生态环境学报 ›› 2023, Vol. 32 ›› Issue (7): 1344-1354.DOI: 10.16258/j.cnki.1674-5906.2023.07.017
• 综述 •
上一篇
朱忆雯1,2(), 尹丹2,3, 胡敏4, 杜衍红2, 洪泽彬2, 程宽2, 于焕云2,*(
)
收稿日期:
2023-03-03
出版日期:
2023-07-18
发布日期:
2023-09-27
通讯作者:
* 于焕云。E-mail: hyyu@soil.gd.cn作者简介:
朱忆雯(1997年生),女,硕士研究生,研究方向为铵态氮耦合砷的机制研究。E-mail: 1730464659@qq.com
基金资助:
ZHU Yiwen1,2(), YIN Dan2,3, HU Min4, DU Yanhong2, HONG Zebin2, CHENG Kuan2, YU Huanyun2,*(
)
Received:
2023-03-03
Online:
2023-07-18
Published:
2023-09-27
摘要:
中国稻田砷污染问题突出。淹水厌氧条件下,五价砷被微生物还原为活性较高的三价砷,易于被水稻吸收积累,从而威胁人类健康。另一方面,水稻生产需要施用大量的氮肥,水稻土中氮素氧化还原活性高,对稻田砷形态转化具有重要影响。文章在系统总结稻田土壤氮循环主要过程及功能微生物特征、稻田干湿交替条件下砷形态转化及相关功能微生物等国内外研究现状的基础上,深入分析了稻田土壤氮循环过程(硝化作用、反硝化作用、厌氧氨氧化、铁氨氧化以及硝酸盐异化还原成铵等)对水稻土砷迁移转化的影响及关键环境因子,总结出硝化和反硝化作用有利于砷的吸附固定;而厌氧氨氧化、铁氨氧化及硝酸盐异化还原成铵,可促进砷的还原释放。此外,反硝化作用可耦合砷脱甲基化过程,从而提高砷的毒性。其中,水稻土中铁氧化还原过程扮演重要角色,其可作为氮循环影响砷迁移转化的桥梁。比如,硝酸盐抑制铁还原有利于砷的吸附;硝酸盐还原耦合亚铁氧化生成氧化铁矿物,促进砷的吸附固定;铁氨氧化促进铁还原有利于吸附态砷的还原释放。基于以上的总结,认为不同氧化还原条件下土壤氮循环过程及其与砷形态转化的耦合机理,水稻土中铁氨氧化反应的主要功能微生物及该过程对砷迁移转化的贡献,以及如何定向调控氮循环耦合砷转化过程,是今后该领域需要关注的重要科学问题和主要发展趋势。以上科学问题的解决,可为稻田砷污染控制技术的研发提供重要理论支撑,同时为稻田合理施氮降低稻米砷风险提供科学依据。
中图分类号:
朱忆雯, 尹丹, 胡敏, 杜衍红, 洪泽彬, 程宽, 于焕云. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 2023, 32(7): 1344-1354.
ZHU Yiwen, YIN Dan, HU Min, DU Yanhong, HONG Zebin, CHENG Kuan, YU Huanyun. Research Progress on Coupling of Nitrogen Cycle and Arsenic Speciation Transformation in Paddy Soil[J]. Ecology and Environment, 2023, 32(7): 1344-1354.
[1] |
BEIYUAN J, AWAD Y M, BECKERS F, et al., 2017. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions[J]. Chemosphere, 178: 110-118.
DOI PMID |
[2] |
BROMAN E, ZILIUS M, SAMUILOVIENE A, et al., 2021. Active DNRA and denitrification in oxic hypereutrophic waters[J]. Water Research, 194: 116954.
DOI URL |
[3] |
BAO X, ZOU J, ZHANG B, et al., 2022. Arbuscular Mycorrhizal Fungi and Microbes Interaction in Rice Mycorrhizosphere[J]. Agronomy, 12(6): 1277.
DOI URL |
[4] |
CHEN C, LI L Y, HUANG K, et al., 2019. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils[J]. The ISME Journal, 13(10): 2523-2535.
