Ecology and Environment ›› 2025, Vol. 34 ›› Issue (4): 534-547.DOI: 10.16258/j.cnki.1674-5906.2025.04.004
• Research Article【Environmental Science】 • Previous Articles Next Articles
GUO Mingbin1(), GONG Jianzhou1, WANG Lijuan2,*(
), WANG Shikuan1
Received:
2024-11-16
Online:
2025-04-18
Published:
2025-04-24
Contact:
WANG Lijuan
通讯作者:
王丽娟
作者简介:
郭铭彬(2002年生),男,硕士研究生,主要研究方向为生态遥感与大气环境。E-mail: guomb61127@126.com
基金资助:
CLC Number:
GUO Mingbin, GONG Jianzhou, WANG Lijuan, WANG Shikuan. Analysis of the Natural Dominant Factors Driving NO2 Concentration Changes in the Guangdong-Hong Kong-Macao Greater Bay Area from 2019 to 2023[J]. Ecology and Environment, 2025, 34(4): 534-547.
郭铭彬, 龚建周, 王丽娟, 王时宽. 2019-2023年粤港澳大湾区NO2浓度变化的自然主控因子解析[J]. 生态环境学报, 2025, 34(4): 534-547.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.04.004
数据 | 分辨率 | 数据来源 | 产品介绍 | |
---|---|---|---|---|
NO2数据 | 对流层柱浓度 | 1 km | GEE云平台( | 选用Sentinel-5P Near Real-Time NO2数据集,该影像集提供每天(近实时)的大气污染数据 |
气象数据 | 年平均风速(WSD) | 10 km | 选用ERA5-land数据集,该影像集通过重演 ECMWF ERA5气候再分析的陆地部分生成,拥有更高的空间分辨率 | |
年平均气温(TEMP) | ||||
年平均湿度(RH) | ||||
年平均气压(PRE) | ||||
年平均降水(PRCP) | ||||
年平均太阳辐射度(DNI) | ||||
植被数据 | 归一化植被指数(NDVI) | 500 m | 选用MODIS产品中MOD13A2 16d影像集,该影像集将16 d每个像素位置的植被指数(NDVI)进行合成而得 | |
下垫面状况 | 陆表温度(LST) | 1 km | 选用MODIS产品中的MOD11A2 V6影像集,为8 d平均地表温度合成数据 |
Table 1 Data main information, sources and corresponding product descriptions
数据 | 分辨率 | 数据来源 | 产品介绍 | |
---|---|---|---|---|
NO2数据 | 对流层柱浓度 | 1 km | GEE云平台( | 选用Sentinel-5P Near Real-Time NO2数据集,该影像集提供每天(近实时)的大气污染数据 |
气象数据 | 年平均风速(WSD) | 10 km | 选用ERA5-land数据集,该影像集通过重演 ECMWF ERA5气候再分析的陆地部分生成,拥有更高的空间分辨率 | |
年平均气温(TEMP) | ||||
年平均湿度(RH) | ||||
年平均气压(PRE) | ||||
年平均降水(PRCP) | ||||
年平均太阳辐射度(DNI) | ||||
植被数据 | 归一化植被指数(NDVI) | 500 m | 选用MODIS产品中MOD13A2 16d影像集,该影像集将16 d每个像素位置的植被指数(NDVI)进行合成而得 | |
下垫面状况 | 陆表温度(LST) | 1 km | 选用MODIS产品中的MOD11A2 V6影像集,为8 d平均地表温度合成数据 |
判据 | 交互作用 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)]<q(X1∩X2)< Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
Table 2 Type of interaction between two independent variables and factor variables
判据 | 交互作用 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)]<q(X1∩X2)< Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
年份 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
2019 | 0.684 | 0.672 | 0.297 | 0.603 | 0.183 | 0.466 | 0.444 | 0.167 |
2020 | 0.600 | 0.632 | 0.490 | 0.588 | 0.143 | 0.523 | 0.402 | 0.211 |
2021 | 0.630 | 0.675 | 0.378 | 0.613 | 0.131 | 0.539 | 0.358 | 0.215 |
2022 | 0.638 | 0.665 | 0.194 | 0.611 | 0.114 | 0.513 | 0.488 | 0.249 |
2023 | 0.607 | 0.624 | 0.804 | 0.595 | 0.123 | 0.444 | 0.460 | 0.181 |
多年均值 | 0.645 | 0.683 | 0.613 | 0.619 | 0.100 | 0.519 | 0.405 | 0.233 |
Table 3 The factor detects the change of q value year by year
年份 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
2019 | 0.684 | 0.672 | 0.297 | 0.603 | 0.183 | 0.466 | 0.444 | 0.167 |
2020 | 0.600 | 0.632 | 0.490 | 0.588 | 0.143 | 0.523 | 0.402 | 0.211 |
2021 | 0.630 | 0.675 | 0.378 | 0.613 | 0.131 | 0.539 | 0.358 | 0.215 |
2022 | 0.638 | 0.665 | 0.194 | 0.611 | 0.114 | 0.513 | 0.488 | 0.249 |
2023 | 0.607 | 0.624 | 0.804 | 0.595 | 0.123 | 0.444 | 0.460 | 0.181 |
多年均值 | 0.645 | 0.683 | 0.613 | 0.619 | 0.100 | 0.519 | 0.405 | 0.233 |
因子 | WSD | TEMP | RH | PRE | PRCP | NDVI | LST | DNI |
---|---|---|---|---|---|---|---|---|
VIF | 2.02 | 6.60 | 1.40 | 5.44 | 1.34 | 2.43 | 3.07 | 2.28 |
Table 4 Covariance of each factor
因子 | WSD | TEMP | RH | PRE | PRCP | NDVI | LST | DNI |
---|---|---|---|---|---|---|---|---|
VIF | 2.02 | 6.60 | 1.40 | 5.44 | 1.34 | 2.43 | 3.07 | 2.28 |
[1] | CHEN Z Q, YU B L, YANG C S, et al., 2021. An extended time-series (2000-2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 13(3): 889-906. |
[2] | CHENG S, MA J, CHENG W, 2019. Tropospheric NO2 vertical column densities retrieved from ground-based MAX-DOAS measurements at Shangdianzi regional Atmospheric background station in China[J]. Journal of Environmental Sciences, 80(6): 186-196. |
[3] | DE FOY B, LU Z F, STREETS D G, 2016. Satellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the Twelfth Five Year Plan[J]. Scientific Reports, 6: 35912. |
[4] | HUANG B, WU B, BARRY M, 2010. Geographically and temporally weighted regression for modeling spatiotemporal variation in house prices[J]. International Journal of Geographical Information Science, 24(3): 383-401. |
[5] | KROTKOV N A, MCLINDEN C A, LI C, et al., 2016. Aura OMI observation of regional SO2 and NO2 pollution changes from 2005 to 2015[J]. Atmospheric Chemistry & Physics, 16(7): 4605-4629. |
[6] | MÜLLER I, ERBERTSEDER T, TAUBENBÖCK H, 2022. Tropospheric NO2: Explorative analyses of spatial variability and impact factors[J]. Remote Sensing of Environment, 270: 112839. |
[7] | PRASAD L V N, REDDY C K K, DEPURU S R, 2015. Satellite derived pH estimation for acidity in precipitation using water vapor and nitrogen dioxide imagery[J]. Procedia Computer Science, 62: 637-648. |
[8] | QI L, FU A Q, DUAN X L, 2022. Excess deaths associated with long-term exposure to ambient NO2 in China[J]. Environmental Research Letters, 17(12): 124018. |
[9] | RAHMAN G, DAWOOD M, 2017. Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s slope approach[J]. Climate Dynamics, 48(3-4): 783-797. |
[10] | TOENGES-SCHULLER N, STEIN O, ROHRER F, et al., 2006. Global distribution pattern of anthropogenic nitrogen oxide emissions: Correlation analysis of satellite measurements and model calculations[J]. Journal of Geophysical Research: Atmospheres, 111(D5): 1-15 |
[11] | SEN P K, 1968. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 63(324): 1379-1389. |
[12] | VAN DER A R J, PETERS D, ESKES H, et al., 2006. Detection of the trend and seasonal variation in tropospheric NO2 over China[J]. Journal of Geophysical Research, 111(D12): D12317. |
[13] | VELDERS G J M, GRANIER C, PORTMANN R W, et al., 2001. Global tropospheric NO2 column distributions: Comparing three-dimensional model calculations with GOME measurements[J]. Journal of Geophysical Research: Atmospheres, 106(D12): 12643-12660. |
