生态环境学报 ›› 2020, Vol. 29 ›› Issue (6): 1277-1284.DOI: 10.16258/j.cnki.1674-5906.2020.06.025
• 综述 •
上一篇
刘红梅1(), 李睿颖1, 高晶晶1, 朱平2, 路杨2, 高洪军2, 张贵龙1, 张秀芝2, 彭畅2, 杨殿林1,*(
)
收稿日期:
2020-01-17
出版日期:
2020-06-18
发布日期:
2020-08-31
通讯作者:
* 杨殿林(1965年生),男,研究员,主要从事生物多样性与生态农业研究。E-mail: yangdianlin@caas.cn作者简介:
刘红梅(1976年生),女,副研究员,从事生物多样性与生态农业研究。E-mail: liuhongmei@caas.cn
基金资助:
LIU Hongmei1(), LI Ruiying1, GAO Jingjing1, ZHU Ping2, LU Yang2, GAO Hongjun2, ZHANG Guilong1, ZHANG Xiuzhi2, PENG Chang2, YANG Dianlin1,*(
)
Received:
2020-01-17
Online:
2020-06-18
Published:
2020-08-31
摘要:
土壤团聚体是土壤结构的基本单元,是评价土壤质量的重要指标之一。土壤微生物是形成土壤团聚体最活跃的生物因素。保护性耕作在中国已得到广泛应用,探析保护性耕作对土壤团聚体和土壤微生物学特性的影响,有助于农业生产的可持续发展。文章综述了不同保护性耕作方式下土壤团聚体和微生物学特性的研究进展,归纳总结了保护性耕作对土壤团聚体分布特征、稳定性、有机碳含量、酶活性和微生物多样性影响以及土壤团聚体与土壤微生物之间关系。结果表明:与传统翻耕相比,保护性耕作增加了表层土壤团聚体的平均重量直径(MWD)、几何平均重量直径(GMD)和水稳性团聚体含量,促进了土壤大团聚体的形成,提升了土壤团聚体稳定性;保护性耕作提高了表层土壤有机碳含量,有利于土壤有机碳的固定;保护性耕作能有效提高土壤酶活性,土壤酶活性在不同粒径团聚体内分布特征和活性高低存在差异;保护性耕作提高土壤微生物生物量和土壤微生物多样性,提高土壤真菌/细菌比值,使土壤微生物群落向以真菌为优势菌群的方向发展;土壤微生物含量和组成在不同粒径团聚体中存在差异,微团聚体中有更高的土壤细菌和真菌含量。针对目前研究现状,提出了因地制宜推广保护性耕作、适宜的轮耕制度、适量秸秆还田的可能性及未来的研究方向。
中图分类号:
刘红梅, 李睿颖, 高晶晶, 朱平, 路杨, 高洪军, 张贵龙, 张秀芝, 彭畅, 杨殿林. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277-1284.
LIU Hongmei, LI Ruiying, GAO Jingjing, ZHU Ping, LU Yang, GAO Hongjun, ZHANG Guilong, ZHANG Xiuzhi, PENG Chang, YANG Dianlin. Research Progress on the Effects of Conservation Tillage on Soil Aggregates and Microbiological Characteristics[J]. Ecology and Environment, 2020, 29(6): 1277-1284.
[1] |
AL-KAISI M M, YIN X H, 2005. Tillage and crop residue effects on soil carbon and dioxide emission in corn-soybean rotations[J]. Journal of Environment Quality, 34: 437-445.
DOI URL |
[2] |
BACH E M, HOFMOCKEL K S, 2014. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity[J]. Soil Biology and Biochemistry, 69: 54-62.
DOI URL |
[3] |
BANDICK A K, DICK R P, 1999. Field management effects on soil enzyme activities[J]. Soil Biology and Biochemistry, 31(11): 1471-1479.
DOI URL |
[4] |
BLAUD A, LERCH T Z, CHEVALLIER T, et al., 2012. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw[J]. Applied Soil Ecology, 53: 1-9.
DOI URL |
[5] |
CASRO FILHO C, LOURENCO A, GUIMARAES M F, et al., 2002. Aggregate stability under different soil management systems in a red latosol in the state of Parana Brazil. Soil and Tillage Research, 65(1): 45-51.
DOI URL |
[6] | DONG W Y, LIU K E, YAN C R, et al., 2017. Impact of no tillage vs. conventional tillage on the soil bacterial community structure in a winter wheat cropping succession in northern China[J]. Europe Journal of Soil Biology, 80: 35-42. |
[7] |
FRANCABIALIA R, BENE C D, MARCHETTI A, et al., 2017. Soil organic carbon sequestration and tillage systems in the Mediterranean Basin: a data mining approach[J]. Nutrient Cycling Agroecosystems, 107(1): 125-137.
DOI URL |
[8] |
GOTTSHALL C B, COOPER M, EMERY S M. 2017. Activity, diversity and function of arbuscular mycorrhizae vary with changes in agricultural management intensity[J]. Agriculture Ecosystems Environment, 241: 142-149.
DOI URL |
[9] |
GREGORICH E G, LIANG B C, DRURY C F, et al., 1997. Fertilization effects on physically protected light fraction organic matter[J]. Soil Science Society of America Journal, 61(2): 482-484.
DOI URL |
[10] | GUPTA V V S R, GERMINDA J J, 2015. Soil aggregation: influence on microbial biomass and implications for biological processes[J]. Soil Biology&Biochemistry, 80: 3-9. |
[11] |
HATI K M, CHAUDHARY R S, MANDAL K G, et al., 2015. Effects of tillage, residue and fertilizer nitrogen on crop yields, and soil physical properties under soybean-wheat rotation in vertisols of central India[J]. Agricultural Research, 4(1): 48-56.
DOI URL |
[12] |
HEWINS D B, SINSABAUGH R L, ARCHER S R, et al., 2017. Soil-litter mixing and microbial activity mediate decomposition and soil aggregate formation in a sandy shrub-invaded Chihuahuan Desert grassland[J]. Plant Ecology, 218(4): 459-474.
DOI URL |
[13] |
HOOKER B A, MORRIS T F, PETERS R, et al., 2005. Long-term effects of tillage and corn stalk return on soil carbon dynamics[J]. Soil Science Society of America Journal, 69(1): 188-196.
DOI URL |
[14] |
JIANG X, WRIGHT A L, WANG X, et al., 2011. Tillage-induced changes in fungal and bacterial biomass associated with soil aggregates: A long-term field study in a subtropical rice soil in China[J]. Applied Soil Ecology, 48(2):168-173.
DOI URL |
[15] |
KAN Z R, MA S T, LIU Q Y, et al., 2020. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain[J]. Catena, 188: 104428.
DOI URL |
[16] |
KASPER M, BUCHAN G D, MENTLER A, et al., 2009. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions[J]. Soil and Tillage Research, 105(2): 192-199.
DOI URL |
[17] |
LIU C, LU M, CUI J, et al., 2014a. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]. Global Change Biology, 20(5): 1366-1381.
DOI URL |
[18] |
LIU E K, TECLEMARIAM S G, YAN C R, et al., 2014b. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China[J]. Geoderma, 213: 379-384.
DOI URL |
[19] |
LI Y, LI Z, CUI S, et al., 2019. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis[J]. Soil & Tillage Research, DOI: 10.1016/j.still.2019.06.009.
DOI |
[20] |
LI Y, ZHANG Q P, CAI Y J, et al., 2020. Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage[J]. Science of the Total Environment, 716: 137164.
DOI URL |
[21] |
LUPWAYI N Z, SOON Y K, 2015. Carbon and nitrogen release from legume crop residues for three subsequent crops[J]. Soil Science of America Journal, 79(6): 1650-1659.
DOI URL |
[22] |
MARX M C, WOOD M, JARVIS S C, 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 33(12-13): 1633-1640.
DOI URL |
[23] |
NAKAJIMA T, SHRESTHA R K, JACINTHE P A, et al., 2016. Soil organic carbon pools in ploughed and no-till Alfisols of central Ohio[J]. Soil Use and Manage, 32(4): 515-524.
DOI URL |
[24] |
O'CONNELL A M, GROVE T S, Mendham D S, et al., 2004. Impact of harvest residue management on soil nitrogen dynamics in Eucalyptus globulus plantations in south western Australia[J]. Soil Biology and Biochemistry, 36(1): 39-48.
DOI URL |
[25] | PAPENDICK R I, PARR J F, 1997. No-till farming: The way of the future for a sustainable dryland agriculture[J]. Annals of Arid Zone, 36(3): 193-208. |
[26] |
PASTORELLI R, VIGNOZZI N, LANDI S, et al., 2013. Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of Central Italy[J]. Soil Biology and Biochemistry, 66: 78-93.
DOI URL |
[27] |
PAZ JIMENEZ M D L, HORRA A D L, PEUZZO L, et al., 2002. Soil quality: a new index based on microbiological and biochemical parameters[J]. Biology Fertility of Soils, 35(4): 302-306.
DOI URL |
[28] |
PLAZA-BONILLA D, CANTERO-MARTINEZ C, ÁLVARO-FUENTES J, 2010. Tillage effects on soil aggregation and soil organic carbon profile distribution under Mediterranean semi-arid conditions[J]. Soil Use Manage, 26(4): 465-474.
DOI URL |
[29] |
PUGET P, CHENU C, 2000. Dynamic of soil organic matter associated with particle-size fractions of water stable aggregate[J]. European Journal of Soil Science, 51: 595-605.
DOI URL |
[30] | SOMBRERO A, BENITO A D, 2010. Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castille-Leon, Spain[J]. Soil & Tillage Research, 107(2): 64-70. |
[31] |
SOMENHALLY A, DUPONT J I, BRADY J, et al., 2018. Microbial communities in soil profile are more responsive to legacy effects of wheat-cover crop rotations than tillage systems[J]. Soil Biology and Biochemistry, 123: 126-135.
DOI URL |
[32] |
SUN B J, JIA S X, ZHANG S X, et al., 2016. Tillage, seasonal and depths effects on soil microbial properties in black soil of Northeast China[J]. Soil and Tillage Research, 155: 421-428.
DOI URL |
[33] |
SIX J, ELLIOTT E T, PAUSTIAN K, et al., 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 62(5): 1367-1377.
DOI URL |
[34] |
SIX J, ELLIOTT E T, PAUSTIAN K, et al., 2000b. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 32(14): 2099-2103.
DOI URL |
[35] |
SIX J, ELLIOTT E T, PAUSTIAN K, et al., 2000a. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal, 64(3): 1042-1049.
DOI URL |
[36] |
SYSWERDA S P, CORBIN A T, MOKMA D L, et al., 2011. Agricultural management and soil carbon storage in surface vs. deep layers[J]. Soil Science Society of America Journal, 75(1): 92-101.
DOI URL |
[37] |
TISDALL J M, OADES J M, 1982. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 33(2): 141-163.
DOI URL |
[38] |
VERHULST N, KIENLE F, SAYRE K D, et al., 2011. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system[J]. Plant and Soil, 340(1-2): 453-466.
DOI URL |
[39] | WANG X, QI J Y, ZHANG X Z, et al., 2019. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system[J]. Soil & Tillage Research, 194: 104339. |
[40] |
WANG Y, LI C Y, TU C, et al., 2017. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community[J]. Science Total Environment, 609: 341-347.
DOI URL |
[41] |
WANG Z T, LIU L, CHEN Q, et al., 2016. Conservation tillage increases soil bacterial diversity in the dryland of northern China[J]. Agronomy for Sustainable Development, 36(2): 28-36.
DOI URL |
[42] | WARDLE D A, 1995. Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices[J]. Advances in Ecological Research, 26: 107-108. |
[43] | WATERS A G, OADES J M, 2003. Organic matter in water-stable aggregates[J]. Advances in Soil Organic Matter Research, https://doi.org/10.1016/B978-1-85573-813-3.50021-4. |
[44] | ZHANG H, SUN G, CHEN J, et al., 2009. Advances in research on effects of conservation tillage on soil carbon[J]. Scientia Agricultura Sinica, 42(12): 4275-4281. |
[45] | ZHAO Y, WANG M, HU S, et al., 2018. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceeding of the National Academy of Sciences of the United States of America, 115(16): 4045-4050. |
[46] | ZHOU P, SON G H, PAN G X, et al., 2008. SOC accumulation in three major types of paddy soils under long-term agro-ecosystem experiments from south ChinaⅠ. Physical protection in soil micro-aggregates[J]. Acta Pedologica Sinica. 45(6): 1063-1071. |
[47] |
ZUBER S M, VILLAMIL M B, 2016. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities[J]. Soil Biology and Biochemistry, 97: 176-187.
DOI URL |
[48] | 陈坤, 李传海, 朱安宁, 等, 2015. 长期保护性耕作对纤维素降解基因cbh I 多样性的影响[J]. 土壤学报, 52(2): 406-414. |
CHEN K, LI C H, ZHU A N, et al., 2015. Effects of long-term conservation tillage on diversity of cellulose degradating gene cbh I in fluvo-aquic soil[J]. Acta Pedologica Sinica, 52(2): 406-414. | |
[49] | 陈娟, 马忠明, 刘莉莉, 等, 2016. 不同耕作方式对土壤有机碳、微生物量及酶活性的影响[J]. 植物营养与肥料学报, 22(3): 667-675. |
CHEN J, MA Z M, LIU L L, et al., 2016. Effect of tillage system on soil organic carbon, microbial biomass and enzyme activities[J]. Journal of Plant Nutrition and Fertilizer, 22(3): 667-675. | |
[50] | 高洪军, 彭畅, 张秀芝, 等, 2019. 不同秸秆还田模式对黑钙土团聚体特征的影响[J]. 水土保持学报, 33(1): 75-79. |
GAO H J, PENG C, ZHANG X Z, et al., 2019. Effects of different straw returning modes on characteristics of soil aggregates in chernozem soil[J]. Journal of soil and water conservation, 33(1): 75-79. | |
[51] | 关松, 窦森, 胡永哲, 等, 2010. 添加玉米秸秆对黑土团聚体碳氮分布的影响[J]. 水土保持学报, 24(4): 187-191. |
GUAN S, DOU S, HU Y Z, et al., 2010. Effects of application of corn stalk on distribution of C and N in black soil aggregates[J]. Journal of soil and water conservation, 24(4): 187-191. | |
[52] | 黄冠华, 詹卫华, 2002. 土壤颗粒的分形特征及其应用[J]. 土壤学报, 39(4): 490-496. |
HUANG G H, ZHAN W H, 2002. Fractal property of soil particle size distribution and its application[J]. Acta Pedologica Sinica, 39(4): 490-496. | |
[53] | 霍琳, 杨思存, 王成宝, 等, 2019. 耕作方式对甘肃引黄灌区灌耕灰钙土团聚体分布及稳定性的影响[J]. 应用生态学报. https://doi.org/10.13287/j.1001-9332.201910.027. |
HUO L, YANG S C, WANG C B, et al., 2019. Effects of tillage methods on soil aggregate distribution and stability inirrigated sierozem of Gansu Yellow River irrigation area, China[J]. Chinese Journal of Applied Ecology, https://doi.org/10.13287/j.1001-9332.201910.027. | |
[54] | 江春玉, 刘萍, 刘明, 等, 2017. 不同肥力红壤水稻土根际团聚体组成和碳氮分布动态[J]. 土壤学报, 54(1): 138-149. |
JIANG C Y, LIU P, LIU M, et al., 2017. Dynamics of aggregates composition and C, N distribution in rhizosphere of rice plants in red paddy soils different in soil fertility[J]. Acta Pedologica Sinica, 54(1): 138-149. | |
[55] | 冀保毅, 赵亚丽, 郭海斌, 等, 2015. 深耕和秸秆还田对不同质地土壤团聚体组成及稳定性的影响[J]. 河南农业科学, 44(3): 65-70, 107. |
JI B Y, ZHAO Y L, GUO H B, et al., 2015. Effects of deep tillage and straw retained on the activity of soil enzymes[J]. Journal of Hebei Agricultural Sciences, 44(3): 65-70, 107. | |
[56] | 李景, 吴会军, 武雪萍, 等, 2015. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用[J]. 植物营养与肥料学报, 21(2): 378-386. |
LI J, WU H J, WU X P, et al., 2015. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents[J]. Plant Nutrition and Fertilizer, 21(2): 378-386. | |
[57] | 李素娟, 陈继康, 陈阜, 等, 2008. 华北平原免耕冬小麦生长发育特征研究[J]. 作物学报, 34(2): 290-296. |
LI S J, CHEN J K, CHEN F, et al., 2008. Characteristics of growth and development of winter wheat under zero-tillage in north China plain[J]. Acta Agronomica Sinica, 34(2): 290-296. | |
[58] | 李彤, 王梓廷, 刘露, 等, 2017. 保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响[J]. 中国农业科学, 50(5): 859-870. |
LI T, WANG Z T, LIU L, et al., 2017. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico- chemical properties of the Northwest dryland[J]. Scientia Agricultura Sinica, 50(5): 859-870. | |
[59] | 刘威, 张国英, 张静, 等, 2015. 2种保护性耕作措施对农田土壤团聚体稳定性的影响[J]. 水土保持学报, 29(3): 117-122. |
LIU W, ZHANG Q Y, ZHANG J, et al., 2015. Effects of two conservation tillage measures on soil aggregate stability[J]. Journal of soil and water conservation, 29(3): 117-122. | |
[60] | 刘中良, 宇万太, 2011. 土壤团聚体中有机碳研究进展[J]. 中国生态农业学报, 19(2): 447-455. |
LIU Z L, YU W T, 2011. Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 19(2): 447-455.
DOI URL |
|
[61] | 马瑞萍, 安韶山, 党廷辉, 等, 2014. 黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究[J]. 土壤学报, 51(1): 104-113. |
MA R P, AN S S, DANG Y H, et al., 2014. Soil organic carbon and enzymatic activity in aggregates of soils under different plant communities in hilly-gully regions of loess plateau[J]. Acta Pedologica Sinica, 51(1): 104-113. | |
[62] | 裴雪霞, 党建友, 张定一, 等, 2014. 不同耕作方式对石灰性褐土磷脂脂肪酸及酶活性的影响[J]. 应用生态学报, 25(8): 2275-2280. |
PEI X X, DANG J Y, ZHANG D Y, et al., 2014. Effects of different tillage methods on phospholipid fatty acids and enzyme activities in calcareous cinnamon soil[J]. Chinese Journal of Applied Ecology, 25(8): 2275-2280. | |
[63] | 邱莉萍, 张兴昌, 张晋爱, 2006. 黄土高原长期培肥土壤团聚体中养分和酶的分布[J]. 生态学报, 26(2): 364-372. |
QIU L P, ZHANG X C, ZHANG J A, 2006. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization[J]. Acta Ecologica Sinica, 26(2): 364-372. | |
[64] | 孙建, 刘苗, 李立军, 等, 2009. 免耕与留茬对土壤微生物量C、N及酶活性的影响[J]. 生态学报, 29(10): 5508-5515. |
SUN J, LIU M, LI L J, et al., 2009. Influence of non-tillage and stubble on soil microbial biomass and enzyme activities in rain-fed field of Inner Mongolia[J]. Acta Ecologica Snica, 29(10): 5508-5515. | |
[65] | 田慎重, 王瑜, 张玉凤, 等, 2017. 旋耕转深松和秸秆还田增加农田土壤团聚体碳库[J]. 农业工程学报, 33(24): 133-140. |
TIAN S Z, WANG Y, ZHANG Y F, et al., 2017. Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(24): 133-140. | |
[66] | 王丽, 李军, 李娟, 等, 2014. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响[J]. 应用生态学报, 25(3): 759-768. |
WANG L, LI J, LI J, et al., 2014. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei highland[J]. Chinese Journal of Applied Ecology, 25(3): 759-768. | |
[67] | 王美佳, 王沣, 苏思慧, 等, 2019. 秸秆还田对土壤水稳性团聚体及其碳分布的影响[J]. 干旱区研究, 36(2): 331-338. |
WANG M J, WANG F, SU S H, et al., 2019. Effects of straw turnover on soil water-stable aggregates and soil carbon distribution[J]. Arid Zone Research, 36(2): 331-338. | |
[68] | 王双磊, 刘艳慧, 宋宪亮, 等, 2016. 棉花秸秆还田对土壤团聚体有机碳及氮磷钾含量的影响[J]. 应用生态学报, 27(12): 3944-3952. |
WANG S L, LIU Y H, SONG X L, et al., 2016. Effects of cotton straw returning on soil organic carbon, nitrogen, phosphorus and potassium contents in soil aggregates[J]. Chinese Journal of Applied Ecology, 27(12): 3944-3952. | |
[69] | 武均, 蔡立群, 齐鹏, 等, 2015. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J]. 中国生态农业学报, 23(3): 276-284. |
WU J, CAI L Q, QI P, et al., 2015. Distribution characteristics of organic carbon and total nitrogen in dry farm-land soil aggregates under different tillage methods in the Loess Plateau of central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 23(3): 276-284. | |
[70] | 徐莹莹, 王俊河, 刘玉涛, 等, 2018. 耕作与秸秆还田方式对连作玉米田根际微生物及酶活性的影响[J]. 黑龙江农业科学 (7): 1-3. |
XU Y Y, WANG J H, LIU Y T, et al., 2018. Effects of tillage and straw returning on microorganism and enzyme activity in continuous cropping corn field[J]. Heilongjiang Agricultural Sciences (7): 1-3. | |
[71] | 张斌, 许玉芝, 李娜, 等, 2014. 土壤团聚体结构变化的关键控制过程研究进展[J]. 土壤与作物, 3(2): 41-49. |
ZHANG B, XU Y Z, LI N, et al., 2014. Recent development in controlling factors for aggregated soil structure[J]. Soil and Crop, 3(2): 41-49. | |
[72] | 张先凤, 朱安宁, 张佳宝, 等, 2015. 耕作管理对潮土团聚体形成及有机碳累积的长期效应[J]. 中国农业科学, 48(23): 4639-4648. |
ZHANG X F, ZHU A N, ZHANG J B, et al., 2015. The long-term effect research of various tillage managements on the soil aggregates and organic carbon in fluvo-aquic soil[J]. Scientia Agricultura Sinica, 48(23): 4639-4648. | |
[73] | 张英英, 蔡立群, 武均, 等, 2017. 不同耕作措施下陇中黄土高原旱作农田土壤活性有机碳组分及其与酶活性间的关系[J]. 干旱地区农业研究, 35(1): 1-7. |
ZHANG Y Y, CAI L Q, WU J, et al., 2017. The relationship between soil labile organic carbon fractions and the enzyme activities under different tillage measures in the Loess Plateau of central Gansu province[J]. Agricultural Research in the Arid Areas, 35(1): 1-7. | |
[74] | 钟晓兰, 李江涛, 李小嘉, 等, 2015. 模拟氮沉降增加条件下土壤团聚体对酶活性的影响[J]. 生态学报, 35(5): 1422-1433. |
ZHONG X L, LI J T, LI X J, et al., 2015. Early effect of soil aggregates on enzyme activities in a forest soil with simulated N deposition elevation[J]. Acta Ecologica Sinica, 35(5): 1422-1433. | |
[75] | 赵亚丽, 郭海斌, 薛志伟, 等, 2015. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响[J]. 应用生态学报, 26(6): 1785-1792. |
ZHAO Y L, GUO H B, XUE Z W, et al., 2015. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield[J]. Chinese Journal of Applied Ecology, 26(6): 1785-1792. |
[1] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[2] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[3] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[4] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[5] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[6] | 王馨雨, 高灯州, 刘博林, 王斌, 郑艳玲, 李小飞, 侯立军. 长江口水体化能自养固碳过程的潮周期变化特征及影响因素[J]. 生态环境学报, 2023, 32(4): 733-743. |
[7] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[8] | 张广毅, 张嘉涛, 王晓伟. 湖泊底泥微生物燃料电池中磷形态分布及释放研究[J]. 生态环境学报, 2023, 32(3): 590-598. |
[9] | 阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618. |
[10] | 盛美君, 李胜君, 杨昕玥, 王蕊, 李洁, 李刚, 修伟明. 华北潮土农田土壤酶活性对土地利用强度的响应特征探讨[J]. 生态环境学报, 2023, 32(2): 299-308. |
[11] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[12] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[13] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[14] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[15] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||