DOI |
[5] |
CHEN C, SHEN Y, LI Y H, et al., 2021. Demethylation of the antibiotic methylarsenite is coupled to denitrification in anoxic paddy soil[J]. Environmental Science & Technology, 55(22): 15484-15494.
DOI URL |
[6] |
CHEN C, YANG B Y, GAO A X, et al., 2022. Transformation of arsenic species by diverse endophytic bacteria of rice roots[J]. Environmental Pollution, 309: 119825.
DOI URL |
[7] |
CHEN G N, DU Y H, FANG L P, et al., 2023. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies[J]. Science of The Total Environment, 854: 158801.
DOI URL |
[8] | CHEN X P, ZHU Y G, HONG M N, et al., 2008. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants[J]. Environmental Toxicology and Chemistry: An International Journal, 27(4): 881-887. |
[9] |
CHENG Y, ELRYS A S, MERWAD A-R M, et al., 2022. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium[J]. Environmental Science & Technology, 56(6): 3791-3800.
DOI URL |
[10] |
CLÉMENT J, SHRESTHA J, EHRENFELD J, et al., 2005. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 37(12): 2323-2328.
DOI URL |
[11] |
DAI X L, GUO Q K, SONG D L, et al., 2021. Long-term mineral fertilizer substitution by organic fertilizer and the effect on the abundance and community structure of ammonia-oxidizing archaea and bacteria in paddy soil of south China[J]. European Journal of Soil Biology, 103: 103288.
DOI URL |
[12] |
DE BOER W, KOWALCHUK G A, 2001. Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biology and Biochemistry, 33(7-8): 853-866.
DOI URL |
[13] |
DEVKOTA K P, MANSCHADI A, LAMERS J P A, et al., 2013. Mineral nitrogen dynamics in irrigated rice-wheat system under different irrigation and establishment methods and residue levels in arid drylands of Central Asia[J]. European Journal of Agronomy, 47: 65-76.
DOI URL |
[14] |
DING B J, LUO W Q, QIN Y B, et al., 2020. Effects of the addition of nitrogen and phosphorus on anaerobic ammonium oxidation coupled with iron reduction (Feammox) in the farmland soils[J]. Science of The Total Environment, 737: 139849.
DOI URL |
[15] |
DING B J, ZHANG H, LUO W Q, et al., 2021. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil[J]. Science of the Total Environment, 773: 145601.
DOI URL |
[16] |
DING L J, AN X L, LI S, et al., 2014. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 48(18): 10641-10647.
DOI URL |
[17] |
DIXIT S, HERING J G, 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environmental Science & Technology, 37(18): 4182-4189.
DOI URL |
[18] |
DOMEIGNOZ-HORTA L A, PHILIPPOT L, PEYRARD C, et al., 2018. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils[J]. Global Change Biology, 24(1): 360-370.
DOI URL |
[19] |
DUAN R, LONG X E, TANG Y F, et al., 2018. Effects of different fertilizer application methods on the community of nitrifiers and denitrifiers in a paddy soil[J]. Journal of soils and sediments, 18(1): 24-38.
DOI URL |
[20] |
FRANCIS C A, BEMAN J M, KUYPERS M M, 2007. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. The ISME Journal, 1(1): 19-27.
DOI |
[21] |
GAO Z P, WENG H C, GUO H M, 2021. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. Journal of Hydrology, 595: 125981.
DOI URL |
[22] |
HAN B, MO L Y, FANG Y T, et al., 2021. Rates and microbial communities of denitrification and anammox across coastal tidal flat lands and inland paddy soils in East China[J]. Applied Soil Ecology, 157: 103768.
DOI URL |
[23] |
HASHMI M Z, KANWAL A, PONGPIACHAN S, et al., 2020. Arsenic distribution and metabolism genes abundance in paddy soils from Punjab and Sindh provinces, Pakistan[J]. Arabian Journal of Geosciences, 13(13): 1-10.
