生态环境学报 ›› 2024, Vol. 33 ›› Issue (3): 418-427.DOI: 10.16258/j.cnki.1674-5906.2024.03.010
凌虹1,2,3(), 朱晓晓1,2,3,*(
), 巫丹4, 苏小妹4, 郭西亚1,2,3
收稿日期:
2023-11-19
出版日期:
2024-03-18
发布日期:
2024-05-08
通讯作者:
*朱晓晓。E-mail: 1023192284@qq.com作者简介:
凌虹(1975年生),女,研究员级高级工程师,博士,主要从事环境规划及环境管理政策研究。E-mail: 503769747@qq.com
基金资助:
LING Hong1,2,3(), ZHU Xiaoxiao1,2,3,*(
), WU Dan4, SU Xiaomei4, GUO Xiya1,2,3
Received:
2023-11-19
Online:
2024-03-18
Published:
2024-05-08
摘要:
太湖流域水生态安全在维持长江流域生态安全格局中发挥重要作用。为阐明不同生态功能影响下太湖流域分区水生态安全状况,将太湖流域水生态功能分区与不同区域主导生态功能定位结合,构建基于主导生态功能定位的“压力-状态-服务”(PSS)模型并开展分区评估。结果表明,太湖流域整体生态安全形势为“较安全”和“基本安全”。太湖湖体生境状态因素最差,水质净化区、水源涵养区、水环境维持区和重要生境维持区的生境压力及生境状态为主要制约因素。太湖湖体II-08、II-10和III-20水生态功能分区处于“不安全”水平,入湖河流污染负荷汇入影响突出。水环境维持区和重要生境维持区均受人类活动扰动影响较大。根据湖体与入湖河道水体、底泥氮磷浓度相关性研究结果,II-03、III-11、III-12水生态功能分区水质与III-20区域氮磷浓度关系密切,与总氮、总磷相关性显著(P>0.05)的入湖河道占比分别为50%、66.7%,应兼顾氮磷输入影响。III-13和浙江省分别有100%、71.4%的入湖河道的TP浓度与湖体TP浓度相关性显著(P>0.05),应重点把控总磷输入风险,湖体总磷外源污染输入风险更大。入湖河道底泥中氮磷浓度较高,沉积物再悬浮导致N、P等污染物向上覆水释放并随之汇入太湖,影响太湖水生态安全。应重点关注II-03、III-11水生态功能分区入湖河道底泥N、P治理,重点强化III-12、III-13入湖河道TN去除。针对太湖湖体及环湖水生态功能分区生态安全异质性胁迫因素,因地制宜开展保护修复,推动太湖流域水生态安全有效提升。
中图分类号:
凌虹, 朱晓晓, 巫丹, 苏小妹, 郭西亚. 基于生态功能定位的太湖流域水生态安全评估[J]. 生态环境学报, 2024, 33(3): 418-427.
LING Hong, ZHU Xiaoxiao, WU Dan, SU Xiaomei, GUO Xiya. Assessing Water Ecological Security in the Taihu Lake Basin through Ecological Function Localization[J]. Ecology and Environment, 2024, 33(3): 418-427.
指标体系 | 单位 | 参照标准 | 权重 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
目标层 | 因素层 | 指标层 | A 1) | B 2) | C 3) | D 4) | E 5) | A | B | C | D | E | ||
太湖生态安全综合指数 (ESI) | 生境压力 A1 | 污染负荷指数B11 | - 6) | × 7) | 1 | 1 | 1 | 1 | × | 0.5 | 0.5 | 0.5 | 0.5 | |
人类活动强度指数B12 | - | × | 0.13 | 0.08 | 0.16 | 0.17 | × | 0.5 | 0.5 | 0.5 | 0.5 | |||
入湖河流污染负荷指数B13 | - | 1 | × | × | × | × | 0.4 | × | × | × | × | |||
换水周期B14 | d | 192 8) | × | × | × | × | 0.3 | × | × | × | × | |||
水生生境干扰指数B15 | - | 100 | × | × | × | × | 0.3 | × | × | × | × | |||
生境状态 A2 | 水质综合达标率B21 | % | 100 | 100 | 100 | 100 | 100 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | ||
底栖动物多样性指数B22 | - | 3 | 3 | 3 | 3 | 3 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | |||
沉积物营养物质污染指数B23 | - | 1 | 1 | 1 | 1 | 1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | |||
浮游植物多样性指数B24 | - | 3 | × | 3 | × | × | 0.1 | × | 0.2 | × | × | |||
沉积物重金属生态风险指数B25 | - | 150 | 150 | × | 150 | 150 | 0.1 | 0.2 | 0.2 | 0.2 | ||||
综合营养状态指数B26 | - | 50 | × | 50 | × | × | 0.1 | × | 0.2 | × | × | |||
河流水质指数B27 | - | × | 1 | × | 1 | 1 | × | 0.2 | × | 0.2 | 0.2 | |||
年平均水位B28 | m | 3.31 | × | × | × | × | 0.1 | × | × | × | × | |||
蓝藻水华发生面积B29 | km2 | 62 | × | × | × | × | 0.1 | × | × | × | × | |||
浮游动物多样性指数B210 | - | 3 | × | × | × | × | 0.1 | × | × | × | × | |||
服务功能 A3 | 自然保护区级别B31 | 分 | × | × | 5 | × | 5 | × | × | 0.25 | × | 0.5 | ||
区域水面率B32 | % | × | × | × | 8.6 | × | × | × | × | 0.5 | × | |||
湿地面积的比例B33 | % | × | 11.6 | 2.68 | × | × | × | 0.5 | 0.25 | × | × | |||
年引水量与供水量之比B34 | - | 0.63 | × | × | × | × | 0.25 | × | × | × | × | |||
