生态环境学报 ›› 2024, Vol. 33 ›› Issue (3): 428-438.DOI: 10.16258/j.cnki.1674-5906.2024.03.011
闫兴蕊1,2(), 龚平2,*(
), 王小萍2,4, 商立海3, 李一农2, 毛飞剑2, 牛学锐2,4, 张勃1
收稿日期:
2023-11-20
出版日期:
2024-03-18
发布日期:
2024-05-08
通讯作者:
*龚平。E-mail: gongping@itpcas.ac.cn作者简介:
闫兴蕊(2000年生),女,硕士研究生,研究方向为环境污染与生态风险评价。E-mail: yanxingrui2000@163.com
基金资助:
YAN Xingrui1,2(), GONG Ping2,*(
), WANG Xiaoping2,4, SHANG Lihai3, LI Yinong2, MAO Feijian2, NIU Xuerui2,4, ZHANG Bo1
Received:
2023-11-20
Online:
2024-03-18
Published:
2024-05-08
摘要:
三江源地区是“亚洲水塔”的重要组成部分。该地区复杂的大气环流可能为持久性有机污染物(POPs)的输入提供动力。在采集三江源地区土壤和牧草的基础上,获得该地区有机氯类污染物(OCPs,POPs的一类)的污染水平并进行来源解析,以期对POPs的潜在生态风险进行评估。结果表明,1)三江源地区土壤和牧草中滴滴涕(DDTs)的含量分别为低于检出限 (BDL)-2.32×104 pg∙g−1(平均3003 pg∙g−1)和BDL-2.44×104 pg∙g−1(平均3539 pg∙g−1),高于全球其他高海拔草地地区;而土壤和牧草中六氯苯(HCB)、六六六(HCHs)和多氯联苯(PCBs)的含量则与全球背景水平相当。2)三江源地区的OCPs整体呈现东高西低的空间分布特征。反向气团轨迹显示高含量的OCPs主要来自于三江源以东的地区。此外,人口密集的城镇地区具有相对高的OCPs含量,表明当地的零星地区可能存在OCPs使用/排放史。3)三江源地区土壤和牧草中的OCPs含量与年降水量显著正相关(P值分别小于0.05和0.1),而土壤DDTs与热力学温度的倒数(1/T)线性关系的斜率可达−9×107。降水冲刷和地气交换很可能是大气中OCPs向三江源地区地表介质输入的关键过程。4)三江源地区有机氯污染物在土壤-牧草间的平均生物浓缩系数为11,表明有机氯污染物在牧草中发生了富集。基于定性评价的效应区间低/中值法和危害商法的生态风险评估显示,三江源地区OCPs对生态系统的总体风险较小,但后续研究中仍需关注该地区东部城镇的DDTs生态风险。研究结果可为青藏高原生态环境保护和三江源国家公园建设提供数据支撑。
中图分类号:
闫兴蕊, 龚平, 王小萍, 商立海, 李一农, 毛飞剑, 牛学锐, 张勃. 三江源地区土壤和牧草中的有机氯污染物:分布、来源和生态风险[J]. 生态环境学报, 2024, 33(3): 428-438.
YAN Xingrui, GONG Ping, WANG Xiaoping, SHANG Lihai, LI Yinong, MAO Feijian, NIU Xuerui, ZHANG Bo. Organochlorine Pollutants in Soils and Grasses in the Three-River Headwater Region: Distributions, Sources, and Ecological Risks[J]. Ecology and Environment, 2024, 33(3): 428-438.