DOI |
[24] |
HAYATSU M, KATSUYAMA C, TAGO K, 2021. Overview of recent researches on nitrifying microorganisms in soil[J]. Soil Science and Plant Nutrition, 67(6): 619-632.
DOI URL |
[25] |
HAYATSU M, TAGO K, SAITO M, 2008. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification[J]. Soil Science and Plant Nutrition, 54(1): 33-45.
DOI URL |
[26] |
HERATH I, VITHANAGE M, BUNDSCHUH J, et al., 2016. Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization[J]. Current Pollution Reports, 2(1): 68-89.
DOI URL |
[27] |
HUANG K, CHEN C, ZHANG J, et al., 2016. Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology, 50(12): 6389-6396.
DOI URL |
[28] |
HUANG S, CHEN C, PENG X C, et al., 2016. Environmental factors affecting the presence of acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments[J]. Soil Biology and Biochemistry, 98: 148-158.
DOI URL |
[29] |
HUANG S, JAFFÉ P R, 2015. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 12(3): 769-779.
DOI URL |
[30] |
HUSSAIN M M, BIBI I, NIAZI N K, et al., 2021. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients[J]. Science of the Total Environment, 773: 145040.
DOI URL |
[31] | HUSSAIN M M, BIBI I, SHAHID M, et al., 2019. Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae[J]. Comprehensive Analytical Chemistry, 85: 15-51. |
[32] |
HUSSAIN Q, LIU Y, JIN Z, et al., 2011. Temporal dynamics of ammonia oxidizer (amoA) and denitrifier (nirK) communities in the rhizosphere of a rice ecosystem from Tai Lake region, China[J]. Applied Soil Ecology, 48(2): 210-218.
DOI URL |
[33] |
ISHII S, IKEDA S, MINAMISAWA K, et al., 2011. Nitrogen cycling in rice paddy environments: past achievements and future challenges[J]. Microbes and Environments, 26(4): 282-92.
PMID |
[34] |
ISHII S, YAMAMOTO M, KIKUCHI M, et al., 2009. Microbial Populations Responsive to Denitrification-Inducing Conditions in Rice Paddy Soil, as Revealed by Comparative 16S rRNA Gene Analysis[J]. Applied and Environmental Microbiology, 75(22): 7070-7078.
DOI PMID |
[35] |
ISLAM S, RAHMAN M M, ISLAM M R, et al., 2017. Effect of irrigation and genotypes towards reduction in arsenic load in rice[J]. Science of the Total Environment, 609: 311-318.
DOI URL |
[36] |
JIA Z, CONRAD R, 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 11(7): 1658-71.
DOI PMID |
[37] |
JIANG Z, SHEN X, SHI B, et al., 2022. Arsenic Mobilization and Transformation by Ammonium-Generating Bacteria Isolated from High Arsenic Groundwater in Hetao Plain, China[J]. International Journal of Environmental Research and Public Health, 19(15): 9606.
DOI URL |
[38] |
JONES C M, STRES B, ROSENQUIST M, et al., 2008. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification[J]. Molecular Biology and Evolution, 25(9): 1955-66.
DOI PMID |
[39] |
KO M S, LEE S, KIM K W, 2019. Reductive dissolution and sequestration of arsenic by microbial iron and thiosulfate reduction[J]. Environmental Geochemistry and Health, 41(1): 461-467.
DOI |
[40] |
KUMARATHILAKA P, SENEWEERA S, MEHARG A, et al., 2018. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors[J]. Science of the Total Environment, 642: 485-496.
DOI URL |
[41] |
LI H, SU J Q, YANG X R, et al., 2019. RNA stable isotope probing of potential Feammox population in paddy soil[J]. Environmental Science & Technology, 53(9): 4841-4849.
DOI URL |
[42] |
LI X M, QIAO J T, LI S, et al., 2019. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil[J]. Environmental Science & Technology, 54(4): 2172-2181.
DOI URL |
[43] |
LI Y L, ZHANG Y L, HU J, et al., 2006. Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition[J]. Biology and Fertility of Soils, 43(4): 417-425.
DOI URL |
[44] |
LI Y Y, CHAPMAN S J, NICOL G W, et al., 2018. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 116: 290-301.