微囊藻毒素浓度达标率B35 | % | 100 | × | × | × | × | 0.25 | × | × | × | × | |||
集中饮用水水质综合达标率B36 | % | 100 | × | × | × | × | 0.25 | × | × | × | × | |||
水生植被覆盖率B37 | % | 30 | × | × | × | × | 0.25 | × | × | × | × | |||
林草覆盖率B38 | % | × | 13.3 | 48.6 | 1.62 | × | × | 0.5 | 0.25 | 0.5 | × | |||
水源涵养指数B39 | - | × | × | 54.2 | × | × | × | × | 0.25 | × | × | |||
保护区面积的比例B310 | - | × | × | × | × | 0.38 | × | × | × | × | 0.5 |
表1 太湖流域5类功能分区生态安全评估指标体系及参照标准
Table 1 Ecological security assessment index system and reference standard of five different function zones in Taihu Lake
指标体系 | 单位 | 参照标准 | 权重 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
目标层 | 因素层 | 指标层 | A 1) | B 2) | C 3) | D 4) | E 5) | A | B | C | D | E | ||
太湖生态安全综合指数 (ESI) | 生境压力 A1 | 污染负荷指数B11 | - 6) | × 7) | 1 | 1 | 1 | 1 | × | 0.5 | 0.5 | 0.5 | 0.5 | |
人类活动强度指数B12 | - | × | 0.13 | 0.08 | 0.16 | 0.17 | × | 0.5 | 0.5 | 0.5 | 0.5 | |||
入湖河流污染负荷指数B13 | - | 1 | × | × | × | × | 0.4 | × | × | × | × | |||
换水周期B14 | d | 192 8) | × | × | × | × | 0.3 | × | × | × | × | |||
水生生境干扰指数B15 | - | 100 | × | × | × | × | 0.3 | × | × | × | × | |||
生境状态 A2 | 水质综合达标率B21 | % | 100 | 100 | 100 | 100 | 100 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | ||
底栖动物多样性指数B22 | - | 3 | 3 | 3 | 3 | 3 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | |||
沉积物营养物质污染指数B23 | - | 1 | 1 | 1 | 1 | 1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | |||
浮游植物多样性指数B24 | - | 3 | × | 3 | × | × | 0.1 | × | 0.2 | × | × | |||
沉积物重金属生态风险指数B25 | - | 150 | 150 | × | 150 | 150 | 0.1 | 0.2 | 0.2 | 0.2 | ||||
综合营养状态指数B26 | - | 50 | × | 50 | × | × | 0.1 | × | 0.2 | × | × | |||
河流水质指数B27 | - | × | 1 | × | 1 | 1 | × | 0.2 | × | 0.2 | 0.2 | |||
年平均水位B28 | m | 3.31 | × | × | × | × | 0.1 | × | × | × | × | |||
蓝藻水华发生面积B29 | km2 | 62 | × | × | × | × | 0.1 | × | × | × | × | |||
浮游动物多样性指数B210 | - | 3 | × | × | × | × | 0.1 | × | × | × | × | |||
服务功能 A3 | 自然保护区级别B31 | 分 | × | × | 5 | × | 5 | × | × | 0.25 | × | 0.5 | ||
区域水面率B32 | % | × | × | × | 8.6 | × | × | × | × | 0.5 | × | |||
湿地面积的比例B33 | % | × | 11.6 | 2.68 | × | × | × | 0.5 | 0.25 | × | × | |||
年引水量与供水量之比B34 | - | 0.63 | × | × | × | × | 0.25 | × | × | × | × | |||
微囊藻毒素浓度达标率B35 | % | 100 | × | × | × | × | 0.25 | × | × | × | × | |||
集中饮用水水质综合达标率B36 | % | 100 | × | × | × | × | 0.25 | × | × | × | × | |||
水生植被覆盖率B37 | % | 30 | × | × | × | × | 0.25 | × | × | × | × | |||
林草覆盖率B38 | % | × | 13.3 | 48.6 | 1.62 | × | × | 0.5 | 0.25 | 0.5 | × | |||
水源涵养指数B39 | - | × | × | 54.2 | × | × | × | × | 0.25 | × | × | |||
保护区面积的比例B310 | - | × | × | × | × | 0.38 | × | × | × | × | 0.5 |
分区 | 建设用地与农用地比例 | 增幅/% | |
---|---|---|---|
1990年 | 2018年 | ||
水质净化区 | 0.13 | 0.59 | 354 |
水环境维持区 | 0.16 | 0.84 | 425 |
水源涵养区 | 0.08 | 0.28 | 250 |
重要生境维持区 | 0.17 | 1.53 | 800 |
表2 建设用地与农用地比例数据对比
Table 2 Comparison of the proportion of construction land and agricultural land
分区 | 建设用地与农用地比例 | 增幅/% | |
---|---|---|---|
1990年 | 2018年 | ||
水质净化区 | 0.13 | 0.59 | 354 |
水环境维持区 | 0.16 | 0.84 | 425 |
水源涵养区 | 0.08 | 0.28 | 250 |
重要生境维持区 | 0.17 | 1.53 | 800 |
区域 | 因素层 | 指标 | ESI | |
