生态环境学报 ›› 2023, Vol. 32 ›› Issue (5): 889-897.DOI: 10.16258/j.cnki.1674-5906.2023.05.007
王超1,2,3(), 杨倩楠1,2, 张池3, 刘同旭4, 张晓龙1,2, 陈静1,2, 刘科学1,2,*(
)
收稿日期:
2023-02-28
出版日期:
2023-05-18
发布日期:
2023-08-09
通讯作者:
*刘科学(1980年生),男,副教授,博士,主要从事土地整治与生态修复研究。E-mail: 28257448@qq.com作者简介:
王超(1994年生),男,硕士研究生,主要从事耕地质量提升和土壤结构改良研究。E-mail: wzfaye66@sina.com
基金资助:
WANG Chao1,2,3(), YANG Qiannan1,2, ZHANG Chi3, LIU Tongxu4, ZHANG Xialong1,2, CHEN Jing1,2, LIU Kexue1,2,*(
)
Received:
2023-02-28
Online:
2023-05-18
Published:
2023-08-09
摘要:
磷是亚热带地区土壤重要的限制性营养元素,在维持生态系统功能稳定性中发挥着重要作用。丹霞地貌作为亚热带地区典型的生态退化区,阐明土地利用方式对丹霞地貌土壤磷组分的影响,对丹霞地貌土地的合理利用和地力提升具有重要意义。选择韶关仁化丹霞山典型地貌区4种土地利用方式(乔木林AF、灌木林SL、撂荒草地AG和农田CL)为对象,采用Tiessen磷素分级方法,研究其土壤磷组分特征及有效性的驱动因素。结果表明,丹霞地貌土壤磷组分及其有效性受土地利用方式影响显著。与CL相比,林地土壤(AF和SL)有机磷和无机磷总量显著增加,增幅为71.0%-319.9%和70.5%-346.7%,土壤磷素总水平提高,而CL和AG之间无显著差异。与SL、AG和CL相比,AF土壤速效磷、易分解态磷和中等易分解态磷含量显著增加,土壤磷有效性显著提高。AF土壤难利用态磷也表现出最高的含量,但其占总磷比例显著降低,说明土地利用方式向AF转变有利于难利用磷的分解利用。此外,土地利用方式对土壤微生物量磷和磷酸酶活性(酸性磷酸酶和碱性磷酸酶)亦有显著影响,微生物量磷和碱性磷酸酶均表现为AF>SL>AG>CL,而AF土壤酸性磷酸酶活性显著高于AG和CL,增幅为46.8%和54.8%。相关性结果表明,土壤微生物量磷和磷酸酶活性主要与pH、容重、有机碳含量呈极显著相关,而与土壤铁氧化物含量关系不显著。冗余分析表明,无定型铁和矿质氮是引起丹霞地貌土壤磷组分变化的重要因子,其中无定型铁解释度为86.3%。总之,农田向林地的转化,能有效提高土壤磷水平和生物有效性,其中铁循环系统在维持丹霞地貌土壤高磷活性起到关键作用。
中图分类号:
王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897.
WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain[J]. Ecology and Environment, 2023, 32(5): 889-897.
编号 | 样地类型 | 海拔/m | 地理坐标 | 年限/a | 主要植被 |
---|---|---|---|---|---|
AF | 乔木林 | 268.9 | 25°2′36″N, 113°43′2″E | >30 | 丹霞梧桐(Firmiana danxiaensis H. H. Hsue & H. S. Kiu)、枫香(Liquidambar formosana Hance)、米储(Castanopsis Carlesii) |
SL | 灌木林 | 191.7 | 25°2′38″N, 113°43′28″E | >20 | 南酸枣(Choerospondias axillaris (Roxb.) Burtt et Hill.)、鸭脚木(Schefflera octophylla (Lour.) Harms)、圆叶小石积(Osteomeles subrotunda K. Koch)、芒萁(Dicranopteris dichotoma (Thunb.) Berhn.) |
AG | 撂荒草地 | 117.5 | 25°2′27″N, 113°43′57″E | >10 | 雀稗(Paspalum thunbergii Kunth ex steud.)、狗尾草(Setaria viridis (L.) Beauv.) |
CL | 农田 | 88.0 | 25°2′45″N, 113°43′21″E | >20 | 菜心(Brassica campestris L. ssp.chinensis var.utilis Tsen)、辣椒(Capsicum annuum L.)、玉米(Zea mays L.) |
表1 样地基本信息
Table 1 Condition of different sample plots
编号 | 样地类型 | 海拔/m | 地理坐标 | 年限/a | 主要植被 |
---|---|---|---|---|---|
AF | 乔木林 | 268.9 | 25°2′36″N, 113°43′2″E | >30 | 丹霞梧桐(Firmiana danxiaensis H. H. Hsue & H. S. Kiu)、枫香(Liquidambar formosana Hance)、米储(Castanopsis Carlesii) |