DOI URL |
[45] |
LIANG Y Q, WU C F, WEI X M, et al., 2021. Characterization of nirS-and nirK-containing communities and potential denitrification activity in paddy soil from eastern China[J]. Agriculture, Ecosystems & Environment, 319: 107561.
DOI URL |
[46] |
LIN Z J, WANG X, WU X, et al., 2018. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system[J]. Environmental Pollution, 243: 1015-1025.
DOI PMID |
[47] |
LIU L, SHEN R L, ZHAO Z Q, et al., 2022. How different nitrogen fertilizers affect arsenic mobility in paddy soil after straw incorporation?[J]. Journal of Hazardous Materials, 436: 129135.
DOI URL |
[48] | LIU T X, CHEN D D, LI X M, et al., 2019. Microbially mediated coupling of nitrate reduction and Fe (II) oxidation under anoxic conditions[J]. FEMS Microbiology Ecology, 95(4): fiz030. |
[49] |
MA Y H, ZHENG X Y, FANG Y Q, et al., 2020. Autotrophic denitrification in constructed wetlands: Achievements and challenges[J]. Bioresource Technology, 318: 123778.
DOI URL |
[50] |
MATEOS L M, VILLADANGOS A F, ALFONSO G, et al., 2017. The arsenic detoxification system in corynebacteria: basis and application for bioremediation and redox control[J]. Advances in Applied Microbiology, 99: 103-137.
DOI PMID |
[51] |
MESTROT A, FELDMANN J, KRUPP E M, et al., 2011. Field fluxes and speciation of arsines emanating from soils[J]. Environmental Science & Technology, 45(5): 1798-1804.
DOI URL |
[52] |
MIRALLES ROBLEDILLO J M, BERNABEU E, GIANI M, et al., 2021. Distribution of denitrification among haloarchaea: A comprehensive study[J]. Microorganisms, 9(8): 1669.
DOI URL |
[53] |
MORIMOTO S, HAYATSU M, TAKADA HOSHINO Y, et al., 2011. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types[J]. Microbes and Environments, 26(3): 248-53.
PMID |
[54] |
MULDER A, GRAAF A A, ROBERTSON L A, et al., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 16(3): 177-184.
DOI URL |
[55] |
MULLER D, LIEVREMONT D, SIMEONOVA D D, et al., 2003. Arsenite oxidase aox genes from a metal-resistant β-proteobacterium[J]. Journal of Bacteriology, 185(1): 135-141.
DOI URL |
[56] |
NAHAR K, ALI M M, KHANOM A, et al., 2020. Levels of heavy metal concentrations and their effect on net nitrification rates and nitrifying archaea/bacteria in paddy soils of Bangladesh[J]. Applied Soil Ecology, 156: 103697.
DOI URL |
[57] | NOJIRI Y, KANEKO Y, AZEGAMI Y, et al., 2020. Dissimilatory nitrate reduction to ammonium and responsible microbes in japanese rice paddy soil[J]. Microbes and Environments, 35(4): ME20069. |
[58] |
OREMLAND R S, HOEFT S E, SANTINI J M, et al., 2002. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1[J]. Applied and environmental microbiology, 68(10): 4795-4802.
DOI PMID |
[59] |
OREMLAND R S, STOLZ J F, 2005. Arsenic, microbes and contaminated aquifers[J]. Trends Microbiol, 13(2): 45-9.
PMID |
[60] | PANDEY A, SUTER H, HE J Z, et al., 2018. Nitrogen addition decreases dissimilatory nitrate reduction to ammonium in rice paddies[J]. Applied and Environmental Microbiology, 84(17): e00870-18. |
[61] |
PANDEY C B, KUMAR U, KAVIRAJ M, et al., 2020. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems[J]. Science of the Total Environment, 738: 139710.
DOI URL |
[62] |
QIAO J T, LI X M, HU M, et al., 2018. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil[J]. Environmental Science & Technology, 52(1): 61-70.