---|---|---|---|---|
Pearson 相关性 | 显著性 (双侧) | |||
太湖 湖体 | 生境压力 | 入湖河流污染负荷指数 | 0.931*1) | 0.022 |
生境状态 | 水质综合达标率 | 0.748 | 0.146 | |
综合营养状态指数 | 0.858 | 0.063 | ||
沉积物营养物质污染指数 | 0.481 | 0.413 | ||
沉积物重金属生态风险指数 | −0.054 | 0.931 | ||
浮游植物多样性指数 | 0.347 | 0.567 | ||
浮游动物多样性指数 | 0.379 | 0.530 | ||
底栖动物多样性指数 | 0.205 | 0.740 | ||
水环境维持区 | 生境压力 | 人类活动强度指数 | 0.793** 2) | 0.006 |
污染负荷指数 | −0.225 | 0.533 | ||
生境状态 | 水质综合达标率 | 0.060 | 0.869 | |
河流水质指数 | 0.015 | 0.966 | ||
沉积物营养物质污染指数 | 0.153 | 0.672 | ||
沉积物重金属生态风险指数 | 0.171 | 0.636 | ||
底栖动物多样性指数 | 0.335 | 0.343 | ||
服务功能 | 区域水面率 | 0.600 | 0.067 | |
林草覆盖率 | 0.479 | 0.161 |
表3 ESI指数与太湖湖体及水环境维持区的指标层相关性分析
Table 3 Correlation analysis between ESI index and index layers of lake body and aquatic environment maintenance area of Taihu Lake
区域 | 因素层 | 指标 | ESI | |
---|---|---|---|---|
Pearson 相关性 | 显著性 (双侧) | |||
太湖 湖体 | 生境压力 | 入湖河流污染负荷指数 | 0.931*1) | 0.022 |
生境状态 | 水质综合达标率 | 0.748 | 0.146 | |
综合营养状态指数 | 0.858 | 0.063 | ||
沉积物营养物质污染指数 | 0.481 | 0.413 | ||
沉积物重金属生态风险指数 | −0.054 | 0.931 | ||
浮游植物多样性指数 | 0.347 | 0.567 | ||
浮游动物多样性指数 | 0.379 | 0.530 | ||
底栖动物多样性指数 | 0.205 | 0.740 | ||
水环境维持区 | 生境压力 | 人类活动强度指数 | 0.793** 2) | 0.006 |
污染负荷指数 | −0.225 | 0.533 | ||
生境状态 | 水质综合达标率 | 0.060 | 0.869 | |
河流水质指数 | 0.015 | 0.966 | ||
沉积物营养物质污染指数 | 0.153 | 0.672 | ||
沉积物重金属生态风险指数 | 0.171 | 0.636 | ||
底栖动物多样性指数 | 0.335 | 0.343 | ||
服务功能 | 区域水面率 | 0.600 | 0.067 | |
林草覆盖率 | 0.479 | 0.161 |
分区 | CODMn/ (mg∙L−1) | CODCr/ (mg∙L−1) | TN/ (mg∙L−1) | NH3-N/ (mg∙L−1) | TP/ (mg∙L−1) |
---|---|---|---|---|---|
Ⅰ-05 | 3.58 | 10.9 | 1.16 | 0.062 | 0.067 |
Ⅱ-08 | 4.97 | 15.6 | 2.01 | 0.083 | 0.133 |
Ⅱ-09 | 4.52 | 14.5 | 1.72 | 0.058 | 0.125 |
Ⅱ-10 | 4.73 | 15.2 | 1.97 | 0.098 | 0.139 |
Ⅲ-20 | 6.56 | 20.0 | 3.40 | 0.305 | 0.280 |
表4 太湖湖体不同水生态功能分区水环境质量
Table 4 Aquatic environment quality in different water ecological function zones of Taihu Lake
分区 | CODMn/ (mg∙L−1) | CODCr/ (mg∙L−1) | TN/ (mg∙L−1) | NH3-N/ (mg∙L−1) | TP/ (mg∙L−1) |
---|---|---|---|---|---|
Ⅰ-05 | 3.58 | 10.9 | 1.16 | 0.062 | 0.067 |
Ⅱ-08 | 4.97 | 15.6 | 2.01 | 0.083 | 0.133 |
Ⅱ-09 | 4.52 | 14.5 | 1.72 | 0.058 | 0.125 |
Ⅱ-10 | 4.73 | 15.2 | 1.97 | 0.098 | 0.139 |
Ⅲ-20 | 6.56 | 20.0 | 3.40 | 0.305 | 0.280 |
入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅱ-08 | 入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅱ-10 | 入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅲ-20 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Pearson 相关性 | 显著性 (双侧) | Pearson 相关性 | 显著性 (双侧) | Pearson 相关性 | 显著性 (双侧) | ||||||
III-13 | 望虞河 | −0.256 | 0.423 | 浙江省 | 夹浦港 | 0.224 | 0.483 | III-12 | 太滆运河 | 0.513 | 0.088 |
武进港 | 0.198 | 0.537 | |||||||||
梁溪河 | 0.711**2) | 0.01 | 合溪新港 | 0.569 | 0.054 | 直湖港 | 0.446 | 0.146 | |||
陈东港 | 0.700*1) | 0.011 | |||||||||
小溪港 | 0.199 | 0.535 | 长兴港 | 0.756** | 0.004 | III-11 | 漕桥河 | 0.673* | 0.016 | ||
III-12 | 太滆运河 | 0.429 | 0.164 | 杨家浦港 | 0.249 | 0.436 | 殷村港 | 0.477 | 0.117 | ||
大浦港 | 0.798** | 0.002 | |||||||||
武进港 | 0.216 | 0.5 | 旄儿港 | 0.602* | 0.038 | 官渎港 | 0.700* | 0.011 | |||
洪巷港 | 0.608* | 0.036 | |||||||||
直湖港 | 0.385 | 0.216 | 东苕溪 | 0.376 | 0.228 | 社渎港 | 0.447 | 0.145 | |||
II-03 | 乌溪港 | 0.759** | 0.004 | ||||||||
陈东港 | 0.480 | 0.114 | 大钱港 | 0.408 | 0.187 | 大港河 | 0.128 | 0.691 |
表5 太湖各水生态功能分区TN与入湖河道TN浓度相关性
Table 5 Correlation between TN concentration of each aquatic ecological function zone of Taihu Lake and TN concentration of inlet channel
入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅱ-08 | 入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅱ-10 | 入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅲ-20 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Pearson 相关性 | 显著性 (双侧) | Pearson 相关性 | 显著性 (双侧) | Pearson 相关性 | 显著性 (双侧) | ||||||
III-13 | 望虞河 | −0.256 | 0.423 | 浙江省 | 夹浦港 | 0.224 | 0.483 | III-12 | 太滆运河 | 0.513 | 0.088 |
武进港 | 0.198 | 0.537 | |||||||||
梁溪河 | 0.711**2) | 0.01 | 合溪新港 | 0.569 | 0.054 | 直湖港 | 0.446 | 0.146 | |||
陈东港 | 0.700*1) | 0.011 | |||||||||
小溪港 | 0.199 | 0.535 | 长兴港 | 0.756** | 0.004 | III-11 | 漕桥河 | 0.673* | 0.016 | ||
III-12 | 太滆运河 | 0.429 | 0.164 | 杨家浦港 | 0.249 | 0.436 | 殷村港 | 0.477 | 0.117 | ||
大浦港 | 0.798** | 0.002 | |||||||||
武进港 | 0.216 | 0.5 | 旄儿港 | 0.602* | 0.038 | 官渎港 | 0.700* | 0.011 | |||
洪巷港 | 0.608* | 0.036 | |||||||||
直湖港 | 0.385 | 0.216 | 东苕溪 | 0.376 | 0.228 | 社渎港 | 0.447 | 0.145 | |||
II-03 | 乌溪港 | 0.759** | 0.004 | ||||||||
陈东港 | 0.480 | 0.114 | 大钱港 | 0.408 | 0.187 | 大港河 | 0.128 | 0.691 |
入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅱ-08 | 入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅱ-10 | 入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅲ-20 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Pearson 相关性 | 显著性 (双侧) | Pearson 相关性 | 显著性 (双侧) | Pearson 相关性 | 显著性 (双侧) | ||||||
III-13 | 望虞河 | 0.734**2) | 0.007 | 浙江省 | 夹浦港 | 0.052 | 0.872 | III-12 | 太滆运河 | 0.581* | 0.048 |
武进港 | 0.949** | 0.000 | |||||||||
梁溪河 | 0.827** | 0.001 | 合溪新港 | 0.691* | 0.013 | 直湖港 | 0.120 | 0.71 | |||
陈东港 | 0.655* | 0.021 | |||||||||
小溪港 | 0.617*1) | 0.033 | 长兴港 | 0.564 | 0.056 | III-11 | 漕桥河 | 0.277 | 0.383 | ||
III-12 | 太滆运河 | 0.463 | 0.130 | 杨家浦港 | 0.586* | 0.045 | 殷村港 | 0.470 | 0.123 | ||
大浦港 | 0.775** | 0.003 | |||||||||
武进港 | 0.565 | 0.056 | 旄儿港 | 0.699* | 0.011 | 官渎港 | 0.761** | 0.004 | |||
洪巷港 | 0.717** | 0.009 | |||||||||
直湖港 | 0.284 | 0.371 | 东苕溪 | 0.789** | 0.002 | 社渎港 | 0.374 | 0.231 | |||
II-03 | 乌溪港 | 0.786** | 0.002 | ||||||||
陈东港 | 0.521 | 0.083 | 大钱港 | 0.595* | 0.041 | 大港河 | 0.671* | 0.017 |
表6 太湖各水生态功能分区TP与入湖河道TP浓度相关性
Table 6 Correlation between the TP concentration of each aquatic ecological function zone in Taihu Lake and the TP concentration of inlet channel
入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅱ-08 | 入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅱ-10 | 入湖河道 所在功能区 | 入湖河道 | 太湖湖体Ⅲ-20 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Pearson 相关性 | 显著性 (双侧) | Pearson 相关性 | 显著性 (双侧) | Pearson 相关性 | 显著性 (双侧) | ||||||
III-13 | 望虞河 | 0.734**2) | 0.007 | 浙江省 | 夹浦港 | 0.052 | 0.872 | III-12 | 太滆运河 | 0.581* | 0.048 |
武进港 | 0.949** | 0.000 | |||||||||
梁溪河 | 0.827** | 0.001 | 合溪新港 | 0.691* | 0.013 | 直湖港 | 0.120 | 0.71 | |||
陈东港 | 0.655* | 0.021 | |||||||||
小溪港 | 0.617*1) | 0.033 | 长兴港 | 0.564 | 0.056 | III-11 | 漕桥河 | 0.277 | 0.383 | ||
III-12 | 太滆运河 | 0.463 | 0.130 | 杨家浦港 | 0.586* | 0.045 | 殷村港 | 0.470 | 0.123 | ||
大浦港 | 0.775** | 0.003 | |||||||||
武进港 | 0.565 | 0.056 | 旄儿港 | 0.699* | 0.011 | 官渎港 | 0.761** | 0.004 | |||
洪巷港 | 0.717** | 0.009 | |||||||||
直湖港 | 0.284 | 0.371 | 东苕溪 | 0.789** | 0.002 | 社渎港 | 0.374 | 0.231 | |||
II-03 | 乌溪港 | 0.786** | 0.002 | ||||||||
陈东港 | 0.521 | 0.083 | 大钱港 | 0.595* | 0.041 | 大港河 | 0.671* | 0.017 |
[1] |
AUGUSTYNIAK R, NEUGEBAUER M, KOWALSKA J, et al., 2017. Bottom deposits of dtratified, seepage, urban lake (on the example of Tyrsko Lake, Poland) as a factor potentially shaping lake water quality[J]. Journal of Ecological Engineering, 18(5): 55-62.
DOI URL |
[2] |
EGAN K J, HERRIGES J A, KLING C L, et al., 2009. Valuing water quality as a function of water quality measures[J]. American Journal of Agricultural Economics, 91(1): 106-123.
DOI URL |
[3] |
HUISMAN J, CODD G A, PAERL H W, et al., 2018. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 16(8): 471-483.
DOI PMID |
[4] |
KARR J R, 1991. Biological integrity: A long neglected aspect of water resource management[J]. Ecological Applications, 1(1): 66-84.
DOI URL |
[5] |
LI H, SONG C L, YANG L, et al., 2021. Phosphorus supply pathways and mechanisms in shallow lakes with different regime[J]. Water Research, 193: 116886.
DOI URL |
[6] |
LI Y, GAO L, NIU L H, et al., 2021. Developing a statistical-weighted index of biotic integrity for large-river ecological evaluations[J]. Journal of Environmental Management, 277: 111382.
DOI URL |
[7] |
PEI L, DU L M, YUE G J, 2010. Ecological security assessment of Beijing based on PSR Model[J]. Procedia Environmental Sciences, 2: 832-841.
DOI URL |
[8] |
PENG J, WANG A, LUO L W, et al., 2019. Spatial identi-fication of conservation priority areas for urban ecological land: an approach based on water ecosystem services[J]. Land Degradation and Development, 30(6): 683-694.
DOI URL |
[9] |
PACETTI T, CASTELLI G, BRESCI E, et al., 2020. Water values: participa tory water ecosystem services assessment in the Arno River Basin, ltaly[J]. Water Resources Management, 34(14): 4527-4544.
DOI |
[10] |
WANG M Z, XU X W, WU Z, et al., 2019. Seasonal pattern of nutrient limitation in a eutrophic lake and quantitative analysis of the impacts from internal nutrient cycling[J]. Environmental Science & Technology, 53(23): 13675-13686.
DOI URL |
[11] |
WANG L Z, SONG H L, WU X Y, et al., 2022. Relationship between the coprecipitation of phosphorus-on-calcite by submerged macrophytes and the phosphorus cycle in water[J]. Journal of Environmental Management, 314: 115110.
DOI URL |
[12] |
ZHENG H, LI Y F, ROBINSON B E, et al., 2016. Using ecosystem service trade-offs to inform water conservation policies and management practices[J]. Frontiers in Ecology and the Environment, 14(10): 527-532.
DOI URL |
[13] | 安文超, 2008. 南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究[D]. 济南: 山东大学. |
AN W C, 2008. Polluted characteristics of sediments and phosphate adsorption and release characteristics at the sediment-water interface in Nansi Lake, China, and its main estuaries[D]. Ji’nan: Shandong University. | |
[14] | 柴丽娜, 张磊, 孙兆海, 等, 2021. 平原河网区浅水湖泊生态安全评估与时空差异性分析: 以江苏省白马湖为例[J]. 生态与农村环境学报, 37(12): 1559-1567. |
CHAI L N, ZHANG L, SUN Z H, et al., 2021. Ecological security evaluation and spatio-temporal difference analysis of shallow lakes in plain river network area: A case study of Baima Lake[J]. Journal of Ecology and Rural Environment, 37(12): 1559-1567. | |
[15] |
董殿波, 孙学凯, 魏亚伟, 等, 2017. 基于DPSIR模型的水丰湖生态安全评估[J]. 河北大学学报(自然科学版), 37(6): 630-639.
DOI |
DONG D B, SUN X K, WEI Y W, et al., 2017. Assessment of ecological security for Shuifeng Lake based on the DPSIR model[J]. Journal of Hebei University (Natural Science Edition), 37(6): 630-639. | |
[16] | 段文秀, 朱广伟, 刘俊杰, 等, 2020. 水源地型水库水生态安全评价方法探索[J]. 中国环境科学, 40(9): 4135-4145. |
DUAN W X, ZHU G W, LIU J J, et al., 2020. An evaluation method for ecological security of water resource reservoirs[J]. China Environmental Science, 40(9): 4135-4145. | |
[17] | 范献方, 高帅帅, 丁士明, 等, 2023. 太湖梅梁湾沉积物中氮铁硫转化细菌的毫米级垂向分布及对氮磷迁移转化的潜在影响[J]. 湖泊科学, 35(3): 854-862. |
FAN X F, GAO S S, DING S M, et al., 2023. Millimeter-scale vertical distribution of bacterial groups involved in nitrogen, iron and sulfur cycling and its potential influence on the migration and transformation of nitrogen and phosphorus in sediments of Meiliang Bay, Lake Taihu[J]. Journal of Lake Sciences, 35(3): 854-862.
DOI URL |
|
[18] | 金相灿, 王圣瑞, 席海燕, 2012. 湖泊生态安全及其评估方法框架[J]. 环境科学研究, 25(4): 357-362. |
JIN X C, WANG S R, XI H Y, 2012. Lake ecological security and assessment methodology framework[J]. Research of Environmental Sciences, 25(4): 357-362. | |
[19] | 凌虹, 巫丹, 谭东烜, 等, 2018. 近年太湖总磷升高成因及对策建议[J]. 环境科技, 31(6): 81-86. |
LING H, WU D, TAN D X, et al., 2018. Causes and countermeasures of total phosphorus rise in Taihu Lake during recent years[J]. Environmental Science and Technology, 31(6): 81-86. | |
[20] | 林佳宁, 高欣, 贾晓波, 等, 2016. 基于PSFR评估框架的太子河流域水生态安全评估[J]. 环境科学研究, 29(10): 1440-1450. |
LIN J N, GAO X, JIA X B, et al., 2016. Assessment of riverine ecological security for Taizi River Basin based on PSFR evaluation framework[J]. Research of Environmental Sciences, 29(10): 1440-1450. | |
[21] | 李梦娣, 范俊韬, 孔维静, 等, 2018. 河流山区段水生态安全评估:以太子河为例[J]. 应用生态学报, 29(8): 2685-2694. |
LI M D, FAN J T, KONG W J, et al., 2018. Assessment of aquatic ecological security for mountainous rivers: A case study in the Taizi River Basin, northeast China[J]. Chinese Journal of Applied Ecology, 29(8): 2685-2694.
DOI |
|
[22] | 李琼芳, 许树洪, 陈启慧, 等, 2022. 环太湖各水资源分区入出湖河流总磷浓度与负荷变化分析[J]. 湖泊科学, 34(1): 74-89. |
LI Q F, XU S H, CHEN Q H, et al., 2022. Analysis on the variation of total phosphorus concentrations and loads of inflow and outflow rivers from different water resources zones around Lake Taihu[J]. Journal of Lake Sciences, 34(1): 74-89.
DOI URL |
|
[23] | 李娣, 李旭文, 吕学研, 等, 2023. 太湖流域水生生物群落结构与水生态质量状况分析[J]. 生态毒理学报, 18(1): 271-279. |
LI D, LI X W, LÜ X Y, et al., 2023. Analysis of aquatic community structure and water ecological quality in Tai Lake Basin[J]. Asian Journal of Ecotoxicology, 18(1): 271-279. | |
[24] | 李兆碧, 陶宇, 欧维新, 等, 2023. 基于水量与水质的太湖流域水生态服务供需关系及多情景评估[J]. 生态学报, 43(5): 2088-2100. |
LI Z B, TAO Y, OU W X, et al., 2023. Supply and demand relationship and multi-scenario assessment of water ecological services related water quantity and quality in Taihu Lake Basin[J]. Acta Ecologica Sinica., 43(5): 2088-2100. | |
[25] | 刘丽娜, 马春子, 张靖天, 等, 2023. 东北湖区典型流域生态安全评估[J]. 环境科学研究, 32(7): 1108-1116. |
LIU L N, MA C Z, ZHANG J T, et al., 2023. Ecological security assessment of typical watershed in northeast, China[J]. Research of Environmental Sciences, 32(7): 1108-1116. | |
[26] | 刘倩倩, 徐昔宝, 2023. 湖泊生态服务生产函数构建研究——以博斯腾湖为例[J]. 湖泊科学, 35(1): 279-288. |
LIU Q Q, XU X B, 2023. Construction of lake ecosystem service production function: A case study of Lake Bosten, China[J]. Journal of Lake Sciences, 35(1): 279-288. | |
[27] | 吕文, 杨惠, 杨金艳, 等, 2020. 环太湖江苏段入湖河道污染物通量与湖区水质的响应关系[J]. 湖泊科学, 32(5): 1454-1462. |
LÜ W, YANG H, YANG J Y, et al., 2020. Relationship between water quality in Lake Taihu and pollutant fluxes of the rivers surrounding Lake Taihu in Jiangsu Province[J]. Journal of Lake Sciences, 32(5): 1454-1462.
DOI URL |
|
[28] | 刘维淦, 林琪, 张科, 等, 2022. 太湖流域长荡湖近百年生态环境演变过程[J]. 湖泊科学, 34(2): 675-683. |
LIU W G, LIN Q, ZHANG K, et al., 2022. Eco-environmental evolutionprocess during the past century in Lake Changdang, Lake Taihu Basin[J]. Journal of Lake Sciences, 34(2): 675-683.
DOI URL |
|
[29] | 南箔, 杨子寒, 毕旭, 等, 2018. 生态系统服务价值与人类活动的时空关联分析——以长江中游华阳河湖群地区为例[J]. 中国环境科学, 38(9): 3531-3541. |
NAN B, YANG Z H, BI X, et al., 2018. Spatial-temporal correlation analysis of ecosystem services value and human activities: A case study of Huayang LakesArea in the middle reaches of Yangtze River[J]. China Environmental Science, 38(9): 3531-3541. | |
[30] | 王冼民, 翟淑华, 张红举, 等, 2017. 基于水质改善目标的太湖适宜换水周期分析[J]. 湖泊科学, 29(1): 9-21. |
WANG X M, ZHAI S H, ZHANG H J, et al., 2017. Research on appropriate hydraulic retention time on basis of water quality improvement of Lake Taihu[J]. Journal of Lake Sciences, 29(1): 9-21.
DOI URL |
|
[31] | 王怡然, 张大红, 吴宇伦, 2020. 基于DPSIR模型的森林生态安全时空间变化研究:以浙江省79个县区为例[J]. 生态学报, 40(8): 2793-2801. |
WANG Y R, ZHANG D H, WU Y L, 2020. The spatio-temporal changes of forest ecological security based on DPSIR model: Cases study in Zhejiang Province[J]. Acta Ecologica Sinica, 40(8): 2793-2801. | |
[32] | 吴攀, 秦伯强, 于革, 等, 2015. 太湖上游流域经济发展对废水排放及入湖总磷的影响[J]. 湖泊科学, 27(6): 1107-1114. |
WU P, QIN B Q, YU G, et al., 2015. Effects of economic development on wastewater discharge and influent total phosphorus load in the upstream of Lake Taihu Basin[J]. Journal of Lake Sciences, 27(6): 1107-1114.
DOI URL |
|
[33] | 尤本胜, 刘伟京, 操庆, 等, 2023. 建立促进太湖水生态健康的流域现代化治理体系的建议[J]. 环境监测管理与技术, 35(3): 1-10. |
YOU B S, LIU W J, CAO Q, et al., 2023. Suggestions on establishing a modern watershed management system to promote the water ecological health of Taihu Lake[J]. Journal of Lake Sciences, 35(3): 1-10. | |
[34] | 张建华, 殷鹏, 张雷, 等, 2023. 底泥疏浚对太湖内源及底栖生物恢复的影响[J]. 环境科学, 44(2): 828-838. |
ZHANG J H, YIN P, ZHANG L, et al., 2023. Effects of sediment dredging on the reduction in sediment internal loading of Lake Taihu and the self-recovery ability of benthic organism[J]. Environmental Science, 44(2): 828-838. | |
[35] | 张磊, 2015. 洪泽湖生态安全评估研究[D]. 南京: 南京林业大学. |
ZHANG L, 2015. Ecological security assessment of Hongze Lake[D]. Nanjing: Nanjing Forestry University. | |
[36] | 张曼, 殷鹏, 支鸣强, 等, 2023. 太湖藻型及草型湖区底泥内源污染及释放机制研究[J]. 环境科学学报, 43(6): 247-257. |
ZHANG M, YIN P, ZHI M Q, et al., 2023. Characteristics and release mechanism of endogenous pollution in algae- and grass-dominated zones in Lake Taihu[J]. Acta Scientiae Circumstantiae, 43(6): 247-257. | |
[37] | 赵凯, 周彦锋, 蒋兆林, 等, 2017. 1960年以来太湖水生植被演变[J]. 湖泊科学, 29(2): 351-362. |
ZHAO K, ZHOU Y F, JIANG Z L, et al., 2017. Changes of aquatic vegetation in Lake Taihu since 1960s[J]. Journal of Lake Sciences, 29(2): 351-362.
DOI URL |
|
[38] | 钟振宇, 柴立元, 刘益贵, 等, 2010. 基于层次分析法的洞庭湖生态安全评估[J]. 中国环境科学, 30(增刊1): 41-45. |
ZHONG Z Y, CHAI L Y, LIU Y G, et al., 2010. Ecological security evaluation based on AHP of Lake Dongting[J]. China Environmental Science, 30(Supp l): 41-45. | |
[39] | 朱广伟, 邹伟, 国超旋, 等, 2020a. 太湖水体磷浓度与赋存量长期变化 (2005-2018年) 及其对未来磷控制目标管理的启示[J]. 湖泊科学, 32(1): 21-35. |
ZHU G W, ZOU W, GUO C X, et al., 2020a. Long-term variations of phosphorus concentration and capacity in Lake Taihu, 2005-2018: Implications for future phosphorus reduction target management[J]. Journal of Lake Sciences, 32(1): 21-35.
DOI URL |
|
[40] | 朱广伟, 施坤, 李未, 等, 2020b. 太湖蓝藻水华的年度情势预测方法探讨[J]. 湖泊科学, 32(5): 1421-1431. |
ZHU G W, SHI K, LI W, et al., 2020b. Seasonal forecast method of cyanobacterial bloom intensity in eutrophic Lake Taihu, China[J]. Journal of Lake Sciences, 32(5): 1421-1431.
DOI URL |
|
[41] | 朱金格, 刘鑫, 邓建才, 等, 2018. 太湖西部环湖河道污染物输移速率变化特征[J]. 湖泊科学, 30(6): 1509-1517. |
ZHU J G, LIU X, DENG J C, et al., 2018. Pollutant transport rates in the rivers around western Lake Taihu[J]. Journal of Lake Sciences, 30(6): 1509-1517.
DOI URL |
|
[42] | 朱伟, 胡思远, 冯甘雨, 等, 2020. 特大洪水对浅水湖泊磷的影响: 以2016年太湖为例[J]. 湖泊科学, 32(2): 325-336. |
ZHU W, HU S Y, FENG G Y, et al., 2020. Effects of great floods on phosphorus in shallow lakes: A case study of Lake Taihu in 2016[J]. Journal of Lake Sciences, 32(2): 325-336.
DOI URL |
[1] | 王金明, 秦晓波, 万运帆, 周盛, 张志伟. 中国水稻食物系统碳足迹结构组成和地区差异[J]. 生态环境学报, 2023, 32(8): 1405-1418. |
[2] | 方云皓, 赵丽元, 窦碧莹, 王书贤. 基于MSPA-CIRCUIT的长江中游城市群热环境网络识别与评价研究[J]. 生态环境学报, 2023, 32(7): 1237-1248. |
[3] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[4] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[5] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[6] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[7] | 李美娇, 何凡能, 赵彩杉, 杨帆. 全球历史LUCC数据集新疆地区耕地数据可靠性评估[J]. 生态环境学报, 2022, 31(6): 1215-1224. |
[8] | 潘丹琳, 王飞飞, 曹文志, 陈一悦. 22种药品与个人护理产品在河流中的污染特征研究[J]. 生态环境学报, 2022, 31(6): 1200-1207. |
[9] | 张楷悦, 刘增辉, 王颜昊, 王敬宽, 崔德杰, 柳新伟. 黄河三角洲自然保护区土壤PAHs的风险评估和空间特征[J]. 生态环境学报, 2022, 31(11): 2198-2205. |
[10] | 齐静, 邓伟, 周渝, 刘婷, 罗旭. 重庆市生态保护红线成效评估方法与应用[J]. 生态环境学报, 2021, 30(7): 1532-1540. |
[11] | 梁永春, 尹芳, 赵英芬, 刘磊. 基于Landsat 8影像的太湖生化需氧量遥感反演[J]. 生态环境学报, 2021, 30(7): 1492-1502. |
[12] | 解旭东, 侯智昊, 李楠, 岳翠霞, 李雅, 杨方社. 中国胡焕庸线下方四区域沉积物和土壤中抗生素污染特征及生态风险评价[J]. 生态环境学报, 2021, 30(5): 1023-1033. |
[13] | 赵其国, 沈仁芳, 滕应, 李秀华. 中国重金属污染区耕地轮作休耕制度试点进展、问题及对策建议[J]. 生态环境学报, 2017, 26(12): 2003-2007. |
[14] | 赵其国. 当前我国农业发展中存在的深层次问题及对策[J]. 生态环境学报, 2013, 22(6): 911-915. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||