图1 主要采样点空间分布图 底图来自于中国科学院资源环境科学与数据中心(DOI号:10.12078/2018062201);三江源边界来自于国家基础地理信息中心(审图号:GS (2016) 2556号);三江源国家公园界线来自于《三江源国家公园整体规划》(国家发展改革委员会, https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201801/W020190905497947574114.pdf)
Figure 1 Geographic location of sampling sites
化合物 | 亨利系数 (Pa∙m3∙mol−1, 298 K) | 蒸汽压/ Pa | 水中溶 解度 (g∙m−3, 298 K) | 辛醇-空气分配系数(logKoa, 298 K) | 辛醇-水分分配系数(logKow, 298 K) |
---|---|---|---|---|---|
α-HCH | 0.55 | 3×10−3 | 1.51 | 7.46 | 3.81 |
β-HCH | 0.036 | 4×10−5 | 0.102 | 8.64 | 3.8 |
γ-HCH | 0.24 | 7.1×10−3 | 7.27 | 7.75 | 3.78 |
p, p′-DDE | 4.2 | 3.4×10−3 | 0.251 | 9.7 | 5.95 |
o, p′DDT | 5.6 | 3.1×10−3 | 8.51×10−2 | 9.45 | − |
p, p′-DDT | 1.1 | 4.8×10−4 | 0.149 | 9.73 | 6.16 |
HCB | 65 | 9.4×10−2 | 4×10−5 | 7.38 | − |
表1 目标污染物的主要理化参数
Table 1 The physicochemical properties of the target OCPs in this study
化合物 | 亨利系数 (Pa∙m3∙mol−1, 298 K) | 蒸汽压/ Pa | 水中溶 解度 (g∙m−3, 298 K) | 辛醇-空气分配系数(logKoa, 298 K) | 辛醇-水分分配系数(logKow, 298 K) |
---|---|---|---|---|---|
α-HCH | 0.55 | 3×10−3 | 1.51 | 7.46 | 3.81 |
β-HCH | 0.036 | 4×10−5 | 0.102 | 8.64 | 3.8 |
γ-HCH | 0.24 | 7.1×10−3 | 7.27 | 7.75 | 3.78 |
p, p′-DDE | 4.2 | 3.4×10−3 | 0.251 | 9.7 | 5.95 |
o, p′DDT | 5.6 | 3.1×10−3 | 8.51×10−2 | 9.45 | − |
p, p′-DDT | 1.1 | 4.8×10−4 | 0.149 | 9.73 | 6.16 |
HCB | 65 | 9.4×10−2 | 4×10−5 | 7.38 | − |
样品类型 | 研究区 | 海拔/m | 采样时间 | w/(pg∙g−1) | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
DDTs | HCHs | HCB | PCBs | |||||
土壤 | 三江源 | 3556‒5296 | 2018 | 3003±4981 (BDL‒2.32×104) | 7.05±21.3 (BDL‒132) | 88.2±62.8 (8.79‒307) | 1.89±4.13 (BDL‒24.6) | 本研究 |
纳木措 | 1920‒5226 | 2013 | 13‒7.7×103 | 64‒847 | 24‒564 | 64‒847 | Wang et al., | |
若尔盖草原 | 1740‒3552 | 2011 | 290‒5.72×103 | 430‒1.06×104 | 230‒2.6×103 | 220‒2.31×103 | Gai et al., | |
珠峰地区 | 4700‒5600 | 2005 | 385-6.1×103 | Wang et al., | ||||
意大利 阿尔卑斯山 | 245‒2600 | 2003 | 2200±3100 (180-1.1×104) | 510±620 (<10-1.88×103) | 240±240 (<20-930) | 1380±450 (610-8.9×103) | Tremolada et al., | |
秘鲁安第斯山 | 3710‒4790 | 2004 | 510±510 (20-1.65×103) | <10 | 20±30 (<20-70) | 80±140 (<10-440) | Tremolada et al., | |
牧草 | 三江源 | 3556‒5296 | 2018 | 3539±6437 (BDL‒2.44×104) | 42.4±147 (BDL‒776) | 545±437 (20.9‒1.6×103) | 41.9±75.3 (BDL‒356) | 本研究 |
纳木措 | 1920‒5226 | 2013 | 233±150 (BDL‒684) | 114±83 (10‒409) | 95±50 (4‒227) | 25±24 (BDL‒172) | Wang et al., | |
若尔盖草原 | 3200‒3600 | 2011 | 2860±1010 (1.6×103‒6×103) | 1380±450 (820‒2.45×103) | 720±220 (400‒1.01×103) | 1180±360 (710‒2.04×103) | Pan et al., | |
珠峰地区 | 4700‒5600 | 2005 | 1.08×103‒7×103 | 386‒8.03×103 | 16‒1.25×103 | Wang et al., | ||
加拿大北部 | 2015‒2016 | 5.8‒13.1 | 57‒218 | BDL‒515 | 277‒680 | Cabrerizo et al., |
表2 本研究及其他高山地区土壤和牧草中OCPs的含量
Table 2 Levels of OCPs in soils and grass in this study and other alpine regions pg?g?1
样品类型 | 研究区 | 海拔/m | 采样时间 | w/(pg∙g−1) | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
DDTs | HCHs | HCB | PCBs | |||||