DOI URL |
[63] |
REN X H, WANG Y, WAN J Q, et al., 2022. The Nitrogen Removal Performance and Functional Bacteria in Heterotrophic Denitrification and Mixotrophic Denitrification Process[J]. Water, 14(22): 3603.
DOI URL |
[64] |
RHINE E D, PHELPS C D, YOUNG L, 2006. Anaerobic arsenite oxidation by novel denitrifying isolates[J]. Environmental Microbiology, 8(5): 899-908.
PMID |
[65] |
ROBERTSON E K, ROBERTS K L, BURDORF L D W, et al., 2016. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary[J]. Limnology and Oceanography, 61(1): 365-381.
DOI URL |
[66] |
ROKONUZZAMAN M D, YE Z, WU C, et al., 2022. Arsenic accumulation in rice: Alternative irrigation regimes produce rice safe from arsenic contamination[J]. Environmental Pollution, 310: 119829.
DOI URL |
[67] |
ROSEN B P, 2002. Biochemistry of arsenic detoxification[J]. FEBS Lett, 529(1): 86-92.
DOI PMID |
[68] |
SAITO T, ISHII S, OTSUKA S, et al., 2008. Identification of novel Betaproteobacteria in a succinate-assimilating population in denitrifying rice paddy soil by using stable isotope probing[J]. Microbes and Environments, 23(3): 192-200.
PMID |
[69] |
SAWAYAMA S, 2006. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 101(1): 70-2.
PMID |
[70] |
SENKO J M, HUANG S, JAFFé P R, 2018. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6[J]. Plos One, 13(4): e0194007.
DOI URL |
[71] |
SENN D B, HEMOND H F, 2002. Nitrate controls on iron and arsenic in an urban lake[J]. Science, 296(5577): 2373-2376.
PMID |
[72] |
SHAHID M, NIAZI N K, DUMAT C, et al., 2018. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan[J]. Environmental pollution, 242(Part A): 307-319.
DOI PMID |
[73] |
SHAN J, YANG P P, SHANG X X, et al., 2018. Anaerobic ammonium oxidation and denitrification in a paddy soil as affected by temperature, pH, organic carbon, and substrates[J]. Biology and Fertility of Soils, 54(3): 341-348.
DOI |
[74] |
SHARMA S, KAUR I, NAGPAL A K, 2021. Contamination of rice crop with potentially toxic elements and associated human health risks-a review[J]. Environmental Science and Pollution Research, 28: 12282-12299.
DOI |
[75] |
SHEN L D, LIU X, WU H S, et al., 2020. Effect of different fertilization regimes on the vertical distribution of anaerobic ammonium oxidation in paddy soils[J]. European Journal of Soil Biology, 99: 103206.
DOI URL |
[76] |
SHUAI W, JAFFE P R, 2019. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 648: 984-992.
DOI URL |
[77] | SLYEMI D, BONNEFOY V, 2012. How prokaryotes deal with arsenic[J]. Environmental Microbiology Reports, 4(6): 571-586. |
[78] |
SMITH R L, KENT D B, REPERT D A, et al., 2017. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer[J]. Geochimica et Cosmochimica Acta, 196: 102-120.
DOI URL |
[79] |
SODA S O, YAMAMURA S, ZHOU H, et al., 2006. Reduction kinetics of As (V) to As (III) by a dissimilatory arsenate-reducing bacterium, Bacillus sp. SF-1[J]. Biotechnology and Bioengineering, 93(4): 812-815.
PMID |
[80] |
TAGO K, ISHII S, NISHIZAWA T, et al., 2011. PPhylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields[J]. Microbes and Environments, 26(1): 30-5.
PMID |
[81] |
UPADHYAY M K, YADAV P, SHUKLA A, et al., 2018. Utilizing the Potential of Microorganisms for Managing Arsenic Contamination: A Feasible and Sustainable Approach[J]. Frontiers in Environmental Science, 6: 24.
DOI URL |
[82] |
VERHOEVEN E, DECOCK C, BARTHEL M, et al., 2018. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system[J]. Soil Biology and Biochemistry, 120: 58-69.