SL | 灌木林 | 191.7 | 25°2′38″N, 113°43′28″E | >20 | 南酸枣(Choerospondias axillaris (Roxb.) Burtt et Hill.)、鸭脚木(Schefflera octophylla (Lour.) Harms)、圆叶小石积(Osteomeles subrotunda K. Koch)、芒萁(Dicranopteris dichotoma (Thunb.) Berhn.) |
AG | 撂荒草地 | 117.5 | 25°2′27″N, 113°43′57″E | >10 | 雀稗(Paspalum thunbergii Kunth ex steud.)、狗尾草(Setaria viridis (L.) Beauv.) |
CL | 农田 | 88.0 | 25°2′45″N, 113°43′21″E | >20 | 菜心(Brassica campestris L. ssp.chinensis var.utilis Tsen)、辣椒(Capsicum annuum L.)、玉米(Zea mays L.) |
利用方式 | 土层深度/cm | pH | w(BD)/(g·cm-3) | w(DOC)/(mg·kg-1) | w(Feo)/(g·kg-1) | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|---|
AF | 0-20 | 6.28±0.13A | 1.08±0.01C | 291±6A | 2.42±0.13B | 15.76±0.32A | 3.90±0.09B |
20-40 | 6.77±0.15A | 1.20±0.01B | 231±6BC | 0.99±0.07D | 4.39±0.46C | 3.56±0.36B | |
SL | 0-20 | 6.01±0.12B | 1.19±0.00B | 274±13AB | 1.72±0.07C | 16.02±0.21A | 3.96±0.07B |
20-40 | 5.91±0.06B | 1.22±0.01B | 254±15A | 1.30±0.09B | 7.05±0.07B | 2.46±0.05D | |
AG | 0-20 | 5.29±0.02C | 1.25±0.03A | 276±8AB | 1.05±0.06D | 1.56±0.20C | 3.57±0.04C |
20-40 | 5.16±0.17C | 1.31±0.01A | 215±8C | 1.12±0.02C | 2.01±0.07D | 2.87±0.14C | |
CL | 0-20 | 5.21±0.04C | 1.28±0.04A | 260±15B | 2.84±0.07A | 8.89±0.33B | 37.22±0.20A |
20-40 | 4.80±0.03D | 1.30±0.04A | 238±11AB | 2.81±0.06A | 7.65±0.19A | 15.93±0.10A |
表2 土壤基本理化性质
Table 2 Basic physicochemical properties of soil samples
利用方式 | 土层深度/cm | pH | w(BD)/(g·cm-3) | w(DOC)/(mg·kg-1) | w(Feo)/(g·kg-1) | w(NH4+-N)/(mg·kg-1) | w(NO3--N)/(mg·kg-1) |
---|---|---|---|---|---|---|---|
AF | 0-20 | 6.28±0.13A | 1.08±0.01C | 291±6A | 2.42±0.13B | 15.76±0.32A | 3.90±0.09B |
20-40 | 6.77±0.15A | 1.20±0.01B | 231±6BC | 0.99±0.07D | 4.39±0.46C | 3.56±0.36B | |
SL | 0-20 | 6.01±0.12B | 1.19±0.00B | 274±13AB | 1.72±0.07C | 16.02±0.21A | 3.96±0.07B |
20-40 | 5.91±0.06B | 1.22±0.01B | 254±15A | 1.30±0.09B | 7.05±0.07B | 2.46±0.05D | |
AG | 0-20 | 5.29±0.02C | 1.25±0.03A | 276±8AB | 1.05±0.06D | 1.56±0.20C | 3.57±0.04C |
20-40 | 5.16±0.17C | 1.31±0.01A | 215±8C | 1.12±0.02C | 2.01±0.07D | 2.87±0.14C | |
CL | 0-20 | 5.21±0.04C | 1.28±0.04A | 260±15B | 2.84±0.07A | 8.89±0.33B | 37.22±0.20A |
20-40 | 4.80±0.03D | 1.30±0.04A | 238±11AB | 2.81±0.06A | 7.65±0.19A | 15.93±0.10A |
图2 土壤有机碳(a)、全氮(b)及碳氮比(c)变化 LU:土地利用方式;SD:土层深度;AF:乔木林;SL:灌木林;AG:撂荒草地;CL:耕地;SOC:有机碳;TN,全氮;C?N:有机碳与全氮的比例。*代表不同土层深度之间差异显著(P<0.05,n=3);不同大写字母表示不同利用方式之间差异显著(P<0.05,n=3)。下同
Figure 2 Changes of soil organic carbon (a), total nitrogen (b) and their ratios (c)
图3 土壤总磷(a)、无机磷(b)和有机磷(c)含量变化 TP:全磷;IP:无机磷;OP:有机磷。下同