土壤 | 三江源 | 3556‒5296 | 2018 | 3003±4981 (BDL‒2.32×104) | 7.05±21.3 (BDL‒132) | 88.2±62.8 (8.79‒307) | 1.89±4.13 (BDL‒24.6) | 本研究 |
纳木措 | 1920‒5226 | 2013 | 13‒7.7×103 | 64‒847 | 24‒564 | 64‒847 | Wang et al., | |
若尔盖草原 | 1740‒3552 | 2011 | 290‒5.72×103 | 430‒1.06×104 | 230‒2.6×103 | 220‒2.31×103 | Gai et al., | |
珠峰地区 | 4700‒5600 | 2005 | 385-6.1×103 | Wang et al., | ||||
意大利 阿尔卑斯山 | 245‒2600 | 2003 | 2200±3100 (180-1.1×104) | 510±620 (<10-1.88×103) | 240±240 (<20-930) | 1380±450 (610-8.9×103) | Tremolada et al., | |
秘鲁安第斯山 | 3710‒4790 | 2004 | 510±510 (20-1.65×103) | <10 | 20±30 (<20-70) | 80±140 (<10-440) | Tremolada et al., | |
牧草 | 三江源 | 3556‒5296 | 2018 | 3539±6437 (BDL‒2.44×104) | 42.4±147 (BDL‒776) | 545±437 (20.9‒1.6×103) | 41.9±75.3 (BDL‒356) | 本研究 |
纳木措 | 1920‒5226 | 2013 | 233±150 (BDL‒684) | 114±83 (10‒409) | 95±50 (4‒227) | 25±24 (BDL‒172) | Wang et al., | |
若尔盖草原 | 3200‒3600 | 2011 | 2860±1010 (1.6×103‒6×103) | 1380±450 (820‒2.45×103) | 720±220 (400‒1.01×103) | 1180±360 (710‒2.04×103) | Pan et al., | |
珠峰地区 | 4700‒5600 | 2005 | 1.08×103‒7×103 | 386‒8.03×103 | 16‒1.25×103 | Wang et al., | ||
加拿大北部 | 2015‒2016 | 5.8‒13.1 | 57‒218 | BDL‒515 | 277‒680 | Cabrerizo et al., |
变量组合 | 参数 | DDTs | HCHs | HCB | PCBs |
---|---|---|---|---|---|
土壤含量×经度 | r2 | 0.12**2) | |||
斜率 | 861 | ||||
土壤含量×纬度 | r2 | 0.11** | |||
斜率 | −2104 | ||||
牧草含量×经度 | r2 | 0.31** | 0.12* | 0.2** | |
斜率 | 56.5 | 75.6 | 16.8 | ||
土壤含量×土壤TOC | r2 | 0.27** | |||
斜率 | 12.1 | ||||
土壤含量×1/T | r2 | 0.24** | |||
斜率 | −9×107 | ||||
土壤含量×降水量 | r2 | 0.14** | |||
斜率 | 7.66 | ||||
牧草含量×降水量 | r2 | 0.19* 1) | 0.39** | ||
斜率 | 12.5 | 0.472 | |||
土壤含量×海拔 | r2 | 0.07* | |||
斜率 | −3.97 | ||||
牧草含量×海拔 | r2 | 0.55** | |||
斜率 | −0.632 |
表3 土壤和牧草中OCPs含量与环境因素的相关关系
Table 3 Linear relationships between OCP concentrations in soil/grass and environmental factors
变量组合 | 参数 | DDTs | HCHs | HCB | PCBs |
---|---|---|---|---|---|
土壤含量×经度 | r2 | 0.12**2) | |||
斜率 | 861 | ||||
土壤含量×纬度 | r2 | 0.11** | |||
斜率 | −2104 | ||||
牧草含量×经度 | r2 | 0.31** | 0.12* | 0.2** | |
斜率 | 56.5 | 75.6 | 16.8 | ||
土壤含量×土壤TOC | r2 | 0.27** | |||
斜率 | 12.1 | ||||
土壤含量×1/T | r2 | 0.24** | |||
斜率 | −9×107 | ||||
土壤含量×降水量 | r2 | 0.14** | |||
斜率 | 7.66 | ||||
牧草含量×降水量 | r2 | 0.19* 1) | 0.39** | ||
斜率 | 12.5 | 0.472 | |||
土壤含量×海拔 | r2 | 0.07* | |||
斜率 | −3.97 | ||||
牧草含量×海拔 | r2 | 0.55** | |||
斜率 | −0.632 |
图5 三江源与青藏高原其他地区土壤-牧草的生物浓缩系数值 图中纳木措地区的生物浓缩系数来自于(Wang et al.,2015;谢婷等,2014);青海北部生物浓缩系数来自于(谢婷等,2014);若尔盖草原的生物浓缩系数来自于(Pan et al.,2014;Gai et al.,2014)
Figure 5 The bio-concentration factor values from soil to grass in the TRHR and other regions in the TP
污染物 | 标准值/(ng∙g−1) | 三江源东部 | 三江源中部 | 三江源西部 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERL | ERM | I类*1) | II类 | III类 | I类 | II类 | III类 | I类 | II类 | III类 | ||||
p, p′-DDE | 2.2 | 27 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | |||
DDTs | 1.58 | 46.1 | 33 | 67 | 0 | 77 | 23 | 0 | 88 | 12 | 0 | |||
污染物 | 环境质量标准/(ng∙g−1) | Ihq | Ihq | Ihq | ||||||||||
DDTs | 100 | 0.002‒0.23 | ND** 2)‒0.13 | ND‒0.02 | ||||||||||
HCHs | 100 | ND‒2.7×10−4 | ND‒4.2×10−5 | 1.3×10−5‒1.8×10−4 | ||||||||||
PCBs | 131‒2.79×104 | ND‒2.8×10−6 | ND‒6.3×10−6 | ND‒5.3×10−5 |
表4 三江源地区OCPs的生态风险评估
Table 4 Ecological risk assessment of OCPs in the TRHR
污染物 | 标准值/(ng∙g−1) | 三江源东部 | 三江源中部 | 三江源西部 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERL | ERM | I类*1) | II类 | III类 | I类 | II类 | III类 | I类 | II类 | III类 | ||||
p, p′-DDE | 2.2 | 27 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | |||
DDTs | 1.58 | 46.1 | 33 | 67 | 0 | 77 | 23 | 0 | 88 | 12 | 0 | |||
污染物 | 环境质量标准/(ng∙g−1) | Ihq | Ihq | Ihq | ||||||||||
DDTs | 100 | 0.002‒0.23 | ND** 2)‒0.13 | ND‒0.02 | ||||||||||
HCHs | 100 | ND‒2.7×10−4 | ND‒4.2×10−5 | 1.3×10−5‒1.8×10−4 | ||||||||||
PCBs | 131‒2.79×104 | ND‒2.8×10−6 | ND‒6.3×10−6 | ND‒5.3×10−5 |
[1] |
BARBER J L, SWEETMAN A J, WIJK D V, et al., 2005. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes[J]. Science of The Total Environment, 349(1-3): 1-44.
PMID |
[2] | BECKER S, HALSALL C J, TYCH W, et al., 2012. Changing sources and environmental factors reduce the rates of decline of organochlorine pesticides in the Arctic atmosphere[J]. Atmospheric Chemistry and Physics, 12(9): 4033-4044. |
[3] |
BRAUNE B M, OUTRIDGE P M, FISK A T, et al., 2005. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: An overview of spatial and temporal trends[J]. Science of the Total Environment, 351-352: 4-56.
PMID |
[4] |
CABRERIZO A, MUIR D C G, SILVA A O D, et al., 2018. Legacy and emerging persistent organic pollutants (POPs) in terrestrial compartments in the High Arctic: sorption and secondary sources[J]. Environmental science & technology, 52(24): 14187-14197.
DOI URL |
[5] | Canadian Council of Ministers of the Environment, 1999. Canadian soil quality guidelines for the protection of environmental and human health: ISBN 1-896997-34-1[S]. |
[6] |
CHEN D Z, LIU W J, LIU X D, et al., 2008. Cold-trapping of persistent organic pollutants in mountain soils of Western Sichuan, China[J]. Environmental Science & Technology, 42(24): 9086-9091.
DOI URL |
[7] |
GAI N, PAN J, TANG H, et al., 2014. Organochlorine pesticides and polychlorinated biphenyls in surface soils from Ruoergai high altitude prairie, east edge of Qinghai-Tibet Plateau[J]. Science of the Total Environment, 478: 90-97.
DOI URL |
[8] |
GONG P, WANG X P, LI S H, et al., 2014. Atmospheric transport and accumulation of organochlorine compounds on the southern slopes of the Himalayas, Nepal[J]. Environmental Pollution, 192: 44-51.
DOI PMID |
[9] |
GONG P, WANG X P, POKHREL B, et al., 2019. Trans-Himalayan transport of organochlorine compounds: three-year observations and model-based flux estimation[J]. Environmental Science & Technology, 53(12): 6773-6783.
DOI URL |
[10] |
GONG P, WANG X P, SHENG J J, et al., 2010. Variations of organochlorine pesticides and polychlorinated biphenyls in atmosphere of the Tibetan Plateau: role of the monsoon system[J]. Atmospheric Environment, 44(21-22): 2518-2523.
DOI URL |
[11] |
GONG P, WANG X P, XUE Y G, et al., 2023. Foliar uptake of persistent organic pollutants at alpine treeline[J]. Journal of Hazardous Materials, 453: 131388.
DOI URL |
[12] |
GONG P, WANG X P, XUE Y G, et al., 2015. Influence of atmospheric circulation on the long-range transport of organochlorine pesticides to the western Tibetan Plateau[J]. Atmospheric Research, 166: 157-164.
DOI URL |
[13] |
KANG S C, ZHANG Q G, QIAN Y, et al., 2019. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects[J]. National Science Review, 6(4): 796-809.
DOI URL |
[14] |
LI J, LIN T, QI S H, et al, 2008. Evidence of local emission of organochlorine pesticides in the Tibetan plateau[J]. Atmospheric Environment, 42(32): 7397-7404.
DOI URL |
[15] |
LONG E R, MACDONALD D D, SMITH S L, et al., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J]. Environmental Manage, 19(1): 81-97.
DOI URL |
[16] |
MICHELETTI C, CRITTO A, MARCOMINI A, 2007. Assessment of ecological risk from bioaccumulation of PCDD/Fs and dioxin-like PCBs in a coastal lagoon[J]. Environment International, 33(1): 45-55.
PMID |
[17] |
MUNOZ-ARNANZ J, JIMENEZ B, 2011. New DDT inputs after 30 years of prohibition in Spain. A case study in agricultural soils from south-western Spain[J]. Environmental Pollution, 159(12): 3640-3646.
DOI URL |
[18] |
PAN J, GAI N, TANG H, et al., 2014. Organochlorine pesticides and polychlorinated biphenyls in grass, yak muscle, liver, and milk in Ruoergai high altitude prairie, the eastern edge of Qinghai-Tibet Plateau[J]. Science of the Total Environment, 491-492: 131-137.
DOI URL |
[19] |
QIU X H, ZHU T, JING L, et al, 2004. Organochlorine pesticides in the air around the Taihu Lake, China[J]. Environmental Science & Technology, 38(5): 1368-1374.
DOI URL |
[20] |
REN J, WANG X P, GONG P, et al., 2019, Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: seasonal shift and impact of global warming[J]. Environmental Science & Technology, 53(7): 3589-3598.
DOI URL |
[21] | REN J, WANG X P, WANG C F, et al., 2017a. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms[J]. Environmental Pollution, 220(Part A): 636-643. |
[22] | REN J, WANG X P, WANG C F, et al., 2017b. Atmospheric processes of organic pollutants over a remote lake on the central Tibetan Plateau: implications for regional cycling[J]. Atmospheric Chemistry and Physics, 17(2): 1401-1415. |
[23] |
SHENG J J, WANG X P, GONG P, et al., 2013. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study[J]. Environmental Science & Technology, 47(7): 3199-3208.
DOI URL |
[24] |
TREMOLADA P, VILLA S, BAZZARIN P, et al., 2008. POPs in mountain soils from the Alps and Andes: suggestions for a ‘Precipitation Effect’ on altitudinal gradients[J]. Water Air and Soil Pollution, 188(1-4): 93-109.
DOI URL |
[25] |
WANG C F, WANG X P, YUAN X H, et al., 2015. Organochlorine pesticides and polychlorinated biphenyls in air, grass and yak butter from Namco in the central Tibetan Plateau[J]. Environmental Pollution, 201: 50-57.
DOI PMID |
[26] |
WANG X P, GONG P, WANG C F, et al., 2016a. A review of current knowledge and future respects regarding persistent organic pollutants over the Tibetan Plateau[J]. Science of The Total Environment, 573: 139-154.
DOI URL |
[27] |
WANG X P, GONG P, YAO T D, et al., 2010. Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau[J]. Environmental Science & Technology, 44(8): 2988-2993.
DOI URL |
[28] | WANG X P, REN J, GONG P, et al., 2016b. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study[J]. Atmospheric Chemistry & Physics, 16(11): 6901-6911. |
[29] |
WANG X P, SHENG J J, GONG P, et al., 2012. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air-soil exchange and implications for global cycling[J]. Environmental Pollution, 170: 145-151.