DOI URL |
[83] |
WANG M, TANG Z, CHEN X P, et al., 2019. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains[J]. Environmental Pollution, 247: 736-744.
DOI PMID |
[84] |
WANG P P, BAO P, SUN G X, 2015. Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM[J]. FEMS Microbiol Lett, 362(1): 1-8.
DOI PMID |
[85] |
WANG Y H, LI P, JIANG Z, et al., 2018. Diversity and abundance of arsenic methylating microorganisms in high arsenic groundwater from Hetao Plain of Inner Mongolia, China[J]. Ecotoxicology, 27: 1047-1057.
DOI PMID |
[86] |
WANG Y, LIU X H, SI Y B, et al., 2016. Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria[J]. Chemical Engineering Journal, 295: 29-38.
DOI URL |
[87] |
WENG T N, LIU C W, KAO Y H, et al., 2017. Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater[J]. Science of the Total Environment, 578: 167-185.
DOI URL |
[88] |
WOODS D D, 1938. The reduction of nitrate to ammonia by Clostridium welchii[J]. Biochemical Journal, 32(11): 2000-2012.
PMID |
[89] |
WU Y F, CHAI C W, LI Y N, et al., 2021. Anaerobic As (III) oxidation coupled with nitrate reduction and attenuation of dissolved Arsenic by Noviherbaspirillum Species[J]. ACS Earth and Space Chemistry, 5(8): 2115-2123.
DOI URL |
[90] |
XUE S G, JIANG X X, WU C, et al., 2020. Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system[J]. Environmental Pollution, 260: 114010.
DOI URL |
[91] |
YAMAGUCHI N, NAKAMURA T, DONG D, et al., 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J]. Chemosphere, 83(7): 925-932.
DOI PMID |
[92] |
YANG S, ZHAI W W, TANG X J, et al., 2022. The Effect of Manure Application on Arsenic Mobilization and Methylation in Different Paddy Soils[J]. Bulletin of environmental contamination and toxicology, 108(1): 158-166.
DOI |
[93] |
YANG W H, WEBER K A, SILVER W L, 2012. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 5(8): 538-541.
DOI |
[94] |
YANG X R, LI H, NIE S A, et al., 2015. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China[J]. Applied and Environmental Microbiology, 81(3): 938-47.
DOI URL |
[95] |
YANG X, SHAHEEN S M, WANG J, et al., 2022. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques[J]. Journal of Hazardous Materials, 422: 126808.
DOI URL |
[96] |
YI B, WANG H H, ZHANG Q C, et al., 2019. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China[J]. Science of the Total Environment, 652: 1139-1147.
DOI URL |
[97] |
YOSHINAGA M, CAI Y, ROSEN B P, 2011. Demethylation of methylarsonic acid by a microbial community[J]. Environmental Microbiology, 13(5): 1205-1215.
DOI PMID |
[98] |
ZHANG J, ZHAO S C, XU Y, et al., 2017. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils[J]. Environmental Science & Technology, 51(8): 4377-4386.
DOI URL |
[99] |
ZHANG J, ZHOU W X, LIU B B, et al., 2015. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology, 49(10): 5956-5964.
DOI URL |
[100] |
ZHANG L X, GUAN Y T, JIANG S C, 2021. Investigations of soil autotrophic ammonia oxidizers in farmlands through genetics and big data analysis[J]. Science of The Total Environment, 777: 146091.
DOI URL |
[101] |
ZHANG M M, KOLTON M, HäGGBLOM M M, et al., 2022. Anaerobic ammonium oxidation coupled to arsenate reduction, a novel biogeochemical process observed in arsenic-contaminated paddy soil[J]. Geochimica et Cosmochimica Acta, 335: 11-22.
DOI URL |
[102] |
ZHANG Q, LI Y, HE Y, et al., 2019. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils[J]. Soil Biology and Biochemistry, 131: 229-237.
DOI URL |
[103] |
ZHANG S Y, ZHAO F J, SUN G X, et al., 2015. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China[J]. Environmental Science & Technology, 49(7): 4138-4146.