Figure 3 Changes of soil total phosphorus (a), inorganic phosphorus (b) and organic phosphorus (c) contents
利用方式 | 土层深度/cm | IP | OP | S-P | L-P | ML-P | O-P |
---|---|---|---|---|---|---|---|
AF | 0-20 | 52.4±0.9C | 47.6±0.9B | 0.88±0.05A | 18.8±0.3A | 33.1±0.3A | 47.2±0.1D |
20-40 | 52.5±0.6C | 47.5±0.6B | 0.66±0.10A | 19.4±0.2A | 33.2±0.4B | 46.7±0.5C | |
SL | 0-20 | 56.3±0.1B | 43.7±0.1C | 0.68±0.10B | 12.6±0.6B | 22.9±0.5C | 63.8±1.0B |
20-40 | 49.5±1.6D | 50.5±1.6A | 0.38±0.06B | 10.2±0.4C | 34.3±0.4A | 55.2±0.2B | |
AG | 0-20 | 61.2±0.3A | 38.8±0.3D | 0.60±0.01B | 7.7±0.5C | 17.3±0.4D | 74.5±0.9A |
20-40 | 56.3±0.3B | 43.7±0.3C | 0.32±0.02B | 10.1±0.9C | 26.6±0.7C | 63.1±1.5A | |
CL | 0-20 | 50.7±0.2D | 49.3±0.2A | 0.44±0.02C | 13.1±0.8B | 27.9±1.8B | 58.5±2.3C |
表3 土壤磷组分占总磷的比例
Table 3 Changes of the percent of soil phosphorus fractions %
利用方式 | 土层深度/cm | IP | OP | S-P | L-P | ML-P | O-P |
---|---|---|---|---|---|---|---|
AF | 0-20 | 52.4±0.9C | 47.6±0.9B | 0.88±0.05A | 18.8±0.3A | 33.1±0.3A | 47.2±0.1D |
20-40 | 52.5±0.6C | 47.5±0.6B | 0.66±0.10A | 19.4±0.2A | 33.2±0.4B | 46.7±0.5C | |
SL | 0-20 | 56.3±0.1B | 43.7±0.1C | 0.68±0.10B | 12.6±0.6B | 22.9±0.5C | 63.8±1.0B |
20-40 | 49.5±1.6D | 50.5±1.6A | 0.38±0.06B | 10.2±0.4C | 34.3±0.4A | 55.2±0.2B | |
AG | 0-20 | 61.2±0.3A | 38.8±0.3D | 0.60±0.01B | 7.7±0.5C | 17.3±0.4D | 74.5±0.9A |
20-40 | 56.3±0.3B | 43.7±0.3C | 0.32±0.02B | 10.1±0.9C | 26.6±0.7C | 63.1±1.5A | |
CL | 0-20 | 50.7±0.2D | 49.3±0.2A | 0.44±0.02C | 13.1±0.8B | 27.9±1.8B | 58.5±2.3C |
图5 土壤微生物量磷(a)、碱性磷酸酶(b)和酸性磷酸酶(c)活性变化 MBP:微生物量磷;ALP:碱性磷酸酶;ACP:酸性磷酸酶。下同
Figure 5 Changes of soil microbial biomass phosphorus (a) and alkaline phosphatase activities (b), acid phosphatase activities (c)
图6 土壤微生物量磷(a)、碱性磷酸酶(b)、酸性磷酸酶(c)与环境因子的相关性
Figure 6 Relationship between soil microbial biomass phosphorus (a), alkaline phosphatase activities (b), acid phosphatase activities (c), and soil physicochemical properties
图7 不同利用方式土壤磷组分的主成分分析(a)和冗余分析(b) IP:无机磷;OP:有机磷;SP:速效磷;L-P:易分解磷;ML-P:中等易分解磷;O-P:难利用磷;MBP:微生物量磷;ALP:碱性磷酸酶;ACP:酸性磷酸酶;BD:容重;DOC:溶解性有机碳;SOC:有机碳;TN:全氮;Feo,无定型铁;*,P<0.05;**,P<0.01
Figure 7 Principal component analysis (a) and redundancy analysis (b) on changes of soil phosphorus fractions under different land uses
[1] |
CAVALCANTE H, ARAUJO F, NOYMA N P, et al., 2018. Phosphorus fractionation in sediments of tropical semiarid reservoirs[J]. Science of the Total Environment, 619-620: 1022-1029.
DOI URL |
[2] |
CHEN C M, JAMES J D, WANG J, et al., 2014. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science and Technology, 48(23): 13751-9.
DOI PMID |
[3] |
CHEN C M, STEVEN J H, ELIZABETH C, et al., 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communication, 11: 2255.
DOI |
[4] |
CHEN Y S, CHEN H P, LI J, et al., 2019. Rapid and efficient activated sludge treatment by electro-Fenton oxidation[J]. Water Research, 152: 181-190.
DOI PMID |
[5] |
FAN Y X, LIN F, YANG L M, et al., 2018. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and Fertility of Soils, 54(1): 149-161.
DOI URL |
[6] | FU D G, WU X N, DUAN C Q, et al., 2020. Response of soil phosphorus fractions and fluxes to different vegetation restoration types in a subtropical mountain ecosystem[J]. Catena, 193: 104663. |
[7] |
FUJITA K, KUNITO T, MORO H, et al., 2017. Microbial resource allocation for phosphatase synthesis reflects the availability of inorganic phosphorus across various soils[J]. Biogeochemistry, 136(3): 325-339.
DOI |
[8] | HERBERT E R, BOON P A, 2015. Global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands[J]. Ecosphere, 5(10): 1-43. |
[9] |
HOU E Q, CHEN C R, KUANG Y W, et al., 2016. A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils[J]. Global Biogeochemical Cycles, 30(9): 1300-1309.
DOI URL |
[10] |
HOULTON B Z, WANG Y P, VITOUSEK P M, et al., 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 454(7202): 327-30.
DOI |
[11] |
LI Z X, YANG W, CAI C F, et al., 2013. Aggregate mechanical stability and relationship with aggregate breakdown under simulated rainfall[J]. Soil Science, 178(7): 369-377.
DOI URL |
[12] |
MA H L, TECIMEN H B, MA F, et al., 2022. Different responses of soil nitrogen to combined addition of labile carbon sources with fresh versus decomposed litter[J]. Journal of Plant Nutrition and Soil Science, 185(2): 232-242.
DOI URL |
[13] | MAGADLELA A, LEMBEDE Z, EGBEWALE S O, et al., 2023. The metabolic potential of soil microorganisms and enzymes in phosphorus-deficient kwazulu-natal grassland ecosystem soils[J]. Applied Soil Ecology, 181: 104647. |
[14] |
MANDER C, WAKELIN S, YOUNG S, et al., 2012. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils[J]. Soil Biology and Biochemistry, 44(1): 93-101.
DOI URL |
[15] |
MARANGUIT D, GUILLAUME T, KUZYAKOV Y, 2017. Land-use change affects phosphorus fractions in highly weathered tropical soils[J]. Catena, 149(Part 1): 385-393.
DOI URL |
[16] |
REDEL Y, RUBIO R, GODOY R, et al., 2008. Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems[J]. Geoderma, 145(3): 216-221.
DOI URL |
[17] |
SANTOS S R, SILVA E D B, ALLEONI L R F, et al., 2017. Citric acid influence on soil phosphorus availability[J]. Journal of Plant Nutrition, 40(15): 2138-2145.
DOI URL |
[18] |
SUN D S, BI Q F, LI K J, et al., 2018. Significance of temperature and water availability for soil phosphorus transformation and microbial community composition as affected by fertilizer sources[J]. Biology and Fertility of Soils, 54(2): 229-241.
DOI URL |
[19] |
TIAN J H, LU X, CHEN Q Q, et al., 2020. Phosphorus fertilization affects soybean rhizosphere phosphorus dynamics and the bacterial community in karst soils[J]. Plant and Soil, 475: 137-152.
DOI |
[20] | TIESSEN H, MOIR J, 1993. Characterization of available P by sequential extraction[M]/Carter M R, Gregorich E G. Soil sampling and Methods of Analysis. 2nd Edition. Boca Raton: CRC Press, 7: 225-229. |
[21] |
TURNER B L, LAMBERS H, CONDRON L M, et al., 2013. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development[J]. Plant and Soil, 367: 225-234.
DOI URL |
[22] |
WANG S J, LIU Q M, ZHANG D F. 2010. Karst rocky desertification in southwestern China: Geomorphology, land use, impact and rehabilitation[J]. Land Degradation & Development, 15(2): 115-121.
