生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 2050-2061.DOI: 10.16258/j.cnki.1674-5906.2023.11.015
刘明宇1,3(), 郑旭1,3, 强丽媛2,4, 李鲁华1,3, 张若宇2,4,*(
), 王家平1,3,*(
)
收稿日期:
2023-03-21
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
张若宇。E-mail: ry248@163.com作者简介:
刘明宇(1996年生),女,硕士研究生,研究方向为农田土壤微塑料。E-mail: 1076459456@qq.com
基金资助:
LIU Mingyu1,3(), ZHENG Xu1,3, QIANG Liyuan2,4, LI Luhua1,3, ZHANG Ruoyu2,4,*(
), WANG Jiaping1,3,*(
)
Received:
2023-03-21
Online:
2023-11-18
Published:
2024-01-17
摘要:
农用薄膜的长期使用和低回收利用导致遗留在土壤中塑料碎片与微塑料明显增加,严重影响了农业土壤的可持续利用。重点阐述了中国1994-2020年农用地膜的增长规模、时空分布及地区差异,总结了农膜微塑料的赋存特征与生成途径,分析了中国农田土壤微塑料污染的潜在风险。数据表明:1994-2020年中国塑料薄膜用量呈大幅度上升态势,年增长率约为6.51%,农用薄膜使用量在2015年到达峰值,之后逐渐下降,地膜占总使用量的50.0%以上。地膜覆盖是农田土壤中微塑料的直接来源,区域分布来看,西北干旱绿洲区是中国地膜使用量最高的区域,使用强度最高达38.0 kg∙hm−2。农膜微塑料的生成是残留地膜在自然、农业和生物多种途径共同作用的结果,其速率主要取决于微生物和塑料类型及环境条件。西北长期种植区及华北、华东和西南集约农区是中国微塑料污染较严重区域,最高可达4.83×104 ind∙kg−1。土壤的多孔特性使小颗粒微塑料通过重力沉降和降水渗透发生迁移,造成土壤微塑料污染及其携带的其他污染物的迁移扩散,对土壤结构、土壤动植物、微生物群落及人体健康造成不同程度的潜在风险。从中国农业“禁/限塑”政策与农膜、(微)塑料标准化检测发展历程来看,聚乙烯农膜厚度下限的提高和一系列生物降解标准的出台,为农用覆盖薄膜产业结构的调整与升级提供了基础,对于中国塑料污染治理工作起到了促进作用。当前,源头防控、替代技术和闭环管理是解决农用薄膜污染有效的措施,未来需要借助技术创新提升治理能力全面提升农业领域的塑料污染治理。
中图分类号:
刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061.
LIU Mingyu, ZHENG Xu, QIANG Liyuan, LI Luhua, ZHANG Ruoyu, WANG Jiaping. Analysis on the Change of Agricultural Film Usage and the Pollution of Agricultural Film Microplastics in China during Years from 1994 to 2020[J]. Ecology and Environment, 2023, 32(11): 2050-2061.
图3 1997、2013和2020年中国各省地膜使用强度及2020年播种面积情况 国家自然资源部标准地图服务系统(审图号:GS (2020) 4619号)
Figure 3 Intensity of Plastic Film Use and Sowing Area in Various Provinces of China in 1997, 2013, and 2020
种类 | 厚度/mm | 使用寿命/月 | 投入量/106 t | 主要残留特征 |
---|---|---|---|---|
地膜 | 0.008‒0.015 | 2‒8 | 1.44 | 薄膜状/PE |
棚膜 | 0.080‒0.120 | 6‒24 | 1.09 | 碎片状、薄膜状/ PE、PP |
0.120‒0.150 | 24‒36 |
表1 中国农用薄膜使用规格及寿命基本情况
Table 1 Basic information on the usage specifications and lifespan of agricultural films in China
种类 | 厚度/mm | 使用寿命/月 | 投入量/106 t | 主要残留特征 |
---|---|---|---|---|
地膜 | 0.008‒0.015 | 2‒8 | 1.44 | 薄膜状/PE |
棚膜 | 0.080‒0.120 | 6‒24 | 1.09 | 碎片状、薄膜状/ PE、PP |
0.120‒0.150 | 24‒36 |
地区 | 地点 | 采样 点数 | 平均丰度/ (ind∙kg−1) | 最高丰度/ (ind∙kg−1) | 最低丰度/ (ind∙kg−1) | 主要形态 | 主要类型 | 参考文献 |
---|---|---|---|---|---|---|---|---|
东北地区 | 辽河流域、 哈尔滨、长春 | 161 | 1.82×102 | 4.86×102 | 33.3 | 薄膜状、碎片状、纤维状 | PE 1)、PP 2)、PET | 刘旭, |
华南地区 | 武汉、杞县、郑州、 长沙、永州、桂林 | 82 | 2.19×103 | 9.54×103 | 25.6 | 薄膜状、纤维状、微珠 | PE、PP、PET 6)、PA 5)、PS 4) | 2020; 胡佳妮, |
华北地区 | 汾河沿岸、延庆、 顺义、保定 | 118 | 6.09×103 | 1.83×104 | 2.91×102 | 薄膜状、碎片状、纤维状、 颗粒状 | PE、PP、PET、PA、UF 7) | Wang et al., 朱宇恩等, |
华东地区 | 上海浦东新区、杭州湾沿岸、绍兴、抚州、烟台、 青岛、德州、寿光 | 87 | 9.59×103 | 4.83×104 | 34.4 | 薄膜状、碎片状、纤维状、颗粒状、发泡类 | PE、PP、PET、PA、UF | 费禹凡等, |
西南地区 | 云贵高原、青藏高原、滇池湖盆区、广元、达州 | 205 | 5.40×103 | 2.06×104 | 38.9 | 薄膜状、碎片状、纤维状、 发泡类 | PE、PP、PET | Huang et al., 胡佳妮, |
西北地区 | 甘肃中东部、张掖、武威、宝鸡、柴达木盆地、湟河流域、石河子、昌吉、塔城、阿拉尔、奎屯、玛纳斯 | 75 | 4.81×103 | 3.43×104 | 80.3 | 薄膜状、碎片状、颗粒状 | PE、PP、PET、PA、PS、 PVC 3)、UF | Huang et al., 宋佃星等, 021 |
表2 中国表层农田土壤中微塑料赋存特征
Table 2 Distribution characteristics of microplastics in surface farmland soil in China
地区 | 地点 | 采样 点数 | 平均丰度/ (ind∙kg−1) | 最高丰度/ (ind∙kg−1) | 最低丰度/ (ind∙kg−1) | 主要形态 | 主要类型 | 参考文献 |
---|---|---|---|---|---|---|---|---|
东北地区 | 辽河流域、 哈尔滨、长春 | 161 | 1.82×102 | 4.86×102 | 33.3 | 薄膜状、碎片状、纤维状 | PE 1)、PP 2)、PET | 刘旭, |
华南地区 | 武汉、杞县、郑州、 长沙、永州、桂林 | 82 | 2.19×103 | 9.54×103 | 25.6 | 薄膜状、纤维状、微珠 | PE、PP、PET 6)、PA 5)、PS 4) | 2020; 胡佳妮, |
华北地区 | 汾河沿岸、延庆、 顺义、保定 | 118 | 6.09×103 | 1.83×104 | 2.91×102 | 薄膜状、碎片状、纤维状、 颗粒状 | PE、PP、PET、PA、UF 7) | Wang et al., 朱宇恩等, |
华东地区 | 上海浦东新区、杭州湾沿岸、绍兴、抚州、烟台、 青岛、德州、寿光 | 87 | 9.59×103 | 4.83×104 | 34.4 | 薄膜状、碎片状、纤维状、颗粒状、发泡类 | PE、PP、PET、PA、UF | 费禹凡等, |
西南地区 | 云贵高原、青藏高原、滇池湖盆区、广元、达州 | 205 | 5.40×103 | 2.06×104 | 38.9 | 薄膜状、碎片状、纤维状、 发泡类 | PE、PP、PET | Huang et al., 胡佳妮, |
西北地区 | 甘肃中东部、张掖、武威、宝鸡、柴达木盆地、湟河流域、石河子、昌吉、塔城、阿拉尔、奎屯、玛纳斯 | 75 | 4.81×103 | 3.43×104 | 80.3 | 薄膜状、碎片状、颗粒状 | PE、PP、PET、PA、PS、 PVC 3)、UF | Huang et al., 宋佃星等, 021 |
[1] |
BOMBELLI P, HOWE C J, BERTOCCHINI F, 2017. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella[J]. Current Biology, 27(8): R292-R293.
DOI URL |
[2] |
BRANDON J, GOLDSTEIN M, OHMAN M D, 2016. Long-term aging and degradation of micro-plastic particles: comparing in situ oceanic and experimental weathering patterns[J]. Marine Pollution Bulletin, 110(1): 299-308.
DOI URL |
[3] |
COX K D, COVERNTON G A, DAVIES H L, et al., 2019. Human consumption of microplastics[J]. Environmental Science & Technology, 53(12): 7068-7074.