DOI URL |
[104] |
ZHANG X, YANG Y Q, FU Q L, et al., 2021. Comparing effects of ammonium and nitrate nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system[J]. Journal of Soils and Sediments, 21(7): 2650-2658.
DOI |
[105] |
ZHAO F J, HARRIS E, YAN J, et al., 2013. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice[J]. Environmental Science & Technology, 47(13): 7147-7154.
DOI URL |
[106] |
ZHAO Y Y, LI Q X, CUI Q J, et al., 2022. Nitrogen recovery through fermentative dissimilatory nitrate reduction to ammonium (DNRA): Carbon source comparison and metabolic pathway[J]. Chemical Engineering Journal, 441: 135938.
DOI URL |
[107] |
ZHU G B, WANG S Y, WANG Y, et al., 2011. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. The ISME Journal, 5(12): 1905-12.
DOI |
[108] |
ZHU Y G, XUE X M, KAPPLER A, et al., 2017. Linking genes to microbial biogeochemical cycling: Lessons from arsenic[J]. Environmental Science & Technology, 51(13): 7326-7339.
DOI URL |
[109] | 程宽, 李涵, 杜衍红, 等, 2022. 微生物介导铁还原耦合氨氧化过程的研究进展[J]. 微生物学报, 62(6): 2249-2264. |
CHENG K, LI H, DU Y H, et al., 2022. Microbes-mediated coupling of Fe(Ⅲ) reduction and ammonium oxidation[J]. Acta Microbiologica Sinica, 62(6): 2249-2264. | |
[110] |
刘同旭, 程宽, 陈丹丹, 等, 2019. 微生物介导的硝酸盐还原耦合亚铁氧化成矿研究进展[J]. 生态环境学报, 28(3): 620-628.
DOI |
LIU T X, CHENG K, CHEN D D, et al., 2019. Formation of Fe(Ⅲ)-minerals by microbially mediated coupling of nitrate reduction and Fe(Ⅱ) oxidation: A review[J]. Ecology and Environment Sciences, 28(3): 620-628.
DOI |
|
[111] | 钟松雄, 何宏飞, 陈志良, 等, 2018. 水淹条件下水稻土中砷的生物化学行为研究进展[J]. 土壤学报, 55(1): 1-17. |
ZHONG S X, HE H F, CHEN Z L, et al., 2018. Advancement in study on biochemical behavior of arsenic in flooded paddy soil[J]. Acta Pedologica Sinica, 55(1): 1-17. | |
[112] | 周利, 宋以萍, 周杰民, 等, 2020. 稻田硝酸盐异化还原成铵细菌群落结构的垂向分布特性[J]. 环境科学学报, 40(3): 1029-1039. |
ZHOU L, SONG Y P, ZHOU J M, et al., 2020. Vertical distribution of community composition of dissimilatory nitrate reduction to ammonium bacteria in paddy soils[J]. Acta Scientiae Circumstantiae, 40(3): 1029-1039. | |
[113] | 朱兆良, 2008. 中国土壤氮素研究[J]. 土壤学报, 45(5): 778-783. |
ZHU Z L, 2008. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 45(5): 778-783. |
[1] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[2] | 梁燚彤, 李泽敏, 吴宇伦, 邱光磊, 吴海珍, 韦朝海. 亚硝酸盐对厌氧氨氧化耦合系统的脱氮效能及微生物群落的影响[J]. 生态环境学报, 2023, 32(7): 1275-1284. |
[3] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[4] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[5] | 王馨雨, 高灯州, 刘博林, 王斌, 郑艳玲, 李小飞, 侯立军. 长江口水体化能自养固碳过程的潮周期变化特征及影响因素[J]. 生态环境学报, 2023, 32(4): 733-743. |
[6] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[7] | 张广毅, 张嘉涛, 王晓伟. 湖泊底泥微生物燃料电池中磷形态分布及释放研究[J]. 生态环境学报, 2023, 32(3): 590-598. |
[8] | 阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618. |
[9] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[10] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[11] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[12] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[13] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[14] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
[15] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||