生态环境学报 ›› 2024, Vol. 33 ›› Issue (4): 617-625.DOI: 10.16258/j.cnki.1674-5906.2024.04.012
收稿日期:
2024-03-25
出版日期:
2024-04-18
发布日期:
2024-05-31
通讯作者:
*秦好丽。E-mail: hollyqin@126.com作者简介:
王室苹(1999年生),女(苗族),硕士研究生,主要从事重金属钝化剂研究。E-mail: wang_shiping_apple@163.com
基金资助:
WANG Shiping(), LI Mei, AN Ya, QIN Haoli*(
)
Received:
2024-03-25
Online:
2024-04-18
Published:
2024-05-31
摘要:
近年来研究改性生物炭有效去除水中重金属成为热门,但使用表面络合模型从微观探讨生物炭对镉的吸附机理鲜见报道。通过MgCl2与小麦秸秆生物炭(WB)共热解制备镁改性生物炭(MgWB)。SEM-EDS、FTIR和BET等表征显示镁成功接枝到生物炭,Mg的质量分数增加了3.97%,生物炭表面新增Mg-O峰且-OH、-C-O峰增强,镁改性未改变小麦秸秆的条状管道主体结构但比表面积降低9.94%。293-313 K的等温吸附曲线表明改性前后生物炭的吸附行为均符合Langmuir模型,MgWB在313 K时最大饱和吸附密度(3.50 μmol·m-2)是WB的3.7倍。Boehm滴定实验显示改性使总酸性官能团增加13.4%,其中代表高、中、低亲和型官能团的羟基、内酯基、羧基浓度分别增加4.28%、8.92%和0.178%。电位滴定曲线显示镁改性导致生物炭的pHpzc从9.2降为5.3,不同pH条件下Cd2+的吸附边实验中WB和MgWB吸附率达90%所需pH分别为9和6,结果表明吸附平衡所需pH值与pHpzc有关,且pHpzc的改变会导致生物炭表面位点类型在不同pH条件下的镉吸附差异。利用非静电表面络合模型NEM、以广义复合法进行拟合,最佳参数计算的位点分布曲线显示WB和MgWB的吸附贡献主要为高亲和型位点,该位点与Cd2+的吸附态浓度达到最高值所对应的pH分别为10和7;模型拟合参数pKa和pK≡SOCd+表明镁改性导致生物炭表面官能团的质子化能力降低,与Cd2+的络合能力增强。镁改性可以丰富生物炭表面官能团,通过增加表面位点浓度和降低pHpzc有效改善生物炭对重金属的吸附。本研究在使用非静电表面络合模型拟合中将表面位点类型的吸附贡献与pHpzc结合讨论微观吸附机理,为生物炭-重金属的相互作用提供了一种新的量化手段。
中图分类号:
王室苹, 李梅, 安娅, 秦好丽. 镁改性增强小麦秸秆生物炭对镉的吸附能力:表面络合模型研究[J]. 生态环境学报, 2024, 33(4): 617-625.
WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach[J]. Ecology and Environment, 2024, 33(4): 617-625.
参数 | WB | MgWB |
---|---|---|
比表面积/(m2·g-1) | 56.09 | 50.51 |
孔体积/(cm3·g-1) | 0.11 | 0.13 |
平均孔径/nm | 7.788 | 10.641 |
低亲和型官能团/(mmol·g-1) | 0.041 | 0.042 |
中亲和型官能团/(mmol·g-1) | 0.159 | 0.209 |
高亲和型官能团/(mmol·g-1) | 0.360 | 0.384 |
总酸性官能团/(mmol·g-1) | 0.560 | 0.635 |
表1 生物炭的表面物理和化学参数
Table 1 Surface physical and chemical parameters of biochar
参数 | WB | MgWB |
---|---|---|
比表面积/(m2·g-1) | 56.09 | 50.51 |
孔体积/(cm3·g-1) | 0.11 | 0.13 |
平均孔径/nm | 7.788 | 10.641 |
低亲和型官能团/(mmol·g-1) | 0.041 | 0.042 |
中亲和型官能团/(mmol·g-1) | 0.159 | 0.209 |
高亲和型官能团/(mmol·g-1) | 0.360 | 0.384 |
总酸性官能团/(mmol·g-1) | 0.560 | 0.635 |
热力学模型 | 参数 | WB | MgWB | |||||
---|---|---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 293 K | 303 K | 313 K | |||
Langmuir | KL | 0.002 | 0.002 | 0.003 | 0.001 | 0.001 | 0.002 | |
qm | 0.882 | 0.928 | 0.925 | 2.661 | 3.292 | 3.501 | ||
r2 | 0.995 | 0.996 | 0.994 | 0.998 | 0.997 | 0.995 | ||
Freundlich | KF | 0.027 | 0.044 | 0.058 | 2.517 | 3.205 | 5.087 | |
Nf | 0.441 | 0.401 | 0.357 | 0.501 | 0.494 | 0.449 | ||
r2 | 0.978 | 0.965 | 0.945 | 0.979 | 0.965 | 0.947 |
表2 Cd2+在WB和MgWB的上的吸附等温线参数
Table 2 Isotherm parameters of Cd2+ adsorption on WB and MgWB
热力学模型 | 参数 | WB | MgWB | |||||
---|---|---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 293 K | 303 K | 313 K | |||
Langmuir | KL | 0.002 | 0.002 | 0.003 | 0.001 | 0.001 | 0.002 | |
qm | 0.882 | 0.928 | 0.925 | 2.661 | 3.292 | 3.501 | ||
r2 | 0.995 | 0.996 | 0.994 | 0.998 | 0.997 | 0.995 | ||
Freundlich | KF | 0.027 | 0.044 | 0.058 | 2.517 | 3.205 | 5.087 | |
Nf | 0.441 | 0.401 | 0.357 | 0.501 | 0.494 | 0.449 | ||
r2 | 0.978 | 0.965 | 0.945 | 0.979 | 0.965 | 0.947 |
参数 | 位点类型 | WB | MgWB |
---|---|---|---|
Q/(μmol·m-2) | B1 | 6.42 | 7.61 |
B2 | 2.83 | 4.15 | |
B3 | 0.74 | 0.83 | |
pKa1 | B1 | 9.2 | 3.5 |
B2 | 4.1 | 2.6 | |
B3 | 3.2 | 2.1 | |
pKa2 | B1 | 10.5 | 9.1 |
B2 | 6.5 | 6.8 | |
B3 | 4.5 | 5.8 |
表3 由SCM拟合电位滴定曲线得到的参数
Table 3 Parameters obtained by SCM fitting potentiometric titration curve
参数 | 位点类型 | WB | MgWB |
---|---|---|---|
Q/(μmol·m-2) | B1 | 6.42 | 7.61 |
B2 | 2.83 | 4.15 | |
B3 | 0.74 | 0.83 | |
pKa1 | B1 | 9.2 | 3.5 |
B2 | 4.1 | 2.6 | |
B3 | 3.2 | 2.1 | |
pKa2 | B1 | 10.5 | 9.1 |
B2 | 6.5 | 6.8 | |
B3 | 4.5 | 5.8 |
样品 | c0/ (μmol·L-1) | pK≡SOCd+ | ||
---|---|---|---|---|
B1 | B2 | B3 | ||
WB | 20 | 1.5 | 2.5 | 3 |
200 | 1.9 | 2.8 | 3.5 | |
MgWB | 20 | 1.1 | 2.1 | 2.2 |
200 | 1.5 | 2.2 | 2.5 |
表4 通过SCM拟合得到在生物炭上形成Cd2+配合物的结合常数
Table 4 Binding Constants for the Formation of Cd2+ Complexes on Biochar Obtained through SCM Fitting
样品 | c0/ (μmol·L-1) | pK≡SOCd+ | ||
---|---|---|---|---|
B1 | B2 | B3 | ||
WB | 20 | 1.5 | 2.5 | 3 |
200 | 1.9 | 2.8 | 3.5 | |
MgWB | 20 | 1.1 | 2.1 | 2.2 |
200 | 1.5 | 2.2 | 2.5 |
[1] | AKGUL G, MADEN T B, DIAZ E, et al., 2019. Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43- and Cd2+ from aqueous solutions[J]. Journal of Water Reuse and Desalination, 9(1): 57-66. |
[2] | AL-GHEETHI A A, AZHAR Q M, SENTHIL KUMAR P, et al., 2022. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review[J]. Chemosphere, 287(Part 2): 132080. |
[3] | ALAM M S, GORMAN-LEWIS D, CHEN N, et al., 2018a. Thermodynamic analysis of nickel(II) and zinc(II) adsorption to biochar[J]. Environmental Science & Technology, 52(11): 6246-6255. |
[4] | ALAM M S, GORMAN-LEWIS D, CHEN N, et al., 2018b. Mechanisms of the Removal of U(VI) from Aqueous Solution Using Biochar: A Combined Spectroscopic and Modeling Approach[J]. Environmental Science & Technology, 52(22): 13057-13067. |
[5] | ALAM M S, SWAREN L, VON GUNTEN K, et al., 2018c. Application of surface complexation modeling to trace metals uptake by biochar-amended agricultural soils[J]. Applied Geochemistry, 88(Part A): 103-112. |
[6] | BOEHM H P, 1994. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 32(5): 759-769. |
[7] | CHEN S S, CAO Y, TSANG D C W, et al., 2020. Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization[J]. ACS Sustainable Chemistry & Engineering, 8(18): 6990-7001. |
[8] | DEVI P, SAROHA A K, 2017. Utilization of sludge based adsorbents for the removal of various pollutants: A review[J]. Science of the Total Environment, 578: 16-33. |
[9] | FENG Y Y, LUO Y, HE Q P, et al., 2021. Performance and mechanism of a biochar-based Ca-La composite for the adsorption of phosphate from water[J]. Journal of Environmental Chemical Engineering, 9(3): 105267. |
[10] | FIOL N, VILLAESCUSA I, 2009. Determination of sorbent point zero charge: usefulness in sorption studies[J]. Environmental Chemistry Letters, 7: 79-84. |
[11] | GAO L, LI Z H, YI W M, et al., 2021. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 9(4): 105602. |
[12] | GAO Y, FU X Z, YUE T, et al., 2022. Quantitative analysis of surface adsorption reactivity during flotation process by surface complexation model: diaspore and kaolinite[J]. Minerals Engineering, 183: 107623. |
[13] | GHOSH S, NANDASANA M, WEBSTER T J, et al., 2023. Agrowaste-generated biochar for the sustainable remediation of refractory pollutants[J]. Frontiers in Chemistry, 11: 1266556. |
[14] | HUDCOVá B, FEIN J B, TSANG D C W, et al., 2022. Mg-Fe LDH-coated biochars for metal(loid) removal: Surface complexation modeling and structural change investigations[J]. Chemical Engineering Journal, 432: 134360. |
[15] | KHAN Z H, GAO M L, QIU W W, et al., 2021. Mechanism of novel MoS2-modified biochar composites for removal of cadmium (II) from aqueous solutions[J]. Environmental Science and Pollution Research, 28(26): 34979-34989. |
[16] | KOMÁREK M, KORETSKY C M, STEPHEN K J, et al., 2016. Response to Comment on “Competitive Adsorption of Cd(II), Cr(VI), and Pb(II) onto Nanomaghemite: A Spectroscopic and Modeling Approach”[J]. Environmental Science & Technology, 50(3): 1634-1635. |
[17] | LI A Y, YE C H, JIANG Y H, et al., 2023. Enhanced removal performance of magnesium-modified biochar for cadmium in wastewaters: Role of active functional groups, processes, and mechanisms[J]. Bioresource Technology, 386: 129515. |
[18] | LIN H, YANG D S, ZHANG C H, et al., 2023. Selective removal behavior of lead and cadmium from calcium-rich solution by MgO loaded soybean straw biochars and mechanism analysis[J]. Chemosphere, 319: 138010. |
[19] | LING Y, GU Q Y, JIN B S, 2023. Density functional theory study on the formation mechanism of CaClOH in municipal solid waste incineration fly ash[J]. Environmental Science and Pollution Research, 30: 106514-106532. |
[20] | LIU G N, WANG J, XUE W, et al., 2017. Effect of the size of variable charge soil particles on cadmium accumulation and adsorption[J]. Journal of Soils and Sediments, 17(12): 2810-2821. |
[21] | LIU L N, YANG X Z, AHMAD S, et al., 2023. Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation[J]. Chemical Engineering Journal, 457: 141194. |
[22] | GUO M X, SONG W P, TIAN J, 2020. Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations[J]. Frontiers in Environmental Science, 8: 512512. |
[23] | MOHAN D, SARSWAT A, OK Y S, et al., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review[J]. Bioresource Technology, 160: 191-202. |
[24] | PEI T, SHI F, HOU D F, et al., 2023. Enhanced adsorption of phenol from aqueous solution by KOH combined Fe-Zn bimetallic oxide co-pyrolysis biochar: Fabrication, performance, and mechanism[J]. Bioresource Technology, 388: 129746. |
[25] |
PENG H B, GAO P, CHU G, et al., 2017. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 229: 846-853.
DOI PMID |
[26] |
RAJAPAKSHA A U, CHEN S S, TSANG D C W, et al., 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification[J]. Chemosphere, 148: 276-291.
DOI PMID |
[27] | SEN T K, 2023. Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review[J]. Molecules, 28(14): 5575. |
[28] |
VITHANAGE M, RAJAPAKSHA A U, AHMAD M, et al., 2015. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions[J]. Journal of Environmental Management, 151: 443-449.
DOI PMID |
[29] | WAN S L, WU J Y, ZHOU S S, et al., 2018. Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism[J]. Science of the Total Environment, 616-617: 1298-1306. |
[30] | WANG Y, WANG L, LI Z T, et al., 2021. MgO-laden biochar enhances the immobilization of Cd/Pb in aqueous solution and contaminated soil[J]. Biochar, 3: 175-188. |
[31] | XIONG J, XU J, ZHOU M, et al., 2021b. Quantitative Characterization of the Site Density and the Charged State of Functional Groups on Biochar[J]. ACS Sustainable Chemistry & Engineering, 9(6): 2600-2608. |
[32] | XIONG J, ZHOU M G, QU C C, et al., 2021a. Quantitative analysis of Pb adsorption on sulfhydryl-modified biochar[J]. Biochar, 3: 37-49. |
[33] | YANG K P, CHENG Z Y, LUO W X, et al., 2023. Adsorption performance and mechanisms of MgO-modified palygorskite/biochar composite for aqueous Cd (II): Experiments and theoretical calculation[J]. Applied Surface Science, 638: 157965. |
[34] | ZHANG J Z, HOU D Y, SHEN Z T, et al., 2020a. Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity[J]. Environmental Research, 183: 109152. |
[35] | ZHANG S S, DU Q, SUN Y Q, et al., 2020c. Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb2+ removal[J]. Science of the Total Environment, 720: 137415. |
[36] | ZHANG S P, WANG J X, ZHU S G, et al., 2020b. Effects of MgCl2 and Mg(NO3)2 loading on catalytic pyrolysis of sawdust for bio-oil and MgO-impregnated biochar production[J]. Journal of Analytical and Applied Pyrolysis, 152: 104962. |
[37] | ZHANG Y, VALLEY N, BROZENA A H, et al., 2013. Propagative sidewall alkylcarboxylation that induces red-shifted near-IR photoluminescence in single-walled carbon nanotubes[J]. The Journal of Physical Chemistry Letters, 4(5): 826-830. |
[38] | 刘桐欣, 2018. 共热解法制备ZnCl2改性生物炭及其吸附性能[D]. 石家庄: 河北师范大学. |
LIU T X, 2018. Preparation of ZnCl2-modified biochar by co-pyrolysis and its adsorption performance[D]. Shijiazhuang: Hebei Normal University. | |
[39] | 刘艳, 宋瑞明, 杨阳, 等, 2022. 贵州砂页岩母质黄壤镉吸附及表面络合模型研究[J]. 环境科学研究, 35(7): 1715-1724. |
LIU Y, SONG R M, YANH Y, et al., 2022. Cadmium adsorption and surface complexation model of sand shale yellow soil in Guizhou province[J]. Research of Environmental Sciences, 35(7): 1715-1724. | |
[40] | 刘艳, 2022. 贵州省两种母质黄壤中镉的吸附行为及表面络合模型[D]. 贵阳: 贵州师范大学. |
LIU Y, 2022. Adsorption behavior of cadmium in two types of lateritic soils in Guizhou Province and surface complexation modeling[D]. Guiyang: Guizhou Normal University. | |
[41] | 杨阳, 彭叶棉, 王莹, 等, 2019. 稻田土壤镉的表面络合模型及其生物有效性验证[J]. 科学通报, 64(33): 3449-3457. |
YANG Y, PENG Y J, WANG Y, et al., 2019. Surface complexation model of cadmium in paddy soil and verification of its bioavailability[J]. Science Bulletin, 64(33): 3449-3457. |
[1] | 肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449. |
[2] | 李高帆, 徐文卓, 卫昊明, 晏再生, 尤佳, 江和龙, 黄娟. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261-271. |
[3] | 丛鑫, 曹平, 王晓博. 生物炭负载纳米铁活化过硫酸盐去除土壤中的五氯联苯[J]. 生态环境学报, 2024, 33(2): 282-290. |
[4] | 李丹怡, 黄显婷, 李继超, 李颖洁, 闫家普, 林慰. 氧化石墨烯及其复合材料去除水体抗生素的研究进展[J]. 生态环境学报, 2024, 33(1): 144-155. |
[5] | 李佳蔓, 王晓明, 胡欣蕊, 谢莹莹, 文震. 铁硫比对施氏矿物微观结构及吸附铬性能的影响[J]. 生态环境学报, 2023, 32(8): 1478-1486. |
[6] | 王丽华, 王磊, 许端平, 薛杨. 煤胶体对重金属铜与镉的吸附特征研究[J]. 生态环境学报, 2023, 32(7): 1293-1300. |
[7] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[8] | 李卓轩, 彭自然, 何文辉, 卫瑞璐, 高琳茜. 羊粪炭对水体氮磷吸附条件的响应面优化及吸附机理研究[J]. 生态环境学报, 2023, 32(12): 2216-2227. |
[9] | 苏丹, 罗桥冰, 董昱杉, 杨彩霞, 王鑫. 混合型生物炭对寒冷地区PAHs污染土壤微生物修复的强化作用[J]. 生态环境学报, 2023, 32(11): 1942-1951. |
[10] | 赵丹丹, 李文健, 江丽霞, 单锐, 陈德珍, 袁浩然, 陈勇. 生物炭基光催化剂的制备及其降解废水中的有机污染物研究进展[J]. 生态环境学报, 2023, 32(11): 2019-2029. |
[11] | 周永康, 余圣品, 李佳乐, 董一慧, 王萌, 赵齐灵, 李烨余. 土壤中抗生素的吸附行为与机理研究进展[J]. 生态环境学报, 2023, 32(11): 2072-2082. |
[12] | 侯冬梅, 张兰, 李春成, 陈露童, 王盼盼, 邹建平. 壳聚糖-生物铁锰氧化物去除水体中锑的性能及机理研究[J]. 生态环境学报, 2023, 32(10): 1842-1853. |
[13] | 陈桂红. 硫和硅掺杂生物炭对镉污染土壤的修复研究[J]. 生态环境学报, 2023, 32(10): 1854-1860. |
[14] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[15] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||