DOI URL |
[23] |
WEIHRAUCH C, OPP C, 2018. Ecologically relevant phosphorus pools in soils and their dynamics: The story so far[J]. Geoderma, 325: 183-194.
DOI URL |
[24] |
YAN L B, PENG H, ZHANG S, et al., 2019. The spatial patterns of red beds and danxia landforms: Implication for the formation factors-China[J]. Scientific Reports, 9: 1961.
DOI PMID |
[25] |
ZHANG H X, SHI L L, WEN D Z, et al., 2016. Soil potential labile but not occluded phosphorus forms increase with forest succession[J]. Biology and Fertility of Soils, 52: 41-51.
DOI URL |
[26] | ZHANG Y Q, FINN D, BHATTACHARYYA R, et al., 2021. Long-term changes in land use influence phosphorus concentrations, speciation, and cycling within subtropical soils[J]. Geoderma, 393: 115010. |
[27] | 陈苏, 马鸿岳, 陈影, 等, 2021. 纳米羟基磷灰石对小麦植物酶及土壤酶活性的影响研究[J]. 安全与环境学报, 21(3): 1249-1256. |
CHEN S, MA H Y, SHAN Y, et al., 2021. Effect of nano-hydroxyapatite on plant enzyme and soil enzyme activity in wheat[J]. Journal of Safety and Environment, 21(3): 1249-1256. | |
[28] |
何祖霞, 严岳鸿, 马其侠, 等, 2012. 湖南丹霞地貌区的苔藓植物多样性[J]. 生物多样性, 20(4): 522-526.
DOI |
HE Z X, YAN Y H, MA Q X, et al., 2012. The bryophyte diversity of the danxia landform in Hunan, China[J]. Biodiversity Science, 20(4): 522-526.
DOI URL |
|
[29] | 齐德利, 颜明, 闫丹, 等, 2016. 中国丹霞地貌的面积概算——粤北坪石红层盆地的实证研究[J]. 山地学报, 34(2): 134-141. |
QI D L, YAN M, YAN D, et al., 2016. Estimate area of danxia landform in China-an empirical research on pingshi red-beds basin in northern Guangdong[J]. Mountain Research, 34(2): 134-141. | |
[30] | 钱前, 章润阳, 刘坤平, 等, 2022. 喀斯特不同土地利用方式和生态恢复模式的土壤磷素特征[J]. 生态学杂志, 41(11): 2128-2136 |
QIAN Q, ZHANG R Y, LIU K P, et al., 2022. Soil phosphorus characteristics of different land use and ecological restoration types in karst ecosystem[J]. Chinese Journal of Ecology, 41(11): 2128-2136. | |
[31] | 张甘霖, 龚子同, 2012. 土壤调查实验室分析方法[M]. 北京: 科学出版社. |
ZHANG G L, GONG Z T, 2012. Soil survey laboratory methods[M]. Beijing: Science press. | |
[32] | 张磊, 贾淑娴, 李啸灵, 等, 2022. 亚热带米槠天然林凋落物和根系输入变化对土壤磷组分的影响[J]. 生态学报, 42(2): 656-666. |
ZHANG L, JIA S X, LI X L, et al., 2022. Effects of litter and root inputs changes on soil phosphorus fractions in a subtropical natural forest of Castanopsis carlesii[J]. Acta Ecologica Sinica, 42(2): 656-666. |
[1] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[2] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[3] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[4] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[5] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[6] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[7] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[8] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
[9] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[10] | 苏泳松, 宋松, 陈叶, 叶子强, 钟润菲, 王昭尧. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022, 31(8): 1599-1609. |
[11] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[12] | 陈文裕, 夏丽华, 徐国良, 余世钦, 陈行, 陈金凤. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7): 1306-1316. |
[13] | 吕贵方, 吴颖欣, 董长勋, 卢阳, 周玥, 曾文军, 吴文成. 腐殖酸和吐温-80对微米镍铁/多氯联苯体系的传质调控研究[J]. 生态环境学报, 2022, 31(7): 1456-1464. |
[14] | 王超, 杨倩楠, 张池, 李祥东, 陈静, 张晓龙, 陈金洁, 刘科学. 东南湿润区典型丹霞地貌土壤有机碳组分及其敏感性研究[J]. 生态环境学报, 2022, 31(6): 1132-1140. |
[15] | 段文军, 李达, 李冲. 5种不同林龄尾巨桉人工林林下植物多样性及其影响因素分析[J]. 生态环境学报, 2022, 31(5): 857-864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||