DOI URL |
[30] |
WANG X P, YAO T D, CONG Z Y, et al., 2007. Distribution of persistent organic pollutants in soil and grasses around Mt. Qomolangma, China[J]. Archives of Environmental Contamination and Toxicology, 52(2): 153-162.
PMID |
[31] |
WANIA F, HAUGEN G E, YING D, er al., 1998. Temperature dependence of atmospheric concentrations of semivolatile organic compounds[J]. Environmental Science and Technology, 32(8): 1013-1021.
DOI URL |
[32] |
XIAO H, SHEN L, SU Y S, et al., 2012. Atmospheric concentrations of halogenated flame retardants at two remote locations: the Canadian high Arctic and the Tibetan Plateau[J]. Environmental Pollution, 161: 154-161.
DOI PMID |
[33] | 龚平, 王小萍, 盛久江, 等, 2013. 运用相对组成探针技术研究青藏高原POPs大气传输与来源[J]. 环境科学研究, 26(4): 350-356. |
GONG P, WANG X P, SHENG J J, et al., 2013. Sources and atmospheric transport of POPs in the Tibetan Plateau using relative composition probe[J]. Research of Environmental Sciences, 26(4): 350-356. | |
[34] | 贺福全, 陈懂懂, 李奇, 等, 2020. 三江源高寒草地牧草营养时空分布[J]. 生态学报, 40(18): 6304-6313. |
HE F Q, CHEN D D, LI Q, et al., 2020. Temporal and spatial distribution of herbage nutrition in alpine grassland of Sanjiangyuan[J]. Acta Ecologica Sinica, 40(18): 6304-6313. | |
[35] | 刘敏超, 李迪强, 温琰茂, 2005. 论三江源自然保护区生物多样性保护[J]. 干旱区资源与环境, 19(4): 49-53. |
LIU M C, LI D Q, WEN Y M, 2005. The protection of biological diversity in the Sanjiangyuan nature reserve[J]. Journal of Arid Land Resources and Environment, 19(4): 49-53. | |
[36] | 谢婷, 张淑娟, 杨瑞强, 2014. 青藏高原湖泊流域土壤与牧草中多环芳烃和有机氯农药的污染特征与来源解析[J]. 环境科学, 35(7): 2680-2690. |
XIE T, ZHANG S J, YANG R Q, 2014. Contamination levels and source analysis of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils and grasses from lake catchments in the Tibetan Plateau[J]. Environmental Science, 35(7): 2680-2690. | |
[37] | 张伟玲, 张干, 祁士华, 等, 2003. 西藏错鄂湖和羊卓雍湖水体及沉积物中有机氯农药的初步研究[J]. 地球化学, 32(4): 363-367. |
ZHANG W L, ZHANG G, QI S H, et al., 2003. A preliminary study of organochlorine pesticides in water and sediments from two Tibetan lakes[J]. Geochimica, 32(4): 363-367.
DOI URL |
|
[38] | 中国国家环境保护总局, 2018. 土壤环境质量-农用地土壤污染风险管控标准 (试行):GB 15618—2018 [S]. 北京: 中国环境出版集团. |
PRC State Environmental Protection Administration, 2018. Soil environmental quality-Risk control standard for soil contamination of agricultural land (Trial):GB 15618—2018 [S]. Beijing: China Environmental Publishing Group. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[3] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[4] | 胡习邦, 关晓彤, 谢紫霞, 张修玉. 农用地土壤中邻苯二甲酸二乙基已基酯的污染现状及生态风险评估[J]. 生态环境学报, 2023, 32(12): 2083-2093. |
[5] | 陈敏毅, 宋清梅, 叶权运, 游学睿, 吴颖欣. 华南典型金属制品遗留生产场地重金属空间分布特征[J]. 生态环境学报, 2023, 32(12): 2228-2235. |
[6] | 黄世聪, 陈丽珂, 张政杰, 陈科华, 陈澄宇, 曾巧云. 四环素对不同品种蔬菜毒性阈值及其敏感性分布[J]. 生态环境学报, 2023, 32(11): 1988-1995. |
[7] | 韩迁, 张玉娇, 赖承钺, 杨璐瑶, 孟旭. 成都市河流中四环素、喹诺酮类抗生素污染特征及生态风险评价[J]. 生态环境学报, 2023, 32(11): 1922-1932. |
[8] | 刘安, 吴昊, 何贝贝. 陆地环境中纳米塑料毒性效应的研究进展[J]. 生态环境学报, 2023, 32(11): 2030-2040. |
[9] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[10] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[11] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[12] | 吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408. |
[13] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[14] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[15] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||