DOI URL |
[4] |
DANOPOULOS E, TWIDDY M, WEST R, et al., 2022. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells[J]. Journal of Hazardous Materials, 427: 127861.
DOI URL |
[5] |
DE-LA-TORRE G E, DIOSES-SALINAS D C, DOBARADARAN S, et al., 2022. Release of phthalate esters (PAEs) and micro-plastics (MPs) from face masks and gloves during the COVID-19 pandemic[J]. Environmental Research, 215(Part 2): 114337.
DOI URL |
[6] |
DING L, ZHANG S Y, WANG X Y, et al., 2020. The occurrence and distribution characteristics of micro-plastics in the agricultural soils of Shaanxi Province, in north-western China[J]. Science of the Total Environment, 720: 137525.
DOI URL |
[7] |
FEI Y F, HUANG S Y, ZHANG H B, et al., 2020. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil[J]. Science of The Total Environment, 707: 135634.
DOI URL |
[8] | FOOD AND AGRICULTURE ORGANIZATION, 2021. Assessment of agricultural plastics and their sustainability: A call for action[R]. Rome: State of Food and Agriculture: 11-13. |
[9] |
GAO R R, LIU R, SUN C M, 2022. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene[J]. Journal of Hazardous Materials, 431: 128617.
DOI URL |
[10] |
GAO R R, SUN C M, 2021. A marine bacterial community capable of degrading poly (ethylene terephthalate) and polyethylene[J]. Journal of Hazardous Materials, 416: 125928.
DOI URL |
[11] |
HE H J, WANG Z H, GUO L, et al., 2018. Distribution characteristics of residual film over a cotton field under long-term film mulching and drip irrigation in an oasis agroecosystem[J]. Soil and Tillage Research, 180: 194-203.
DOI URL |
[12] |
HU X J, YU Q, WAIGI M G, et al., 2022. Microplastics-sorbed phenanthrene and its derivatives are highly bioaccessible and may induce human cancer risks[J]. Environment International, 168: 107459.
DOI URL |
[13] |
HUANG B, SUN L Y, LIU M R, et al., 2021. Abundance and distribution characteristics of micro-plastic in plateau cultivated land of Yunnan Province, China[J]. Environmental Science and Pollution Research, 28(2): 1675-1688.
DOI |
[14] |
HUANG Y, LIU Q, JIA W Q, et al., 2020. Agricultural plastic mulching as a source of micro-plastics in the terrestrial environment[J]. Environmental Pollution, 260: 114096.
DOI URL |
[15] |
HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al., 2017. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 7(1): 1-7.
DOI |
[16] |
IQBAL S, XU J C, ALLEN S D, et al., 2020. Unraveling consequences of soil micro-and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity[J]. Chemosphere, 260: 127578.
DOI URL |
[17] |
LESLIE H A, VAN VELZEN M J, BRANDSMA S H, et al., 2022. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 163: 107199.
DOI URL |
[18] |
LI H X, LU X Q, WANG S Y, et al., 2021. Vertical migration of micro-plastics along soil profile under different crop root systems[J]. Environmental Pollution, 278: 116833.
DOI URL |
[19] |
LI J, SONG Y, CAI Y B, 2020. Focus topics on micro-plastics in soil: analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 257: 113570.
DOI URL |
[20] |
LI S T, DING F, FLURY M, et al., 2022. Macro-and micro-plastic accumulation in soil after 32 years of plastic film mulching[J]. Environmental Pollution, 300: 118945.
DOI URL |
[21] |
LIAN Y H, LIU W T, SHI R Y, et al., 2022. Effects of polyethylene and polylactic acid micro-plastics on plant growth and bacterial community in the soil[J]. Journal of Hazardous Materials, 435: 129057.
DOI URL |
[22] |
LIN J L, YAN D Y, FU J W, et al., 2020. Ultraviolet-C and vacuum ultraviolet inducing surface degradation of micro-plastics[J]. Water Research, 186: 116360.
DOI URL |
[23] |
LIU C G, LI J, ZHANG Y L, et al., 2019. Widespread distribution of PET and PC micro-plastics in dust in urban China and their estimated human exposure[J]. Environment International, 128: 116-124.
DOI URL |
[24] |
LIU L C, XU M J, YE Y H, et al., 2022. On the degradation of (micro) plastics: Degradation methods, influencing factors, environmental impacts[J]. Science of The Total Environment, 806(Part 3): 151312.
DOI URL |
[25] |
MACHADO A A D S, LAU C W, KLOAS W, et al., 2019. Micro-plastics can change soil properties and affect plant performance[J]. Environmental science & technology, 53(10): 6044-6052.
DOI URL |
[26] |
MENG F R, FAN T L, YANG X M, et al., 2020. Effects of plastic mulching on the accumulation and distribution of macro and micro plastics in soils of two farming systems in Northwest China[J]. PeerJ, 8: e10375.
DOI URL |
[27] |
MOHAMED NOR N H, KOOI M, DIEPENS N J, et al., 2021. Lifetime accumulation of micro-plastic in children and adults[J]. Environmental Science & Technology, 55(8): 5084-5096.
DOI URL |
[28] |
RAGUSA A, NOTARSTEFANO V, SVELATO A, et al., 2022. Raman Microspectroscopy Detection and Characterisation of Micro-plastics in Human Breastmilk[J]. Polymers, 14(13): 2700.
DOI URL |
[29] |
RAGUSA A, SVELATO A, SANTACROCE C, et al., 2021. Plasticenta: First evidence of micro-plastics in human placenta[J]. Environment International, 146: 106274.
DOI URL |
[30] |
REN S Y, NI H G, 2022. A method for measuring the emissions of in situ agricultural plastic film microplastics by ultraviolet and mechanical abrasion[J]. Science of The Total Environment, 819: 152041.
DOI URL |
[31] |
SCHWABL P, KOPPEL S, KONIGSHOFER P, et al., 2019. Detection of various micro-plastics in human stool: A prospective case series[J]. Annals of Internal Medicine, 171(7): 453-457.
DOI URL |
[32] |
SHEN M C, ZHANG Y X, ZHU Y, et al., 2019. Recent advances in toxicological research of nanoplastics in the environment: A review[J]. Environmental Pollution, 252(Part A): 511-521.
DOI URL |
[33] |
TIAN X, YANG M N, GUO Z L, et al., 2022. Plastic mulch film induced soil micro-plastic enrichment and its impact on wind-blown sand and dust[J]. Science of The Total Environment, 813: 152490.
DOI URL |
[34] | UNITED NATIONS ENVIRONMENT PROGRAMME, 2021. From Pollution to Solution: A global assessment of marine litter and plastic pollution[R]. Nairobi: United Nations Environment Programme: 4-7. |
[35] |
VETHAAK A D, LEGLER J, 2021. Micro-plastics and human health[J]. Science, 371(6530): 672-674.
DOI URL |
[36] |
WANG K, CHEN W, TIAN J Y, et al., 2022a. Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China[J]. Science of The Total Environment, 828: 154544.
DOI URL |
[37] |
WANG K, LI J H, ZHAO L W, et al., 2021. Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene micro-plastics exposure risks[J]. Journal of Hazardous Materials, 402: 123828.
DOI URL |
[38] |
WANG S Y, FAN T L, CHENG W L, et al., 2022b. Occurrence of macro-plastic debris in the long-term plastic film-mulched agricultural soil: A case study of Northwest China[J]. Science of The Total Environment, 831: 154881.
DOI URL |
[39] |
WU D, FENG Y D, WANG R, et al., 2022. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence[J]. Journal of Advanced Research, 49: 141-150.
DOI PMID |
[40] |
XUE X D, FANG C R, D H F, 2021. Adsorption behaviors of the pristine and aged thermoplastic polyurethane micro-plastics in Cu(II)-OTC coexisting system[J]. Journal of Hazardous Materials, 407: 124835.
DOI URL |
[41] |
YOSHIDA S, HIRAGA K, TAKEHANA T, et al., 2016, A bacterium that degrades and assimilates poly (ethylene terephthalate)[J]. Science, 351(6278): 1196-1199.
DOI URL |
[42] |
ZHANG H X, HUANG Y M, AN S H, et al., 2022a. Land-use patterns determine the distribution of soil micro-plastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau[J]. Journal of Hazardous Materials, 426: 127806.
DOI URL |
[43] |
ZHANG J R, REN S Y, XU W, et al., 2022b. Effects of plastic residues and micro-plastics on soil ecosystems: A global meta-analysis[J]. Journal of Hazardous Materials, 435: 129065.
DOI URL |
[44] | 陈玉玲, 2020. 微塑料在武汉城郊菜地土壤中的污染现状及其对赤子爱胜蚓的生态毒理研究[D]. 武汉: 中国科学院大学(中国科学院武汉植物园): 16-17. |
CHEN Y L, 2020. Pollution Status of Vegetable Soil in Suburb of Wuhan, micro-plastics and Its Eco-toxicological Study on Eisenia foetida [D]. Wuhan:University of Chinese Academy of Sciences (Wuhan Botanical Garden, Chinese Academy of Sciences): 16-17. | |
[45] | 程万莉, 樊廷录, 王淑英, 等, 2020. 我国西北覆膜农田土壤微塑料数量及分布特征[J]. 农业环境科学学报, 39(11): 2561-2568. |
CHENG W L, FAN T L, WANG S Y, et al., 2020. Quantity and distribution of micro-plastics in film mulching farmland soil of Northwest China[J]. Journal of Agriculture Environment Science, 39(11): 2561-2568. | |
[46] | 程亚莉, 2021. 微塑料与莠去津单一及复合暴露对蚯蚓的毒性效应[D]. 泰安: 山东农业大学: 42-43. |
CHENG Y L, 2021. Toxic effects of single and combined exposure of micro-plastics and atrazine on earthworms[D]. Taian: Shandong Agricultural University: 42-43. | |
[47] | 陈荣龙, 陈延华, 黄珊, 等, 2022. 陕西关中农田土壤中塑料碎片和微塑料残留及其累积特征研究[J]. 中国生态农业学报(中英文), 30(10): 1649-1658. |
CHEN R L, CHEN Y H, HUANG S, et al., 2022. Study on the residue and accumulation characteristics of plastic fragments and micro-plastics in farmland soil in Guanzhong, Shaanxi[J]. Chinese Journal of Ecological Agriculture (English and Chinese), 30(10): 1649-1658 | |
[48] |
冯三三, 卢宏玮, 姚天次, 等, 2021. 青藏高原典型区微塑料分布特征及来源分析[J]. 地理学报, 76(9): 2130-2141.
DOI |
FENG S S, LU H W, YAO T C, et al., 2021. Distribution characteristics and source analysis of micro-plastics in typical areas of Qinghai Tibet Plateau[J]. Journal of Geography, 76(9): 2130-2141. | |
[49] | 费禹凡, 黄顺寅, 王佳青, 等, 2021. 设施农业土壤微塑料污染及其对细菌群落多样性的影响[J]. 科学通报, 66(13): 1592-1601. |
FEI Y F, HUANG S Y, WANG J Q, et al., 2021. Micro-plastics pollution of protected agricultural soil and its influence on bacterial community diversity[J]. Scientific Bulletin, 66(13): 1592-1601. | |
[50] | 国家市场监督管理总局, 国家标准化管理委员会, 2021. 生物降解塑料与制品降解性能及标识要求: GB/T 41010—2021[S]. 北京: 中国标准出版社: 1-14. |
STATE ADMINISTRATION FOR MARKET REGULATION, NATIONAL STANDARDIZATION ADMINISTRATION, 2021. Biodegradable plastics and products - Degradation performance and labeling requirements: GB/T 41010-2021[S]. Beijing: China Standards Publishing House: 1-14. | |
[51] | 胡灿, 王旭峰, 陈学庚, 等, 2019. 新疆农田残膜污染现状及防控策略[J]. 农业工程学报, 35(24): 223-234. |
HU C, WANG X F, CHEN X G, et al., 2019. Current situation and control strategies of residual film pollution in Xinjiang[J]. Journal of Agricultural Engineering, 35(24): 223-234. | |
[52] | 韩丽花, 徐笠, 李巧玲, 等, 2021. 辽河流域土壤中微 (中) 塑料的丰度、特征及潜在来源[J]. 环境科学, 42(4): 1781-1790. |
HAN L H, XU L, LI Q L, et al., 2021. Abundance, characteristics and potential sources of micro-plastics in soils of Liaohe River Basin[J]. Environmental Science, 42(4): 1781-1790. | |
[53] | 胡佳妮, 2021. 农田土壤中微塑料污染特征和典型塑料地膜的环境行为研究[D]. 上海: 华东师范大学: 19. |
HU J N, 2021. Study on pollution characteristics of micro-plastics in farmland and environmental behavior of typical plastic film[D]. Shanghai:East China Normal University: 19. | |
[54] |
靳拓, 薛颖昊, 张明明, 等, 2020. 国内外农用地膜使用政策、执行标准与回收状况[J]. 生态环境学报, 29(2): 411-420.
DOI |
JIN T, XUE Y H, ZHANG M M, et al., 2020. Research advances in regulations, standards and recovery of mulch film[J]. Journal of Ecological Environment, 29(2): 411-420. | |
[55] | 纪红, 陈修文, 赵宏利, 等, 2021. 微塑料对高等植物生长发育影响研究进展[J]. 科学技术与工程, 21(18): 7415-7424. |
JI H, CHEN X W, ZHAO H L, et al., 2021. Research Advances of the Influence of Micro-plastics on the Growth and Development of Higher Plants[J]. Science Technology and Engineering, 21(18): 7415-7424. | |
[56] | 刘亚菲, 2018. 滇池湖滨农田土壤中微塑料数量及分布研究[D]. 昆明: 云南大学: 38. |
LIU Y F, 2018. Quantity and distribution of micro-plastics in farmland soil of lake shore in Dianchi Lake[D]. Kunming: Yunnan University: 38. | |
[57] | 梁荣庆, 陈学庚, 张炳成, 等, 2019. 新疆棉田残膜回收方式及资源化再利用现状问题与对策[J]. 农业工程学报, 35(16): 1-13. |
LIANG R Q, CHEN X G, ZHANG B C, et al., 2019. The current situation, problems and countermeasures of the recovery methods and recycling of residual film in cotton fields in Xinjiang[J] Journal of Agricultural Engineering, 35(16): 1-13. | |
[58] | 刘旭, 2019. 典型黑土区耕地土壤微塑料空间分布特征[D]. 哈尔滨: 东北农业大学: 19. |
LIU X, 2019. Spatial distribution characteristics of micro-plastics in cultivated soil in typical black soil region[D]. Haerbin: Northeastern Agricultural University: 19. | |
[59] | 连加攀, 沈玫玫, 刘维涛, 2019. 微塑料对小麦种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 38(4): 737-745. |
LIAN J P, SHEN M M, LIU W T, 2019. Effects of micro-plastics on wheat seed germination and seedling growth[J]. Journal of Agro-Environment Science, 38(4): 737-745. | |
[60] | 李连祯, 周倩, 尹娜, 等, 2019. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 64(9): 928-934. |
LI L Z, ZHOU Q, YIN N, et al., 2019. Uptake and accumulation of micro-plastics in an edible plant[J]. Chinese Science Bulletin, 64(9): 928-934. | |
[61] | 李文婷, 杨三维, 韩小英, 2022. 我国农用地膜污染治理方式研究进展[J]. 安徽农业科学, 50(16): 10-13, 19. |
LI W TI, YANG S W, HAN X Y, 2022. Research progress in the treatment of agricultural film pollution in China[J]. Anhui Agricultural Science, 50(16): 10-13, 19. | |
[62] | 刘琳琳, 王鹏, 孙曙光, 等, 2022. 四川广元植烟土壤微塑料分布状况分析[J/OL]. 中国烟草学报, 16(34): 8[2022-07-29]. https://kns.cnki.net/kcms/detail/11.2985. |
LIU L L, WANG P, SUN S G, et al., 2022. Analysis of micro-plastics distribution in tobacco-growing soil in Guangyuan, Sichuan[J/OL]. Acta Tabacaria Sinica, 16(34)8 [2022-07-29]. https://kns.cnki.net/kcms/detail/11.2985. | |
[63] | 刘鑫蓓, 董旭晟, 解志红, 等, 2022. 土壤中微塑料的生态效应与生物降解[J]. 土壤学报, 59(2): 349-363. |
LIU X B, DONG X S, XIE Z H, et al., 2022. Ecological effect and biodegradation of micro-plastics in middle soil[J]. Journal of Soil Science, 59(2): 349-363. | |
[64] | 马志峰, 2021. 微塑料介导下荧蒽对蚯蚓的毒理学作用[D]. 太原: 山西大学: 24-25. |
MA Z F, 2021. Toxicological effects of fluoranthene on earthworms mediated by micro-plastics[D]. Taiyuan: Shanxi University: 24-25. | |
[65] | 戚瑞敏, 2021. 中国典型覆膜农区土壤微塑料特征及生态效应[D]. 北京: 中国农业科学院: 25-28. |
QI R M, 2021. Characteristics and ecological effects of soil micro-plastics in typical plastic film-covered agricultural areas of China[D]. Beijing: China Academy of Agricultural Sciences: 25-28. | |
[66] | 宋佃星, 马莉, 王全九, 2021. 宝鸡地区典型农田土壤中微塑料赋存特征及其环境效应研究[J]. 干旱区资源与环境, 35(2): 170-175. |
SONG D X, MA L, WANG Q J, 2021. Occurrence characteristics and environmental effects of micro-plastics in typical farmland soils in Baoji area[J]. Journal of Arid Land Resources and Environment, 35(2): 170-175. | |
[67] | 时馨竹, 孙丽娜, 李珍, 等, 2021. 沈阳周边农田土壤中微塑料组成与分布[J]. 农业环境科学学报, 40(7): 1498-1508. |
SHI X Z, SUN L N, LI Z, 2021. Composition and distribution of micro-plastics in farmland soil around Shenyang[J]. Journal of Agriculture Environment Science, 40(7): 1498-1508. | |
[68] | 汤秋香, 何文清, 王亮, 等, 2016. 地膜覆盖应用及残留污染防控概述[J]. 新疆农机化 (5): 5-8. |
TANG Q X, HE W Q, WANG L, et al., 2016. Overview of application of plastic film mulching and residual pollution prevention and control[J]. Xinjiang Agricultural Mechanization (5): 5-8. | |
[69] | 王亮, 2017. 残膜量和灌溉量对棉田水氮利用特征的影响及其生理机制研究[D]. 乌鲁木齐: 新疆农业大学: 4-6. |
WANG L, 2017. Effect on Water-Nitrate Utilization Characteristics under Residue Plastic Film and Irrigation and Its Physiological Mechanism Research in Cotton Field[D]. Wulumuqi:Xinjiang Agricultural University: 4-6. | |
[70] | 吾兰∙恩特马克 (Wulan∙Entemake), 2021. 外源添加微塑料对土壤性质和玉米生长的影响研究[D]. 杨凌: 西北农林科技大学. |
ENTEMAKE W, 2021. Effects of exogenous micro-plastics on soil properties and corn growth[D]. Yangling: Northwest A & F University. | |
[71] | 王志超, 张博文, 倪嘉轩, 等, 2022. 微塑料对土壤水分入渗和蒸发的影响[J]. 环境科学, 43(8): 4394-4401. |
WANG Z C, ZHANG B W, NI J X, et al., 2022. Effects of micro-plastics on soil water infiltration and evaporation[J]. Environmental Science, 43(8): 4394-4401. | |
[72] | 徐湘博, 孙明星, 张林秀, 等, 2021. 土壤微塑料污染研究进展与展望[J]. 农业资源与环境学报, 38(1): 1-9. |
XU X B, SUN M X, ZHANG L X, et al., 2021. Research progress and prospect of soil micro-plastic pollution[J]. Journal of Agricultural Resources and Environment, 38(1): 1-9. | |
[73] | 严昌荣, 刘恩科, 舒帆, 等, 2014. 我国地膜覆盖和残留污染特点与防控技术[J]. 农业资源与环境学报, 31(2): 95-102. |
YAN C R, LIU E K, SHU F, et al., 2014. Characteristics and prevention and control technology of film mulching and residual pollution in China[J]. Journal of Agricultural Resources and Environment, 31(2): 95-102. | |
[74] | 严昌荣, 王序俭, 何文清, 等, 2008. 新疆石河子地区棉田土壤中地膜残留研究[J]. 生态学报, 28(7): 3470-3474. |
YAN C R, WANG X J, HE W Q, et al., 2008. Study on residue of plastic film in cotton field soil in Shihezi region, Xinjiang[J]. Journal of Ecology, 28(7): 3470-3474. | |
[75] | 严昌荣, 2019. 塑料地膜与中国农业[C]// 中国化学会. 中国化学会第一届农业化学学术讨论会论文集. 扬州: 135. |
YAN C R, 2019. Plastic film and Chinese agriculture[C]// Chinese Chemical Society. Proceedings of the first symposium on Agricultural Chemistry of the Chinese Chemical Society. Yangzhou: 135. | |
[76] | 杨扬, 何文清, 2021. 农田土壤微塑料污染现状与进展[J]. 环境工程, 39(5): 156-164, 15. |
YANG Y, HE W Q, 2021. Status and progress of micro-plastics pollution in farmland[J]. Environmental Engineering, 39(5): 156-164, 15. | |
[77] | 于庆鑫, 刘硕, 马丽娜, 等, 2023. 哈尔滨农田土壤中微塑料的赋存特征及影响因素分析[J]. 中国环境科学, 43(2):793-799. |
YU Q X, LIU S, MA L N, et al., 2023. Analysis of occurrence characteristics and influencing factors of micro plastics in farmland soil in Harbin[J]. China Environmental Science, 43(2): 793-799. | |
[78] | 张伟平, 2020. 农田土壤微塑料的分离及其对污染物的吸附特征研究[D]. 郑州: 河南大学: 22. |
ZHANG W P, 2020. Separation of micro-plastics from farmland and its adsorption characteristics of pollutants[D]. Zhengzhou: Henan University: 22. | |
[79] | 张宇恺, 2021. 上海农田土壤中微塑料分布及对重金属吸附特征研究[D]. 上海: 上海第二工业大学: 14-22. |
ZHANG Y K, 2021. Distribution of micro-plastics in Shanghai farmland soil and its adsorption characteristics of heavy metals[D]. Shanghai: Shanghai Polytechnic University: 14-22. | |
[80] | 朱宇恩, 文瀚萱, 李唐慧娴, 等, 2021. 汾河沿岸农田土壤微塑料分布特征及成因解析[J]. 环境科学, 42(8): 3894-3903. |
ZHU Y E, WEN H X, LI TANG H X, et al., 2021. Distribution and Sources of Micro-plastics in Farmland Soil Along the Fenhe River[J]. Environmental Science, 42(8): 3894-3903. | |
[81] | 周薇, 2021. 微塑料对农田土壤有机碳矿化的影响[D]. 杨凌: 西北农林科技大学: 27. |
ZHOU W, 2021. Effect of micro-plastics on mineralization of organic carbon in farmland soil[D]. Yangling: Northwest A & F University: 27. | |
[82] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2010. 农田地膜残留量限值及测定标准: GB/T 25413—2010 [S]. 北京: 中国标准出版社: 1. |
general administration of quality supervision, inspection and quarantine of the people's republic of china, national standardization administration of china, 2010. Limits and determination standards for residual film in farmland:GB/T 25413-2010 [S]. Beijing: China Standards Publishing House: 1. | |
[83] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. 聚乙烯吹塑农用地膜覆盖薄膜: GB 13735—2017 [S]. 北京: 中国标准出版社: 2. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China, 2017. Polyethylene blown agricultural film covering film: GB 13735—2017 [S]. Beijing: China Standards Publishing House: 2. | |
[84] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. 全生物降解农用地面覆盖薄膜: GB/T 35795—2017 [S]. 北京: 中国标准出版社: 1-9. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China, 2017. Fully biodegradable agricultural floor covering film: GB/T 35795—2017 [S]. Beijing: China Standards Publishing House: 1-9. | |
[85] | 中华人民共和国农业农村部, 2021. 全生物降解地膜土壤环境评价技术规范(征求意见稿) [S]. 北京: 中国标准出版社: 1-12. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2021. Technical Specification for Environmental Assessment of Fully Biodegradable Plastic Film Soil (Draft for Soliciting Opinions) [S]. Beijing: China Standards Publishing House: 1-12. |
[1] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[2] | 李航, 陈金平, 丁兆华, 舒洋, 魏江生, 赵鹏武, 周梅, 王宇轩, 梁驰昊, 张轶超. 火干扰对兴安落叶松林土壤氮组分及土壤中氮循环功能基因的影响[J]. 生态环境学报, 2023, 32(9): 1563-1573. |
[3] | 房园, 梁中, 张毓涛, 师庆东, 孙雪娇, 李吉玫, 李翔, 董振涛. 天山云杉森林生态系统的水源涵养能力海拔梯度变化特征[J]. 生态环境学报, 2023, 32(9): 1574-1584. |
[4] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[5] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[6] | 刘晗, 王萍, 孙鲁沅, 秦文婧, 陈晓芬, 陈金, 周国朋, 梁婷, 刘佳, 李燕丽. 种植冬绿肥对红壤幼龄橘园土壤微生物量碳、氮和酶活的影响[J]. 生态环境学报, 2023, 32(9): 1623-1631. |
[7] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[8] | 宁健, 程晓波, 苏超丽, 汤泽平, 余泽峰. 广东省伴生放射性矿周围土壤放射性水平分析[J]. 生态环境学报, 2023, 32(9): 1692-1699. |
[9] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[10] | 王玉琴, 宋梅玲, 周睿, 王宏生. 黄帚橐吾扩散对高寒草甸土壤理化特性及酶活性的影响[J]. 生态环境学报, 2023, 32(8): 1384-1391. |
[11] | 刘晨, 白雪冬, 赵海超, 黄智鸿, 刘松涛, 卢海博, 刘子刚, 刘雪玲. 寒旱区春玉米秸秆还田方式对土壤DOM光谱特征的影响机制[J]. 生态环境学报, 2023, 32(8): 1419-1432. |
[12] | 刘炳妤, 王一佩, 姚作芳, 杨钙仁, 徐晓楠, 邓羽松, 黄钰涵. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析[J]. 生态环境学报, 2023, 32(8): 1507-1515. |
[13] | 范婉仪, 涂晨, 王顺扬, 吴昕优, 李烜桢, 骆永明. 不同品种烟草对轻度污染耕地土壤中镉的累积特征与减量修复潜力[J]. 生态环境学报, 2023, 32(8): 1516-1524. |
[14] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[15] | 赵旭丽, 姚宇阗, 陈超, 黄新琦, 孟天竹. 土壤pH和SO42-含量对设施菜地土壤障碍强还原处理修复的响应[J]. 生态环境学报, 2023, 32(7): 1218-1225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||