[14] | WAGNER T, BEIRLE S, BRAUERS T, et al., 2011. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets[J]. Atmospheric Measurement Techniques Discussions, 4(12): 2685-2715. |
[15] | WALTER A L, RUDOLPH B H, 1976. SMS/GOES visible images detect a synoptic-scale air pollution episode[J]. Monthly Review, 104(22): 1623-1626. |
[16] | WANG N, XU J W, PEI C L, et al., 2021. Air Quality During COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta: Two different responsive mechanisms to emission reductions in China[J]. Environmental Science & Technology, 55(9): 5721-5730. |
[17] | XIANG Y C, ZHANG L Y, MAO X Z, et al., 2014. Relationship between NO2 concentration and meteorological factors in the urban area of Wanzhou District[J]. Meteorological and Environmental Research, 5(3): 22-25. |
[18] | YANG G, ZHAO Y L, XING H F, et al., 2020. Understanding the changes in spatial fairness of urban greenery using time series remote sensing images: A case study of Guangdong-Hong Kong-Macao Greater Bay[J]. Cities, 715: 136763. |
[19] | ZHANG G X, HAN J L, SU B, 2023. Contributions of cleaner production and end-of-pipe treatment to NOx emissions and intensity reductions in China, 1997-2018[J]. Journal of Environmental Management, 326(Part B): 116822. |
[20] | ZHANG S H, YANG K, LI M C, et al., 2018. Combinational biophysical composition index (CBCI) for effective mapping biophysical composition in urban areas[J]. IEEE Access, 6: 41224-41237. |
[21] | ZHANG Y J, GAO J, ZHU Y J, et al., 2023. Evolution of ozone formation sensitivity during a persistent regional ozone episode in northeastern China and its implication for a control strategy[J]. Environmental Science & Technology, 58(1): 617-627. |
[22] | 蔡文博, 韩宝龙, 逯非, 等, 2020. 全球四大湾区生态环境综合评价研究[J]. 生态学报, 40(23): 8392-8402. |
CAI W B, HAN B L, LU F, et al., 2020. Comprehensive evaluation of the eco-environment in the four global bay areas[J]. Acta Ecologica Sinica, 40(23): 8392-8402. | |
[23] | 陈婉莹, 陈懿昂, 褚旸晰, 等, 2022. 珠三角地区臭氧来源特征的数值模拟研究[J]. 环境科学学报, 42(3): 293-308. |
CHEN W Y, CHEN Y A, CHU Y X, et al., 2022. Numerical simulation of ozone source characteristics in the Pearl River Delta region[J]. Acta Scientiae Circumstantiae, 42(3): 293-308. | |
[24] |
顾芳婷, 胡敏, 郑竞, 等, 2017. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 29(9): 962-969.
DOI |
GU F T, HU M, ZHENG J, et al., 2017. Research progress on particulate organonitrates[J]. Progress in Chemistry, 29(9): 962-969.
DOI |
|
[25] |
姜建芳, 侯丽丽, 王鑫龙, 等, 2019. 中国近地面NO2污染分布特征及其社会经济影响因素分析[J]. 生态环境学报, 28(8): 1632-1641.
DOI |
JIANG J F, HOU L L, WANG X L, et al., 2019. Spatial analysis of ground-level NO2 in China and its socio-economic factors[J]. Ecology and Environmental Sciences, 28(8): 1632-1641. | |
[26] | 李秋芳, 刘翠棉, 丁学英, 等, 2022. 石家庄市NO2时空分布特征及影响因素[J]. 中国环境监测, 38(3): 62-73. |
LI Q F, LIU C M, DING X Y, et al., 2022. Temporal and spatial distribution characteristics and influencing factors of NO2 in Shijiazhuang[J]. Environmental Monitoring in China, 38(3): 62-73. | |
[27] |
梁秀娟, 王旭红, 牛林芝, 等, 2020. 大西安都市圈城市热岛效应时空分布特征及AOD对热岛强度的影响研究[J]. 生态环境学报, 29(8): 1566-1580.
DOI |
LIANG X J, WANG X H, NIU L Z, et al., 2020. Research on the temporal and spatial distribution characteristics of urban heat island effect and the influence of AOD on urban heat island intensity in the greater Xi’an metropolitan area[J]. Ecology and Environmental Sciences, 29(8): 1566-1580. | |
[28] | 梁勇歌, 2023. 西安市环境空气质量污染变化特征与影响因素研究[J]. 广东化工, 50(14): 151-153, 157. |
LIANG Y G, 2023. Study on the change characteristics and influencing factors of ambient air quality pollution in Xi’an[J]. Guangdong Chemical Industry, 50(14): 151-153, 157. | |
[29] | 刘显通, 郑腾飞, 万齐林, 等, 2015. OMI遥感珠三角城市群NO2的时空分布特征及人类活动影响分析[J]. 热带气象学报, 31(2): 193-201. |
LIU X T, ZHENG T F, WAN Q L, et al., 2015. Spatio-temporal characteristics of NO2 in concentrated PRD urban districts and analysis of anthropogenic influences based on OMI remote sensing data[J]. Journal of Tropical Meteorology, 31(2): 193-201. | |
[30] | 刘怡阳, 颉耀文, 郭泽呈, 2022. 基于Sentinel-5P卫星的中国NO2浓度遥感监测[J]. 中国环境科学, 42(11): 4983-4990. |
LIU Y Y, XIE Y W, GUO Z C, 2022. Monitoring atmospheric NO2 concentrations in China based on Sentinel-5P satellite products[J]. China Environmental Science, 42(11): 4983-4990. | |
[31] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geographical detector: Principles and prospects[J]. Journal of Geographical Sciences, 72(1): 116-134. | |
[32] | 王耀庭, 殷振平, 郑祚芳, 等, 2022. 基于长时序 “地-星” 数据的京津冀大气污染时空分布及演变特征[J]. 环境科学, 43(7): 3508-3522. |
WANG Y T, YIN Z P, ZHENG Z F, et al., 2022. Spatial-temporal distribution and evolution characteristics of air pollution in Beijing-Tianjin Hebei Region based on long-term “ground-satellite” data[J]. Environmental Science, 43(7): 3508-3522. | |
[33] | 肖钟湧, 谢先全, 陈颖锋, 等, 2020. 粤港澳大湾区NO2污染的时空特征及影响因素分析[J]. 中国环境科学, 40(5): 2010-2017. |
XIAO Z Y, XIE X Q, CHEN Y F, et al., 2020. Temporal and spatial characteristics and influencing factors of NO2 pollution over Guangdong-Hongkong-Macao Great Bay area, China[J]. China Environmental Science, 40(5): 2010-2017. | |
[34] | 张洪飞, 杜宁, 王莉, 等, 2024. 基于Catboost模型的广东省近地面NO2浓度估算[J]. 环境科学, 45(11): 6276-6285. |
ZHANG H F, DU N, WANG L, et al., 2024. Estimation of near-surface NO2 concentration in Guangdong Province based on Catboost model[J]. Environmental Science, 45(11): 6276-6285. | |
[35] | 张燕, 2021. 粤港澳大湾区与纽约、旧金山及东京国际一流湾区影响力比较[J]. 全球化 (4): 57-70, 135. |
ZHANG Y, 2021. A Comparison of the Influence of the Guangdong-Hong Kong-Macao Greater Bay Area with International First-Class Bay Areas: New York, San Francisco, and Tokyo[J]. Globalization (4): 57-70, 135. | |
[36] | 赵冉, 张成歆, 吴跃, 等, 2021. 基于EMI观测华北平原对流层NO2的时空变化研究[J]. 大气与环境光学学报, 16(3): 186-196. |
ZHAO R, ZHANG C X, WU Y, et al., 2021. Analysis of spatio-temporal variations of tropospheric nitrogen dioxide in the North China Plain based on EMI[J]. Journal of Atmospheric and Environmental Optics, 16(3): 186-196. |
[1] | ZHANG Weichen, WANG Xingqi, WANG Bojie. Spatiotemporal Pattern and Influencing Factors of the Ecosystem Services in the Tabu River Basin [J]. Ecology and Environment, 2024, 33(7): 1142-1152. |
[2] | LI Cheng, CHENG Zhipeng, LIU Yujin, YAO Yiming, LI Chunlei. Research on Ecological Risks and Its Control Policies of Per- and Polyfluoroalkyl Substances [J]. Ecology and Environment, 2024, 33(6): 980-996. |
[3] | LUO Xiaoling, LIU Jun, WANG Qi, LIU Tongxu, LIANG Yaojie, XIE Zhiyi, WANG Zhongwei, CHEN Duohong. Temporal and Spatial Changes in pH and Organic Matter and Their Influencing Factors in Soils with Various Land Use Types in Guangdong Province since 2016 [J]. Ecology and Environment, 2024, 33(12): 1849-1861. |
[4] | YUAN Xi, FU Kaidao, TAO Yuchen, ZHANG Nian, YANG Lisha. Spatial-temporal Distribution and Influencing Factors of Nitrous Oxide Flux Across the Water-air Interface in Lancang River, China [J]. Ecology and Environment, 2024, 33(1): 54-61. |
[5] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[6] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[7] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[8] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[9] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[10] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[11] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environment, 2022, 31(8): 1510-1520. |
[12] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[13] | WEI Jiayi, LI Cheng, WU Zhifeng, ZHANG Li, JI Dongqing, CHENG Jiong. Identifying Ecological Security Patterns and Prioritizing Ecological Corridors in the Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2022, 31(4): 652-662. |
[14] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[15] | ZHAO Anzhou, TIAN Xinle. Spatiotemporal Evolution and Influencing Factors of Vegetation Coverage in the Loess Plateau from 1986 to 2021 Based on GEE Platform [J]. Ecology and Environment, 2022, 31(11): 2124-2133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn