Ecology and Environment ›› 2023, Vol. 32 ›› Issue (3): 450-458.DOI: 10.16258/j.cnki.1674-5906.2023.03.003
• Research Articles • Previous Articles Next Articles
ZHANG Lin(), QI Shi*(
), ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan
Received:
2022-08-07
Online:
2023-03-18
Published:
2023-06-02
Contact:
QI Shi
通讯作者:
齐实
作者简介:
张林(1996年生),男,博士研究生,主要从事水土保持与流域治理研究。E-mail: 1822892459@qq.com
基金资助:
CLC Number:
ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas[J]. Ecology and Environment, 2023, 32(3): 450-458.
张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.03.003
林分 类型 | 主要 树种 | 针阔 混交比 | 林分密度/ (plant∙hm-2) | 林龄/ a | 平均树高/ cm | 平均胸径/ cm | 样地 数量 |
---|---|---|---|---|---|---|---|
侧柏- 针阔混交林 | 侧柏 Platycladus orientalis、元宝枫 Acer truncatum、核桃 Juglans regia L.、榆树 Ulmus spp、刺槐 Robinia pseudoacacia、五角枫 Acer pictum subsp. mono、椴树 Tilia amurensis、山桃 Prunus davidiana、胡桃 Juglans regia L.、小叶杨 Populus simonii | 6꞉4 | 925-1575 | 31-65 | 5.2-7.9 | 4.8-9.7 | 21 |
油松- 针阔混交林 | 油松 Pinus tabulaeformis、黄栌 Cotinus coggygria、山杏 Armeniaca sibirica L.、臭椿 Ailanthus altissima (Mill.) Swingle、栓皮栎 Quercus variabilis BL、元宝枫 Acer Truncatum Bunge、核桃 Juglans regia L.、 刺槐 Robinia pseudoacacia、白蜡 Fraxinus chinensis、板栗 Castanea mollissima、槭树 Castanopsis fargesii、五角枫 Acer pictum subsp. mono | 4꞉6 | 950-1550 | 34-59 | 5.3-7.6 | 4.9-9.2 | 21 |
侧柏、油松- 针阔混交林 | 侧柏 Platycladus orientalis、油松 Pinus tabulaeformis、黄栌 Cotinus coggygria、山杏 Armeniaca sibirica L.、臭椿 Ailanthus altissima (Mill.) Swingle、栓皮栎 Quercus variabilis BL、元宝枫 Acer Truncatum Bunge、 榆树 Ulmus spp、刺槐 Robinia pseudoacacia、板栗 Castanea mollissima、槭树 Castanopsis fargesii、五角枫 Acer pictum subsp. mono、山桃 Prunus davidiana、胡桃 Juglans regia L. | 5꞉5 | 1025-1650 | 29-68 | 4.7-8.1 | 4.5-10.2 | 22 |
Table 1 Basic information of sample plots
林分 类型 | 主要 树种 | 针阔 混交比 | 林分密度/ (plant∙hm-2) | 林龄/ a | 平均树高/ cm | 平均胸径/ cm | 样地 数量 |
---|---|---|---|---|---|---|---|
侧柏- 针阔混交林 | 侧柏 Platycladus orientalis、元宝枫 Acer truncatum、核桃 Juglans regia L.、榆树 Ulmus spp、刺槐 Robinia pseudoacacia、五角枫 Acer pictum subsp. mono、椴树 Tilia amurensis、山桃 Prunus davidiana、胡桃 Juglans regia L.、小叶杨 Populus simonii | 6꞉4 | 925-1575 | 31-65 | 5.2-7.9 | 4.8-9.7 | 21 |
油松- 针阔混交林 | 油松 Pinus tabulaeformis、黄栌 Cotinus coggygria、山杏 Armeniaca sibirica L.、臭椿 Ailanthus altissima (Mill.) Swingle、栓皮栎 Quercus variabilis BL、元宝枫 Acer Truncatum Bunge、核桃 Juglans regia L.、 刺槐 Robinia pseudoacacia、白蜡 Fraxinus chinensis、板栗 Castanea mollissima、槭树 Castanopsis fargesii、五角枫 Acer pictum subsp. mono | 4꞉6 | 950-1550 | 34-59 | 5.3-7.6 | 4.9-9.2 | 21 |
侧柏、油松- 针阔混交林 | 侧柏 Platycladus orientalis、油松 Pinus tabulaeformis、黄栌 Cotinus coggygria、山杏 Armeniaca sibirica L.、臭椿 Ailanthus altissima (Mill.) Swingle、栓皮栎 Quercus variabilis BL、元宝枫 Acer Truncatum Bunge、 榆树 Ulmus spp、刺槐 Robinia pseudoacacia、板栗 Castanea mollissima、槭树 Castanopsis fargesii、五角枫 Acer pictum subsp. mono、山桃 Prunus davidiana、胡桃 Juglans regia L. | 5꞉5 | 1025-1650 | 29-68 | 4.7-8.1 | 4.5-10.2 | 22 |
指数 | 均值 | 范围 |
---|---|---|
物种香农维纳指数 | 1.73 | 1.13-2.06 |
物种辛普森指数 | 0.79 | 0.53-0.92 |
物种丰富度指数 | 2.15 | 1.53-2.85 |
Table 2 Calculation results of each index
指数 | 均值 | 范围 |
---|---|---|
物种香农维纳指数 | 1.73 | 1.13-2.06 |
物种辛普森指数 | 0.79 | 0.53-0.92 |
物种丰富度指数 | 2.15 | 1.53-2.85 |
土层 深度/cm | 物种香农维纳指数 | 物种辛普森指数 | 物种丰富度指数 | 林龄/ a | 根系生物量/ g | 凋落物质量/ g | 海拔/ m | 坡度/ (°) | 容重/ (g∙cm-3) | w(全氮)/ (g∙kg-1) | w(全磷)/ (g∙kg-1) | w(全钾)/ (g∙kg-1) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | 0.276* | 0.034 | 0.126 | 0.634** | 0.649** | 0.703** | 0.204 | -0.190 | -0.549** | 0.936** | 0.129 | -0.168 | -0.080 |
10-20 | 0.070 | 0.066 | 0.044 | 0.222* | 0.234* | 0.082 | 0.336** | -0.076 | -0.631** | 0.705** | 0.164 | -0.188 | -0.139 |
20-30 | 0.124 | 0.110 | 0.040 | 0.137 | 0.007 | 0.180 | 0.569** | -0.028 | -0.721** | 0.820** | 0.130 | -0.174 | -0.272* |
Table 3 Correlation analysis between biological factors and abiotic factors and soil organic carbon content in each soil layer
土层 深度/cm | 物种香农维纳指数 | 物种辛普森指数 | 物种丰富度指数 | 林龄/ a | 根系生物量/ g | 凋落物质量/ g | 海拔/ m | 坡度/ (°) | 容重/ (g∙cm-3) | w(全氮)/ (g∙kg-1) | w(全磷)/ (g∙kg-1) | w(全钾)/ (g∙kg-1) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0-10 | 0.276* | 0.034 | 0.126 | 0.634** | 0.649** | 0.703** | 0.204 | -0.190 | -0.549** | 0.936** | 0.129 | -0.168 | -0.080 |
10-20 | 0.070 | 0.066 | 0.044 | 0.222* | 0.234* | 0.082 | 0.336** | -0.076 | -0.631** | 0.705** | 0.164 | -0.188 | -0.139 |
20-30 | 0.124 | 0.110 | 0.040 | 0.137 | 0.007 | 0.180 | 0.569** | -0.028 | -0.721** | 0.820** | 0.130 | -0.174 | -0.272* |
土层深度/cm | 卡方和自由比 | 均方根误差 | 比较拟合指数 |
---|---|---|---|
0-10 | 2.35 | 0.06 | 0.96 |
10-20 | 1.95 | 0.04 | 0.91 |
20-30 | 1.78 | 0.06 | 0.93 |
Table 4 Fitting index of optimal structural equation model
土层深度/cm | 卡方和自由比 | 均方根误差 | 比较拟合指数 |
---|---|---|---|
0-10 | 2.35 | 0.06 | 0.96 |
10-20 | 1.95 | 0.04 | 0.91 |
20-30 | 1.78 | 0.06 | 0.93 |
土层深度/cm | 影响因子 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|---|
0-10 | 林龄 | 0.47 | 0.31 | 0.78 |
根系生物量 | 0.59 | 0.29 | 0.88 | |
凋落物质量 | 0.56 | 0.27 | 0.83 | |
物种香农维纳指数 | 0.21 | 0.11 | 0.32 | |
土壤容重 | -0.44 | -0.44 | ||
土壤全氮 | 0.73 | 0.73 | ||
10-20 | 林龄 | 0.24 | 0.14 | 0.38 |
根系生物量 | 0.27 | 0.09 | 0.36 | |
海拔 | 0.32 | 0.23 | 0.55 | |
土壤全氮 | 0.69 | 0.69 | ||
土壤容重 | -0.53 | -0.53 | ||
20-30 | 海拔 | 0.43 | 0.14 | 0.57 |
土壤全氮 | 0.59 | 0.59 | ||
土壤容重 | -0.47 | -0.47 | ||
pH值 | -0.15 | -0.04 | -0.19 |
Table 5 Effect of influencing factors of organic carbon content in each soil layer
土层深度/cm | 影响因子 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|---|
0-10 | 林龄 | 0.47 | 0.31 | 0.78 |
根系生物量 | 0.59 | 0.29 | 0.88 | |
凋落物质量 | 0.56 | 0.27 | 0.83 | |
物种香农维纳指数 | 0.21 | 0.11 | 0.32 | |
土壤容重 | -0.44 | -0.44 | ||
土壤全氮 | 0.73 | 0.73 | ||
10-20 | 林龄 | 0.24 | 0.14 | 0.38 |
根系生物量 | 0.27 | 0.09 | 0.36 | |
海拔 | 0.32 | 0.23 | 0.55 | |
土壤全氮 | 0.69 | 0.69 | ||
土壤容重 | -0.53 | -0.53 | ||
20-30 | 海拔 | 0.43 | 0.14 | 0.57 |
土壤全氮 | 0.59 | 0.59 | ||
土壤容重 | -0.47 | -0.47 | ||
pH值 | -0.15 | -0.04 | -0.19 |
[1] |
CHEN S P, WANG W T, XU W T, et al., 2018. Plant diversity enhances productivity and soil carbon storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4027-4032.
DOI PMID |
[2] |
CORNELIA R, FARSHAD A, LYDIE-STELLA K, et al., 2018. Put more carbon in soils to meet paris climate pledges[J]. Nature, 564(7734): 32-34.
DOI |
[3] |
DE D G B, CORNELISSEN J H C, BARDGEET R D, 2008. Plant functional traits and soil carbon sequestration in contrasting biomes[J]. Ecology Letters, 11(5): 516-531.
DOI PMID |
[4] |
HAGHVERDI K, KOOCH Y, 2019. Effects of diversity of tree species on nutrient cycling and soil-related processes[J]. Catena, 178(7): 335-344.
DOI URL |
[5] |
HE Y J, QIN L, LI Z Y, et al., 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecology and Management, 295(13): 193-198.
DOI URL |
[6] |
HOU G R, BI H X, HUO Y M, et al., 2020. Determining the optimal vegetation coverage for controlling soil erosion in Cynodon dactylon grassland in North China[J]. Journal of Cleaner Production, 244: 118771.
DOI URL |
[7] | JUNGKUNST H F, GOPEL J, THOMAS H, et al., 2022. Global soil organic carbon-climate interactions: Why scales matter[J]. Wiley Interdisciplinary Reviews: Climate Change, 13(4): e780. |
[8] | LU X K, PETER M, MAO Q J, et al., 2021. Nitrogen deposition accelerates soil carbon sequestration in tropical forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 118(16): e2020790118. |
[9] |
LAURENT A, ANTRA B, 2022. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon[J]. Nature Communications, 13(1): 1097.
DOI PMID |
[10] |
MELISSA M, ANDREA P, NOEMI C, et al., 2022. Mercury in a birch forest in SW Europe: Deposition flux by litterfall and pools in aboveground tree biomass and soils[J]. The Science of the Total Environment, 856(1): 158937.
DOI URL |
[11] |
PETE S, 2016. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 22(3): 1315-1324.
DOI PMID |
[12] |
XIANG S R, ALLEN D, HOLDEN P A, et al., 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry, 40(9): 2281-2289.
DOI URL |
[13] |
WANG M Y, YANG J, GAO H Y, et al., 2020. Interspecific plant competition increases soil labile organic carbon and nitrogen contents[J]. Forest Ecology and Management, 462: 117991.
DOI URL |
[14] |
WEI X, BI H X, LIANG W J et al., 2018. Relationship between soil characteristics and stand structure of Robinia pseudoacacia L. and Pinus tabulaeformis Carr. mixed plantations in the Caijiachuan Watershed: An application of structural equation modeling[J]. Forests, 9(3): 124.
DOI URL |
[15] |
WANG T, LIU X X, ZOU D F, et al., 2019. Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau[J]. Catena, 187: 104399.
DOI URL |
[16] | WU B C, ZHOU L J Z, QI S, et al., 2021. Effect of habitat factors on the understory plant diversity of Platycladus orientalis plantations in Beijing mountainous areas based on MaxEnt model[J]. Ecological Indicators, 129(4): 107-117. |
[17] |
WEN X, LU X M, YING J Y, et al., 2022. Disentangling the effects of nitrogen availability and soil acidification on microbial taxa and soil carbon dynamics in natural grasslands[J]. Soil Biology and Biochemistry, 164(7): 108495.
DOI URL |
[18] |
SAYER E J, HEARD M S, GRANT H K, et al., 2011. Soil carbon release enhanced by increased tropical forest litterfall[J]. Nature Climate Change, 1(6): 304-307.
DOI |
[19] |
YANG J J, QIN R Z, SHI X P, et al., 2022. The effects of plastic film mulching and straw mulching on licorice root yield and soil organic carbon content in a dryland farming[J]. Science of the Total Environment, 826(6): 154113.
DOI URL |
[20] |
ZHANG X, LI X, JI X D, et al., 2021. Elevation and total nitrogen are the critical factors that control the spatial distribution of soil organic carbon content in the shrubland on the Bashang Plateau, China[J]. Catena, 204(9): 105415.
DOI URL |
[21] |
ZHAO C M, CHEN W L, TIAN Z Q, et al., 2005. Altitudinal pattern of plant species diversity in shennongjia mountains, central China[J]. Journal of Integrative Plant Biology, 47(12): 1431-1449.
DOI URL |
[22] |
ZHOU G, XU S, CIAIS P, et al., 2019. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. National Science Review, 6(4): 746-757.
DOI |
[23] | 曹小玉, 李际平, 委霞, 2020. 中亚热带典型林分空间结构对土壤养分含量的影响[J]. 林业科学, 56(1): 20-28. |
CAO X Y, LI J P, WEI X, 2020. Effects of spatial structure on soil nutrient content in typical forests in the contral-subtropics of China[J]. Scientia Silvae Sinicae, 56(1): 20-28. | |
[24] |
丁访军, 高艳平, 周凤娇, 等, 2012. 贵州西部4种林型土壤有机碳及其剖面分布特征[J]. 生态环境学报, 21(1): 38-43.
DOI |
DING F J, GAO Y P, ZHOU F J, et al., 2012. Soil organic carbon and its distribution characteristics in the soil profile for four forest types in west Guizhou[J]. Ecology and Environmental Sciences, 21(1): 38-43. | |
[25] |
杜雪, 王海燕, 邹佳何, 等, 2022. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 31(4): 663-669.
DOI |
DU X, WANG H Y, ZHOU J H, et al., 2022. Distribution characteristics and influencing factors of soil organic carbon in Spruce-fir broad-leaved mixed forest on north slope of Changbai mountains[J]. Ecology and Environmental Sciences, 31(4): 663-669. | |
[26] |
郭月峰, 祁伟, 姚云峰, 等, 2020. 小流域梯田土壤有机碳与土壤物理性质的关系研究[J]. 生态环境学报, 29(4): 748-756.
DOI |
GUO Y F, QI W, YAO Y F, et al., 2020. Soil organic carbon in small watershed terraces and association with physical properties[J]. Ecology and Environmental Sciences, 29(4): 748-756. | |
[27] | 刘波, 陈林, 庞丹波, 等, 2021. 六盘山华北落叶松土壤有机碳沿海拔梯度的分布规律及其影响因素[J]. 生态学报, 41(17): 6773-6785. |
LIU B, CHEN L, PANG D B, et al., 2021. Altitudinal distribution rule of Larix principi-muprehi forest's soil organic carbon and its influencing factors in Liupan Mountain[J]. Acla Ecologica Sinica, 41(17): 6773-6785. | |
[28] | 刘姝媛, 刘月秀, 叶金盛, 等, 2010. 广东省桉树人工林土壤有机碳密度及其影响因子[J]. 应用生态学报, 21(8): 1981-1985. |
LIU S Y, LIU Y X, YE J S, et al., 2010. Soil organic carbon density and its influencing factors of Eucalyptus plantation in Guangdong Province[J]. Journal of Applied Ecology, 21(8): 1981-1985. | |
[29] |
罗永清, 赵学勇, 王涛, 等, 2017. 沙地植物根系特征及其与土壤有机碳和总氮的关系[J]. 草业学报, 26(8): 200-206.
DOI |
LUO Y Q, ZHAO X Y, WANG T, et al., 2017. Characteristics of the plant-root system and its relationships with soil organic carbonand total nitrogen in a degraded sandy grassland[J]. Acta Prataculturae Sinica, 26(8): 200-206. | |
[30] | 吕小娜, 2021. 山西省耕地土壤养分分析——评《土壤农化分析 (第三版)》[J]. 灌溉排水学报, 40(10): 145. |
LÜ X N, 2021, Analysis of soil nutrients of cultivated land in Shanxi province: Comment on analysis of soil agrochemistry (3rd Edition)[J]. Journal of Lrrigation and Drainage, 40(10): 145. | |
[31] |
马辉英, 李昕竹, 马鑫钰, 等, 2022. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 31(6): 1124-1131.
DOI |
MA H Y, LI X Z, MA X Y, et al., 2022. Characteristics and driving factors of soil organic carbon fractions under different vegetation types of the mid-Northern piedmont of the Tianshan Mountains, Xinjiang[J]. Ecology and Environmental Sciences, 31(6): 1124-1131. | |
[32] | 宁一泓, 王海燕, 侯文宁, 等, 2022. 重庆笋溪河流域土壤有机碳特征及影响因素[J]. 森林与环境学报, 42(5): 552-560. |
NING Y H, WANG H Y, HOU W N, et al., 2022. Characteristics and influencing factors of soil organic carbon in the Sunxi River Basin, Chongqing[J]. Journal of Forest and Environment, 42(5): 552-560. | |
[33] | 邱思慧, 林少颖, 王维奇, 2022. 中国东部地区不同海拔梯度土壤有机碳库特征及其影响因素综述[J]. 中国水土保持科学, 20(3): 142-150. |
QIU S H, LIN S Y, WANG W Q, 2022. Characteristics of soil organic carbon pool at different altitude gradients in eastern china and its influencing factors: A review[J]. Science of Soil and Water Conservation, 20(3): 142-150. | |
[34] |
王瑾, 陈书涛, 丁司丞, 等, 2021. 土壤和气候因素对土壤有机碳平均周转时间的影响[J]. 生态环境学报, 30(6): 1192-1201.
DOI |
WANG J, CHEN S T, DING S C, et al., 2021. Effects of the soil and climate factors on the mean turnover times of soil organic carbon[J]. Ecology and Environmental Sciences, 30(6): 1192-1201. | |
[35] | 王淑芳, 王效科, 欧阳志云, 2014. 环境因素对密云水库上游流域土壤有机碳和全氮含量影响的通径分析[J]. 生态环境学报, 23(8): 1378-1383. |
WANG S F, WANG X K, OUYANG Z Y, 2014. Path analysis on environmental factors controlling soil organic carbon and total nitrogen contents in the upstream watershed of Miyun reservoir, North China[J]. Ecology and Environmental Sciences, 23(8): 1378-1383. | |
[36] | 徐广平, 李艳琼, 沈育伊, 等, 2019. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 40(3): 1491-1503. |
XU G P, LI Y Q, SHENG Y Y, et al., 2019. Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian karst wetland in Guilin[J]. Environmental Science, 40(3): 1491-1503.
DOI URL |
|
[37] |
闫蒙, 王旭洋, 周立业, 等, 2022. 科尔沁沙地沙漠化过程中土壤有机碳含量变化特征及影响因素[J]. 中国沙漠, 42(5): 221-231.
DOI |
YAN M, WANG X Y, ZHOU L Y, et al., 2022. Characteristics and influencing factors of soil organic carbon in the process of desertification in Horqin Sandy Land[J]. Journal of Desert Research, 42(5): 221-231.
DOI |
|
[38] |
尤海舟, 毕君, 王超, 等, 2018. 河北小五台山不同海拔白桦林土壤有机碳密度分布特征及影响因素[J]. 生态环境学报, 27(3): 432-437.
DOI |
YOU H Z, BI J, WANG C, et al., 2018. Altitudinal distribution rule of betula platyphylla forest's soil organic carbon density and its influencing factors in Xiaowutai Mountain in Hebei[J]. Ecology and Environmental Sciences, 27(3): 432-437. | |
[39] |
张恒宇, 孙树臣, 吴元芝, 等, 2022. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征[J]. 生态环境学报, 31(5): 875-884.
DOI |
ZHANG H Y, SUN S C, WU Y Z, et al., 2022. Distribution characteristics of soil water, carbon and nitrogen under different vegetation densities in Loess Plateau[J]. Ecology and Environmental Sciences, 31(5): 875-884. | |
[40] |
张林, 齐实, 周飘, 等, 2022. 北京山区侧柏林下草本植物多样性的影响因素分析[J]. 草地学报, 30(8): 2199-2206.
DOI |
ZHANG L, QI S, ZHOU P, et al., 2022. Analysis of influencing factors on the understory herbaceous plant diversity of Platycladus orientalis forest in Beijing mountainous areas[J]. Acta Agrestia Sinica, 30(8): 2199-2206. | |
[41] | 张乾, 汪依妮, 柳鑫, 等, 2022. 不同石漠化草地根系对土壤有机碳的贡献[J]. 生态科学, 41(6): 26-32. |
ZHANG Q, WANG Y N, LIU X, et al., 2022. The contribution of roots to soil organic carbon in different rocky desertifi-cation grasslands[J]. Ecological Science, 41(6): 26-32. | |
[42] | 赵晗, 王海燕, 罗鹏, 等, 2022. 微地形对云冷杉阔叶混交林土壤有机碳和全氮的影响[J]. 北京林业大学学报, 44(8): 88-97. |
ZHAO H, WANG H Y, LUO P, et al., 2022. Effects of micro-topography on soil organic carbon and total nitrogen in mixed spruce-fir-broadleaf forest[J]. Journal of Beijing Foresty University, 44(8): 88-97. | |
[43] | 赵青, 刘爽, 陈凯, 等, 2021. 武夷山自然保护区不同海拔甜槠天然林土壤有机碳变化特征及影响因素[J]. 生态学报, 41(13): 5328-5339. |
ZHAO Q, LIU S, CHEN K, et al., 2021. Change characteristics and influencing factors of soil organic carbon in Castanopsis eyrei natural forests at different altitudes in Wuyishan Nature Reserve[J]. Journal of Ecology, 41(13): 5328-5339. |
[1] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[2] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[3] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[4] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[5] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[6] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[7] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[8] | ZHAO Anzhou, TIAN Xinle. Spatiotemporal Evolution and Influencing Factors of Vegetation Coverage in the Loess Plateau from 1986 to 2021 Based on GEE Platform [J]. Ecology and Environment, 2022, 31(11): 2124-2133. |
[9] | LI Liangliang, DAI Liangyu, GAO Weichang, ZHANG Shuyi, LIU Taoze. The Occurrence Characteristics and Influencing Factors of Residual Mulching Film of Typical Farmland with Plastic Film in Guizhou Province [J]. Ecology and Environment, 2022, 31(11): 2189-2197. |
[10] | LI Shengzeng, HAO Saimei, TAN Luyao, ZHANG Huaicheng, XU Biao, GU Shumao, PAN Guang, WANG Shuyan, YAN Huaizhong, ZHANG Guiqin. Characteristics of Spatiotemporal Variation, and Factors Influencing Secondary Components in PM2.5 in Ji'nan [J]. Ecology and Environment, 2022, 31(1): 100-109. |
[11] | LI Shaoning, TAO Xueying, LI Xiuhong, ZHAO Na, XU Xiaotian, LU Shaowei. Research Progress of Beneficial Biogenic Volatile Organic Compounds Released from Plants [J]. Ecology and Environment, 2022, 31(1): 187-195. |
[12] | CAI Yang, LI Wei, ZUO Xueyan, CUI Lijuan, LEI Yinru, ZHAO Xinsheng, ZHAI Xiajie, LI Jing, PAN Xu. Distribution Characteristics and Influencing Factors of PAHs in Yancheng Coastal Wetland Soil [J]. Ecology and Environment, 2021, 30(6): 1249-1259. |
[13] | TIAN Yichao, YANG Tang, XU Xin. Temporal and Spatial Distribution Characteristics and Influencing Factors of Net Primary Productivity of Vegetation in Typical Basin Entering the Sea in Beibu Gulf [J]. Ecology and Environment, 2021, 30(5): 938-948. |
[14] | YANG Hongbing, XIAO Yihua, LI Ming, XU Han, SHI Xin, GUO Xiaomin. Coupling Relationship between Soil Aggregate Stability and Microbial Extracellular Enzyme Activities in Typical Urban Forests during the Dry Season [J]. Ecology and Environment, 2021, 30(10): 1976-1989. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn