan, TIAN Lulu, LÜ Jie, LIU Pei, ZHANG Xu, LI Eryang, ZHANG Qinghang. Soil Microbial Communities and Influencing Factors of Picea schrenkiana Forest on the Northern Slope of Tianshan Mountains[J]. Ecology and Environment, 2024, 33(1): 1-11.
图1 天山北坡雪岭云杉森林土样点位置示意图 各样点高程: TKS, 1851 m; ZS, 2083 m; YZ, 1760 m; GZG, 1620 m; S303, 1990 m; YW, 2497 m; ML, 2241 m; BLK, 2103 m; JMS, 1918 m; QT, 1776 m; HXG, 1556 m; QRM, 2287 m
Figure 1 Schematic diagram of soil sample locations in the P. schrenkiana forest on the north slope of Tianshan Mountains
图2 天山北坡雪岭云杉森林环境因子差异分析 图中不同小写字母表示不同区域之间有显著差异(P<0.05); 有机碳质量分数、全氮质量分数、全磷质量分数、全钾质量分数、硝态氮质量分数、铵态氮质量分数、微生物碳质量分数、微生物氮质量分数单位均为g?kg?1; 年均降水量单位为mm; 年均摄氏温度单位为℃; 土壤湿度单位为m3?m?3
Figure 2 Difference analysis of environmental factors of P. schrenkiana forest on the northern slope of Tianshan Mountains
图3 天山山脉雪岭云杉林下土壤中古菌门、细菌门和真菌门相对丰度 Others表示图中除图例显示类群之外的其他所有类群相对丰度之和
Figure 3 The relative abundance of archaea, bacteria and fungi in P. schrenkiana forest soils on the northern slope of Tianshan Mountains
图4 天山雪岭云杉林下土中微生物属水平相对丰度热图 图中不同小写字母表示不同区域之间有显著差异(P<0.05)
Figure 4 Heatmap of relative abundance of microbial genera in P. schrenkiana forest soils of Tianshan Mountains
类群 | 区域 | Richness指数 | Chao1指数 | ACE指数 | Pielou指数 | Shannon 指数 | Simpson指数 |
---|---|---|---|---|---|---|---|
古菌 | TW | 770.6±37.04b | 981.95±55.62a | 1014.05±64.84a | 0.79±0.01a | 5.26±0.06a | 0.99±0a |
TM | 823.33±57.17a | 1045.4±97a | 1080.66±100.45a | 0.78±0.02a | 5.24±0.07a | 0.99±0a | |
TE | 781.44±45.16ab | 1003.05±53.68a | 1044.69±49.08a | 0.79±0.01a | 5.25±0.03a | 0.99±0a | |
细菌 | TW | 14010.93±352.42a | 16000.54±592.88a | 16049.53±618.06a | 0.80±0.01b | 7.68±0.10b | 1±0b |
TM | 14386.42±525.86a | 16654.17±916.42a | 16715.64±945.73a | 0.81±0.01a | 7.79±0.08a | 1±0a | |
TE | 14227.89±421.68a | 16360.28±432.21a | 16404.91±462.63a | 0.81±0.01ab | 7.72±0.08ab | 1±0a | |
真菌 | TW | 1599.33±199.69b | 2409.73±510.61b | 2559.33±578.9b | 0.79±0.05a | 5.84±0.32a | 0.99±0.02a |
TM | 1848±258.26a | 3010.62±587.34a | 3271.16±739.05a | 0.79±0.01a | 5.95±0.02a | 1±0a | |
TE | 1818.89±314.98ab | 2759.54±561.59ab | 2924.43±631.94ab | 0.79±0.03a | 5.93±0.1a | 1±0a |
表1 天山山脉雪岭云杉林下土壤微生物Alpha多样性
Table 1 Soil microbial alpha diversity under P. schrenkiana forest on the northern slope of Tianshan Mountains
类群 | 区域 | Richness指数 | Chao1指数 | ACE指数 | Pielou指数 | Shannon 指数 | Simpson指数 |
---|---|---|---|---|---|---|---|
古菌 | TW | 770.6±37.04b | 981.95±55.62a | 1014.05±64.84a | 0.79±0.01a | 5.26±0.06a | 0.99±0a |
TM | 823.33±57.17a | 1045.4±97a | 1080.66±100.45a | 0.78±0.02a | 5.24±0.07a | 0.99±0a | |
TE | 781.44±45.16ab | 1003.05±53.68a | 1044.69±49.08a | 0.79±0.01a | 5.25±0.03a | 0.99±0a | |
细菌 | TW | 14010.93±352.42a | 16000.54±592.88a | 16049.53±618.06a | 0.80±0.01b | 7.68±0.10b | 1±0b |
TM | 14386.42±525.86a | 16654.17±916.42a | 16715.64±945.73a | 0.81±0.01a | 7.79±0.08a | 1±0a | |
TE | 14227.89±421.68a | 16360.28±432.21a | 16404.91±462.63a | 0.81±0.01ab | 7.72±0.08ab | 1±0a | |
真菌 | TW | 1599.33±199.69b | 2409.73±510.61b | 2559.33±578.9b | 0.79±0.05a | 5.84±0.32a | 0.99±0.02a |
TM | 1848±258.26a | 3010.62±587.34a | 3271.16±739.05a | 0.79±0.01a | 5.95±0.02a | 1±0a | |
TE | 1818.89±314.98ab | 2759.54±561.59ab | 2924.43±631.94ab | 0.79±0.03a | 5.93±0.1a | 1±0a |
图5 不同区域天山山脉雪岭云杉林下土壤微生物群落结构主坐标分析
Figure 5 Principal coordinate analysis of soil microbial community structure in P. schrenkiana forest on the northern slopes of Tianshan Mountains in different regions
图6 天山雪岭云杉林下土壤微生物群落结构与环境因子相关性分析
Figure 6 Correlation analysis between soil microbial community structure and environmental factors of P. schrenkiana forest soils in Tianshan Mountains
类群 | 多样性指数 | 有机碳 | 总氮 | 总磷 | 总钾 | 硝态氮 | 铵态氮 | 微生物碳 | 微生物氮 | pH | 年均降水量 | 年均摄氏温度 | 土壤湿度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
古菌 | Richness | −0.450** 2) | −0.377* | −0.157 | 0.149 | −0.180 | −0.196 | −0.173 | −0.135 | 0.085 | −0.079 | −0.236 | −0.028 |
Chao1 | −0.301 | −0.258 | −0.322 | 0.193 | −0.050 | −0.126 | −0.079 | −0.018 | 0.289 | 0.078 | −0.094 | 0.198 | |
ACE | −0.336* 1) | −0.433** | −0.245 | 0.081 | −0.156 | −0.081 | −0.215 | −0.179 | 0.225 | −0.105 | −0.296 | 0.081 | |
Shannon | −0.033 | 0.172 | 0.225 | −0.003 | 0.038 | −0.053 | −0.066 | 0.172 | −0.648*** 3) | −0.061 | 0.032 | −0.372* | |
Simpson | 0.054 | 0.252 | 0.172 | 0.082 | 0.069 | −0.040 | 0.095 | 0.170 | −0.371* | −0.196 | 0.139 | −0.413* | |
Pielou | 0.125 | 0.286 | 0.258 | −0.056 | 0.097 | 0.019 | −0.001 | 0.203 | −0.617*** | −0.030 | 0.109 | −0.330* | |
细菌 | Richness | −0.150 | −0.054 | 0.340* | −0.147 | −0.167 | −0.038 | 0.037 | 0.022 | −0.256 | −0.055 | −0.585*** | 0.068 |
Chao1 | −0.176 | −0.125 | 0.213 | −0.012 | −0.122 | −0.111 | 0.086 | 0.002 | −0.016 | −0.031 | −0.535*** | 0.189 | |
ACE | −0.178 | −0.096 | 0.252 | −0.045 | −0.143 | −0.106 | 0.088 | 0.012 | −0.067 | −0.041 | −0.547*** | 0.146 | |
Shannon | −0.300 | −0.359* | 0.055 | −0.142 | −0.349* | 0.009 | −0.243 | −0.278 | −0.002 | −0.308 | −0.377* | −0.253 | |
Simpson | −0.099 | −0.360* | −0.127 | −0.061 | −0.348* | 0.158 | −0.050 | −0.518** | 0.534*** | −0.393* | −0.137 | −0.084 | |
Pielou | −0.299 | −0.386* | −0.016 | −0.125 | −0.350* | 0.019 | −0.279 | −0.314 | 0.056 | −0.330* | −0.286 | −0.296 | |
真菌 | Richness | −0.169 | 0.124 | 0.202 | 0.218 | 0.109 | −0.326 | 0.429** | 0.255 | 0.213 | −0.159 | −0.540*** | 0.226 |
Chao1 | −0.285 | −0.027 | 0.125 | 0.157 | −0.019 | −0.300 | 0.292 | 0.179 | 0.200 | −0.122 | −0.546*** | 0.239 | |
ACE | −0.256 | −0.049 | 0.128 | 0.110 | −0.054 | −0.257 | 0.265 | 0.155 | 0.193 | −0.108 | −0.544*** | 0.245 | |
Shannon | 0.024 | −0.045 | 0.088 | 0.052 | 0.032 | −0.167 | −0.009 | 0.080 | −0.093 | −0.125 | −0.418* | −0.127 | |
Simpson | 0.013 | −0.027 | 0.094 | 0.090 | 0.026 | −0.178 | 0.025 | 0.095 | −0.058 | −0.130 | −0.362* | −0.135 | |
Pielou | 0.098 | −0.089 | 0.000 | −0.032 | −0.014 | −0.032 | −0.188 | −0.021 | −0.189 | −0.054 | −0.172 | −0.229 |
表2 土壤微生物多样性指数与环境因子的相关系数
Table 2 Correlation coefficients between soil microbial diversity index and environmental factors
类群 | 多样性指数 | 有机碳 | 总氮 | 总磷 | 总钾 | 硝态氮 | 铵态氮 | 微生物碳 | 微生物氮 | pH | 年均降水量 | 年均摄氏温度 | 土壤湿度 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
古菌 | Richness | −0.450** 2) | −0.377* | −0.157 | 0.149 | −0.180 | −0.196 | −0.173 | −0.135 | 0.085 | −0.079 | −0.236 | −0.028 |
Chao1 | −0.301 | −0.258 | −0.322 | 0.193 | −0.050 | −0.126 | −0.079 | −0.018 | 0.289 | 0.078 | −0.094 | 0.198 | |
ACE | −0.336* 1) | −0.433** | −0.245 | 0.081 | −0.156 | −0.081 | −0.215 | −0.179 | 0.225 | −0.105 | −0.296 | 0.081 | |
Shannon | −0.033 | 0.172 | 0.225 | −0.003 | 0.038 | −0.053 | −0.066 | 0.172 | −0.648*** 3) | −0.061 | 0.032 | −0.372* | |
Simpson | 0.054 | 0.252 | 0.172 | 0.082 | 0.069 | −0.040 | 0.095 | 0.170 | −0.371* | −0.196 | 0.139 | −0.413* | |
Pielou | 0.125 | 0.286 | 0.258 | −0.056 | 0.097 | 0.019 | −0.001 | 0.203 | −0.617*** | −0.030 | 0.109 | −0.330* | |
细菌 | Richness | −0.150 | −0.054 | 0.340* | −0.147 | −0.167 | −0.038 | 0.037 | 0.022 | −0.256 | −0.055 | −0.585*** | 0.068 |
Chao1 | −0.176 | −0.125 | 0.213 | −0.012 | −0.122 | −0.111 | 0.086 | 0.002 | −0.016 | −0.031 | −0.535*** | 0.189 | |
ACE | −0.178 | −0.096 | 0.252 | −0.045 | −0.143 | −0.106 | 0.088 | 0.012 | −0.067 | −0.041 | −0.547*** | 0.146 | |
Shannon | −0.300 | −0.359* | 0.055 | −0.142 | −0.349* | 0.009 | −0.243 | −0.278 | −0.002 | −0.308 | −0.377* | −0.253 | |
Simpson | −0.099 | −0.360* | −0.127 | −0.061 | −0.348* | 0.158 | −0.050 | −0.518** | 0.534*** | −0.393* | −0.137 | −0.084 | |
Pielou | −0.299 | −0.386* | −0.016 | −0.125 | −0.350* | 0.019 | −0.279 | −0.314 | 0.056 | −0.330* | −0.286 | −0.296 | |
真菌 | Richness | −0.169 | 0.124 | 0.202 | 0.218 | 0.109 | −0.326 | 0.429** | 0.255 | 0.213 | −0.159 | −0.540*** | 0.226 |
Chao1 | −0.285 | −0.027 | 0.125 | 0.157 | −0.019 | −0.300 | 0.292 | 0.179 | 0.200 | −0.122 | −0.546*** | 0.239 | |
ACE | −0.256 | −0.049 | 0.128 | 0.110 | −0.054 | −0.257 | 0.265 | 0.155 | 0.193 | −0.108 | −0.544*** | 0.245 | |
Shannon | 0.024 | −0.045 | 0.088 | 0.052 | 0.032 | −0.167 | −0.009 | 0.080 | −0.093 | −0.125 | −0.418* | −0.127 | |
Simpson | 0.013 | −0.027 | 0.094 | 0.090 | 0.026 | −0.178 | 0.025 | 0.095 | −0.058 | −0.130 | −0.362* | −0.135 | |
Pielou | 0.098 | −0.089 | 0.000 | −0.032 | −0.014 | −0.032 | −0.188 | −0.021 | −0.189 | −0.054 | −0.172 | −0.229 |
[1] |
BARDGETT R D, VAN DER PUTTEN W H, 2013. Belowground biodiversity and ecosystem functioning[J]. Nature, 515(7528): 505-511.
DOI |
[2] |
BUEE M, REICH M, MURAT C, et al., 2009. Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity[J]. New Phytologist, 184(2): 449-456.
DOI URL |
[3] |
EDWARDS K A, MCCULLOCH J, KERSHAW G P, et al., 2006. Soil microbial and nutrient dynamics in a wet arctic sedge meadow in latewinter and early spring[J]. Soil Biology and Biochemistry, 38(9): 2843-2851.
DOI URL |
[4] |
GREEN J L, HOLMES A J, WESTOBY M, et al., 2004. Spatial scaling of microbial eukaryote diversity[J]. Nature, 432(7018): 747-750.
DOI |
[5] |
JENKINSON D S, POWLSON D S, 1976. The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass[J]. Soil Biology and Biochemistry, 8(3): 179-188.
DOI URL |
[6] |
JONES D L, WILLETT V B, 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology & Biochemistry. 38(5): 991-999.
DOI URL |
[7] |
KACHURINA O M, ZHANG H L, RAUN W R, et al., 2000. Simultaneous determination of soil aluminum, ammonium‐ and nitrate‐nitrogen using 1 M potassium chloride extraction[J]. Communications in Soil Science and Plant Analysis. 31(7-8): 893-903.
DOI URL |
[8] |
LI J Q, ZHU T, SINGH B K, et al., 2021. Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems[J]. Science Bulletin, 66(19): 2036-2044.
DOI PMID |
[9] |
NACHIMUTHU G, KING K, KRISTIANSEN P, et al., 2007. Comparison of methods for measuring soil microbial activity using cotton strips and a respirometer[J]. Journal of Microbiological Methods, 69(2): 322-329.
PMID |
[10] |
PREEM J K, TRUU J, TRUU M, et al., 2012. Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories[J]. Ecological Engineering, 49: 10-17.
DOI URL |
[11] |
SICILIANO S D, PALMERA S, WINSLEY T, et al., 2014. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities[J]. Soil Biology and Biochemistry, 78: 10-20.
DOI URL |
[12] |
TAN H, BARRET M, MOOIJ M J, et al., 2013. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils[J]. Biology and Fertility of Soils, 49(6): 661-672.
DOI URL |
[13] | WOOD D E, SALZBERG S L, 2014. Kraken: Ultrafast metagenomic sequence classification using exact alignments[J]. Genome Biology, 15(3): 1-12. |
[14] |
WU L W, ZHANG Y, GUO X, et al., 2022. Reduction of microbial diversity in grassland soil is driven by long-term climate warming[J]. Nature Microbiology, 7(7): 1054-1062.
DOI PMID |
[15] |
XIA Z W, BAI E, WANG Q K, et al., 2016. Biogeographic distribution patterns of bacteria in typical Chinese forest soils[J]. Frontiers in Microbiology, 7: 1106.
DOI PMID |
[16] |
ZHANG B P, ZHOU C H, CHAN S P, 2003. The geo-info-spectrum of montane altitudinal belts in China[J]. Acta Geographica Sinica, 58(2): 163-171.
DOI |
[17] | 陈曦, 许文强, 罗格平, 等, 2008. 天山北坡不同环境条件下雪岭云杉 (Picea schrenkiana) 林限土壤属性[J]. 生态学报, 28(1): 53-61. |
CHEN X, XU W Q, LUO G P, et al., 2008. Soil properties at the tree limits of Picea schrenkiana forests in response to varying environmental conditions on the northern slope of Tianshan mountains[J]. Acta Ecologica Sinica, 28(1): 53-61. | |
[18] | 陈新, 2019. 季节性雪被下新疆天山雪岭云杉林凋落物分解与土壤微生物的关系[D]. 乌鲁木齐: 新疆大学. |
CHEN X, 2019. Relationship between litter decomposition and soil microbes of Schrenk sprucein forest under seasonal snowfall in Tianshan Mountains[D]. Urumqi: Xinjiang University. | |
[19] | 丛微, 于晶晶, 喻海茫, 等, 2022. 不同气候带森林土壤微生物多样性和群落构建特征[J]. 林业科学, 58(2): 70-79. |
CONG W, YU J J, YU H M, et al., 2022. Diversity and community assembly of forest soil microorganisms in different climatic zones[J]. Scientia Silvae Sinicae, 58(2): 70-79. | |
[20] | 高本强, 齐瑞, 赵阳, 等, 2022. 洮河上游不同海拔紫果云杉根际与非根际土壤细菌多样性及影响因子[J]. 微生物学通报, 49(9): 3604-3616. |
GAO B Q, QI R, ZHAO Y, et al., 2022. Diversity and influencing factors of bacteria in rhizosphere and non-rhizosphere soil of Picea purpurea at different altitudes in the upstream of Taohe River[J]. Microbiology China, 49(9): 3604-3616. | |
[21] | 胡波, 张会兰, 王彬, 等, 2015. 重庆缙云山地区森林土壤酸化特征[J]. 长江流域资源与环境, 24(2): 300-309. |
HU B, ZHANG H L, WANG B, et al., 2015. Analysis on the forest soil acidification and mechanisms in Chongqing Jinyun Mountain[J]. Resources and Environment in the Yangtze Basin, 24(2): 300-309. | |
[22] | 李宝, 常顺利, 孙雪娇, 等, 2022. 天山北坡雪岭云杉森林的蒸腾耗水规律[J]. 西部林业科学, 51(5): 106-112. |
LI B, CHANG S L, SUN X J, et al., 2022. Transpiration and water consumption patterns of Picea schrenkiana forests in northern Tianshan[J]. Journal of West China Forestry Science, 51(5): 106-112. | |
[23] | 罗明, 庞峻峰, 李叙勇, 等, 1997. 新疆天山云杉林区森林土壤微生物学特性及酶活性[J]. 生态学杂志 (1): 27-31. |
LUO M, PANG J F, LI X Y, et al., 1997. Microbiological characteristics and enzymes activity of the forest-soil in Picea schrenkiana var·tianshanican in Xinjiang[J]. Chinese Journal of Ecology (1): 27-31. | |
[24] | 罗庆辉, 徐泽源, 许仲林, 等, 2020. 天山雪岭云杉林生物量估测及空间格局分析[J]. 生态学报, 40(15): 5288-5297. |
LUO Q H, XU Z Y, XU Z L, et al., 2020. Estimation and spatial pattern analysis of biomass of Picea schrenkiana forests[J]. Acta Ecologica Sinica, 40(15): 5288-5297. | |
[25] | 国家林业局, 2015. 森林土壤钾的测定: LY/T 1234—2015[S]. 北京: 中国标准出版社: 1-8. |
State Forestry Administration, 2015, Potassium determination methods of forest soil: LY/T 1234—2015[S]. Beijing: Standards Press of China: 1-8. | |
[26] | 毛克彪, 2021. 中国土壤水分数据集 (2002-2018)[DB/OL]. 北京: 国家青藏高原科学数据中心, [2020-09-26]. https://doi.org/10.5281/zenodo.4738556. |
MAO K B, 2021. Soil Moisture in China dataset (2002-2018)[DB/OL]. Beijing: National Tibetan Plateau Data Center, [2020-09-26]. https://doi.org/10.5281/zenodo.4738556. . | |
[27] | 王瑞琨, 2018. 用电位法测定土壤pH值[J]. 山西化工, 38(3): 64-65, 76. |
WANG R K, 2018. Determination of soil pH by potentiometry[J]. Shanxi Chemical Industry, 38(3): 64-65, 76. | |
[28] | 吴尊凤, 史应武, 娄恺, 等, 2012. 天山北坡垂直自然带土壤古菌多样性分析[J]. 新疆农业科学, 49(3): 488-495. |
WU Z F, SHI Y W, LOU K, et al., 2012. Archaeal diversity along vertical natural belt in the northern slope of Tianshain Mountain[J]. Xinjiang Agricultural Sciences, 49(3): 488-495. | |
[29] | 向仕敏, 陆梅, 徐柳斌, 等, 2008. 5种林分类型林地土壤氮含量与其土壤微生物学性质的研究[J]. 西部林业科学, 37(1): 41-45. |
XIANG S M, LU M, XU L B, et al., 2008. Nitrogen content and microbial characteristics of forest soil of 5 stands[J]. Journal of West China Forestry Science, 37(1): 41-45. | |
[30] | 向晓黎, 马小宁, 魏向利, 等, 2015. 土壤全磷测定方法要点分析[J]. 农业灾害研究, 5(5): 30-31. |
XIANG X L, MA X N, WEI X L, et al., 2015. Analysis of essentials for the determination of soil total phosphorus[J]. Journal of Agricultural Catastrophology, 5(5): 30-31. | |
[31] | 许光辉, 郑洪元, 1986. 土壤微生物分析方法手册[M]. 北京: 农业出版社. |
XU G H, ZHENG H Y, 1986. Methods manual for soil microbiological analysis[M]. Beijing: China Agriculture Press. | |
[32] | 于天仁, 1988. 中国土壤的酸度特点和酸化问题[J]. 土壤通报, 18(2): 49-51. |
YU T R, 1988. Acidity characteristics and acidification problems of soil in China[J]. Chinese Journal of Soil Science, 18(2): 49-51. | |
[33] | 郑拴丽, 2016. 新疆天山雪岭云杉和阿尔泰山西伯利亚落叶松生物量、碳储量及空间分布格局研究[D]. 乌鲁木齐: 新疆大学. |
ZHENG S L, 2016. Research on biomass, carbon storage and spatial distribution of Picea schrenkiana and Larix sibirica in Xinjiang Tianshan and altay mountains[D]. Urumqi: Xinjiang University. | |
[34] | 周虹, 2020. 典型沙区生物土壤结皮微生物群落结构与功能研究[D]. 北京: 中国林业科学研究院. |
ZHOU H, 2020. The microbial community structure and function of biological soil crusts in typical sandland areas[D]. Beijing: Chinese Academy of Forestry. | |
[35] |
周煜杰, 贾夏, 赵永华, 等, 2020. 森林生态系统土壤真菌群落及其影响因素研究进展[J]. 生态环境学报, 29(8): 1703-1712.
DOI |
ZHOU Y J, JIA X, ZHAO Y H, et al., 2020. A review on soil fungal community and its affecting factors in forest ecosystem[J]. Ecology and Environmental Sciences, 29(8): 1703-1712. |
[1] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[2] | 李航, 陈金平, 丁兆华, 舒洋, 魏江生, 赵鹏武, 周梅, 王宇轩, 梁驰昊, 张轶超. 火干扰对兴安落叶松林土壤氮组分及土壤中氮循环功能基因的影响[J]. 生态环境学报, 2023, 32(9): 1563-1573. |
[3] | 房园, 梁中, 张毓涛, 师庆东, 孙雪娇, 李吉玫, 李翔, 董振涛. 天山云杉森林生态系统的水源涵养能力海拔梯度变化特征[J]. 生态环境学报, 2023, 32(9): 1574-1584. |
[4] | 刘晗, 王萍, 孙鲁沅, 秦文婧, 陈晓芬, 陈金, 周国朋, 梁婷, 刘佳, 李燕丽. 种植冬绿肥对红壤幼龄橘园土壤微生物量碳、氮和酶活的影响[J]. 生态环境学报, 2023, 32(9): 1623-1631. |
[5] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[6] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[7] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[8] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[9] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[10] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
[11] | 周佳诚, 宋志斌, 苗芃, 谭路, 唐涛. 柳江不同河网位置大型底栖动物群落特征及其影响因子差异比较研究[J]. 生态环境学报, 2023, 32(10): 1794-1801. |
[12] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[13] | 姜倪皓, 张世浩, 张诗函. 哀牢山紫茎泽兰入侵群落主要物种种间联结及环境解释[J]. 生态环境学报, 2022, 31(7): 1370-1382. |
[14] | 姚付龙, 黄健, 闫俊杰, 刘海军, 唐国乾. 西天山北坡草甸群落表土花粉组合及其生态指示意义[J]. 生态环境学报, 2022, 31(7): 1350-1359. |
[15] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||