Ecology and Environment ›› 2024, Vol. 33 ›› Issue (6): 980-996.DOI: 10.16258/j.cnki.1674-5906.2024.06.015
• Review • Previous Articles
LI Cheng1(), CHENG Zhipeng2, LIU Yujin1, YAO Yiming2, LI Chunlei1,*(
)
Received:
2023-11-29
Online:
2024-06-18
Published:
2024-07-30
Contact:
LI Chunlei
李程1(), 程志鹏2, 刘育金1, 姚义鸣2, 李春雷1,*(
)
通讯作者:
李春雷
作者简介:
李程(1997年生),男,博士研究生,主要研究方向为生态安全、环境犯罪、新污染物检测、新污染物管理。E-mail: lichengppsuc@126.com
基金资助:
CLC Number:
LI Cheng, CHENG Zhipeng, LIU Yujin, YAO Yiming, LI Chunlei. Research on Ecological Risks and Its Control Policies of Per- and Polyfluoroalkyl Substances[J]. Ecology and Environment, 2024, 33(6): 980-996.
李程, 程志鹏, 刘育金, 姚义鸣, 李春雷. 全(多)氟烷基化合物生态风险及其管控政策研究[J]. 生态环境学报, 2024, 33(6): 980-996.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.06.015
中文名称 | 英文名称 | 英文缩写 | 分子式 | 饱和蒸汽压 | 溶解度/ (mg∙L−1) | 亨利常数 | Log KOW | Log KOA | Log KOC | BAF | BCF | 96 h LC50/ (mg∙L−1) | 48 h LC50/ (mg∙L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
全氟丁烷羧酸 | Perfluorobutanoic acid | PFBA | C3F7COOH | 63.7 | 1.37×103 | 1.19×10−4 | 2.14 | 4.45 | 1.34 | 14.9 | 14.9 | 370 | 235 |
四氟-2-(七氟丙氧基)丙酸 | Perfluoro-2-propoxypropanoic acid | HFPO-DA (GENX) | C3F7OCF(CF3)COOH | 6.91×10−1 | 27.2 | 2.05×104 | 3.36 | 5.44 | 1.92 | 224 | 223 | 95.2 | 61.3 |
全氟丁烷 磺酰氟 | Perfluorobutane sulfonyl fluoride | PBSF | C4F9SO2F | 168 | 4.69×10−1 | 8.91×10−2 | 5.16 | 4.6 | 3.94 | 3.93×103 | 2.71×103 | 41.4 | 35.4 |
全氟丁烷磺酸 | Perfluorobutane sulfonic acid | PFBS | C4F9SO3H | 5.18×10−2 | 344 | 1.44×10−5 | 1.82 | 5.05 | 1.93 | 7.32 | 7.32 | 40.1 | 75.9 |
全氟已烷羧酸 | Perfluorohexanoic acid | PFHxA | C5F11COOH | 1.98 | 27.1 | 3.29×10−3 | 3.48 | 4.35 | 2.08 | 282 | 280 | 85.6 | 62.5 |
全氟庚烷羧酸 | Perfluoroheptanoic acid | PFHpA | C6F13COOH | 0.128 | 3.65 | 1.73×10−2 | 4.15 | 4.3 | 2.45 | 1.23×103 | 1.12×103 | 36.9 | 77.8 |
全氟已烷磺酸 | Perfluorohexane sulfonic acid | PFHxS | C6F13SO3H | 4.28×10−3 | 6.17 | 3.97×10−4 | 3.16 | 4.95 | 2.67 | 129 | 129 | 16.9 | 56.2 |
6:2氟调碘 | 6:2 Fluorotelomer iodide | 6:2 FTI | C6F13CH2CH2I | 2.9 | 4.13×10−4 | 3.06×102 | 6.63 | 2.53 | 5.75 | 1.14×105 | 1.1×104 | 109 | 4.65 |
6:2氟调醇 | 6:2 Fluorotelomer alcohol | 6:2 FTOH | C6F13CH2CH2OH | 0.959 | 2.19 | 1.50×10−1 | 4.41 | 3.75 | 3.02 | 1.61×103 | 1.51×103 | 49.9 | 30.6 |
6:2氟调磺酸 | 6:2 Fluorotelomer sulfonic acid | 6:2 FTSA | C6F13CH2CH2SO3H | 8.62×10−4 | 11 | 7×10−4 | 2.66 | 4.2 | 2.39 | 45.1 | 45.1 | 13.9 | 30.9 |
全氟辛烷羧酸 | Perfluorooctanoic acid | PFOA | C7F15COOH | 0.525 | 0.476 | 9.08×10−2 | 4.81 | 4.24 | 2.82 | 7.67×103 | 3.75×103 | 32.5 | 34.8 |
全氟庚烷磺酸 | Perfluoroheptane sulfonic acid | PFHpS | C7F15SO3H | 8.99×10−3 | 0.806 | 2.09×10−3 | 3.82 | 4.89 | 4.20 | 508 | 511 | 14.7 | N\A |
全氟壬烷羧酸 | Perfluorononanoic acid | PFNA | C8F17COOH | 0.1 | 6.26×10−2 | 0.446 | 5.48 | 4.19 | 3.19 | 1.12×105 | 9.13×103 | 14 | N\A |
全氟辛烷磺酸 | Perfluorooctane sulfonic acid | PFOS | C8F17SO3H | 6.4×10−3 | 0.1 | 1.10×10−2 | 4.49 | 4.84 | 3.41 | 1.9×103 | 1.72×103 | 18.6 | N\A |
8:2氟调醇 | 8:2 Fluorotelomer alcohol | 8:2 FTOH | C8F17CH2CH2OH | 9.72×10−2 | 6.74×10−2 | 41.4 | 5.75 | 3.35 | 3.60 | 3.97×104 | 6.12×103 | 18.4 | N\A |
N-乙基全氟辛烷磺酰胺 | N- ethyl perfluorooctane sulfonamides | N-EtFOSA | C8F17SO2N(C2H5)H | 4.28×10−7 | 8.09×10−4 | 53.7 | 6.72 | 2.34 | 4.8 | 6.24×106 | 7.37×103 | 10.5 | N\A |
全氟辛烷 磺酰氟 | Perfluorooctane sulfonyl fluoride | POSF | C8F17SO2F | 5.75 | 1.14×10−4 | 67.9 | 7.84 | 4.40 | 5.42 | 4.72×106 | 2.32×103 | 11.4 | N\A |
全氟辛烷 磺酰胺 | Perfluorooctane sulfonamide | FOSA | C8F17SO2NH2 | 0.307 | 8.05×10−4 | 18.4 | 5.80 | 3.92 | 4.30 | 6.06×104 | 6.16×103 | 16.4 | N\A |
全氟辛烷碘 | Perfluorooctyl iodide | PFOI | C8F17I | 3.22 | 7.07×10−5 | 3.81×104 | 6.99 | 0.80 | 6.07 | 8.58×105 | 3.92×103 | 15.8 | N\A |
8:2氟调碘 | 8:2 Fluorotelomer iodide | 8:2 FTI | C8F17CH2CH2I | 0.58 | 6.73×10−6 | 8.44×103 | 7.97 | 2.43 | 6.92 | 1.56×106 | 1.12×103 | 2.13 | N\A |
8:2氟调磺酸 | 8:2 Fluorotelomer sulfonic acid | 8:2 FTSA | C8F17CH2CH2SO3H | 4.5×10−4 | 0.179 | 1.93×10−2 | 4.00 | 4.10 | 3.14 | 754 | 741 | 17.2 | N\A |
全氟癸烷羧酸 | Perfluorodecanoic acid | PFDA | C9F19COOH | 2.96×10−2 | 8.04×10−3 | 25.1 | 6.15 | 4.14 | 3.56 | 1.24×106 | 1.37×104 | 0.369 | N/A |
全氟壬烷磺酸 | Perfluorononane sulfonic acid | PFNS | C9F19SO3H | 4.56×10−3 | 1.33×10−2 | 5.77×10−2 | 5.16 | 4.79 | 3.78 | 1.21×105 | 4.6×103 | N/A | N/A |
全氟癸烷磺酸 | Perfluorodecane sulfonic acid | PFDS | C10F21SO3H | 3.25×10−3 | 1.68×10−3 | 0.298 | 5.83 | 4.73 | 4.15 | 1.79×105 | 8.88×103 | N/A | N/A |
Table 1 Basic physicochemical properties of common PFASs
中文名称 | 英文名称 | 英文缩写 | 分子式 | 饱和蒸汽压 | 溶解度/ (mg∙L−1) | 亨利常数 | Log KOW | Log KOA | Log KOC | BAF | BCF | 96 h LC50/ (mg∙L−1) | 48 h LC50/ (mg∙L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
全氟丁烷羧酸 | Perfluorobutanoic acid | PFBA | C3F7COOH | 63.7 | 1.37×103 | 1.19×10−4 | 2.14 | 4.45 | 1.34 | 14.9 | 14.9 | 370 | 235 |
四氟-2-(七氟丙氧基)丙酸 | Perfluoro-2-propoxypropanoic acid | HFPO-DA (GENX) | C3F7OCF(CF3)COOH | 6.91×10−1 | 27.2 | 2.05×104 | 3.36 | 5.44 | 1.92 | 224 | 223 | 95.2 | 61.3 |
全氟丁烷 磺酰氟 | Perfluorobutane sulfonyl fluoride | PBSF | C4F9SO2F | 168 | 4.69×10−1 | 8.91×10−2 | 5.16 | 4.6 | 3.94 | 3.93×103 | 2.71×103 | 41.4 | 35.4 |
全氟丁烷磺酸 | Perfluorobutane sulfonic acid | PFBS | C4F9SO3H | 5.18×10−2 | 344 | 1.44×10−5 | 1.82 | 5.05 | 1.93 | 7.32 | 7.32 | 40.1 | 75.9 |
全氟已烷羧酸 | Perfluorohexanoic acid | PFHxA | C5F11COOH | 1.98 | 27.1 | 3.29×10−3 | 3.48 | 4.35 | 2.08 | 282 | 280 | 85.6 | 62.5 |
全氟庚烷羧酸 | Perfluoroheptanoic acid | PFHpA | C6F13COOH | 0.128 | 3.65 | 1.73×10−2 | 4.15 | 4.3 | 2.45 | 1.23×103 | 1.12×103 | 36.9 | 77.8 |
全氟已烷磺酸 | Perfluorohexane sulfonic acid | PFHxS | C6F13SO3H | 4.28×10−3 | 6.17 | 3.97×10−4 | 3.16 | 4.95 | 2.67 | 129 | 129 | 16.9 | 56.2 |
6:2氟调碘 | 6:2 Fluorotelomer iodide | 6:2 FTI | C6F13CH2CH2I | 2.9 | 4.13×10−4 | 3.06×102 | 6.63 | 2.53 | 5.75 | 1.14×105 | 1.1×104 | 109 | 4.65 |
6:2氟调醇 | 6:2 Fluorotelomer alcohol | 6:2 FTOH | C6F13CH2CH2OH | 0.959 | 2.19 | 1.50×10−1 | 4.41 | 3.75 | 3.02 | 1.61×103 | 1.51×103 | 49.9 | 30.6 |
6:2氟调磺酸 | 6:2 Fluorotelomer sulfonic acid | 6:2 FTSA | C6F13CH2CH2SO3H | 8.62×10−4 | 11 | 7×10−4 | 2.66 | 4.2 | 2.39 | 45.1 | 45.1 | 13.9 | 30.9 |
全氟辛烷羧酸 | Perfluorooctanoic acid | PFOA | C7F15COOH | 0.525 | 0.476 | 9.08×10−2 | 4.81 | 4.24 | 2.82 | 7.67×103 | 3.75×103 | 32.5 | 34.8 |
全氟庚烷磺酸 | Perfluoroheptane sulfonic acid | PFHpS | C7F15SO3H | 8.99×10−3 | 0.806 | 2.09×10−3 | 3.82 | 4.89 | 4.20 | 508 | 511 | 14.7 | N\A |
全氟壬烷羧酸 | Perfluorononanoic acid | PFNA | C8F17COOH | 0.1 | 6.26×10−2 | 0.446 | 5.48 | 4.19 | 3.19 | 1.12×105 | 9.13×103 | 14 | N\A |
全氟辛烷磺酸 | Perfluorooctane sulfonic acid | PFOS | C8F17SO3H | 6.4×10−3 | 0.1 | 1.10×10−2 | 4.49 | 4.84 | 3.41 | 1.9×103 | 1.72×103 | 18.6 | N\A |
8:2氟调醇 | 8:2 Fluorotelomer alcohol | 8:2 FTOH | C8F17CH2CH2OH | 9.72×10−2 | 6.74×10−2 | 41.4 | 5.75 | 3.35 | 3.60 | 3.97×104 | 6.12×103 | 18.4 | N\A |
N-乙基全氟辛烷磺酰胺 | N- ethyl perfluorooctane sulfonamides | N-EtFOSA | C8F17SO2N(C2H5)H | 4.28×10−7 | 8.09×10−4 | 53.7 | 6.72 | 2.34 | 4.8 | 6.24×106 | 7.37×103 | 10.5 | N\A |
全氟辛烷 磺酰氟 | Perfluorooctane sulfonyl fluoride | POSF | C8F17SO2F | 5.75 | 1.14×10−4 | 67.9 | 7.84 | 4.40 | 5.42 | 4.72×106 | 2.32×103 | 11.4 | N\A |
全氟辛烷 磺酰胺 | Perfluorooctane sulfonamide | FOSA | C8F17SO2NH2 | 0.307 | 8.05×10−4 | 18.4 | 5.80 | 3.92 | 4.30 | 6.06×104 | 6.16×103 | 16.4 | N\A |
全氟辛烷碘 | Perfluorooctyl iodide | PFOI | C8F17I | 3.22 | 7.07×10−5 | 3.81×104 | 6.99 | 0.80 | 6.07 | 8.58×105 | 3.92×103 | 15.8 | N\A |
8:2氟调碘 | 8:2 Fluorotelomer iodide | 8:2 FTI | C8F17CH2CH2I | 0.58 | 6.73×10−6 | 8.44×103 | 7.97 | 2.43 | 6.92 | 1.56×106 | 1.12×103 | 2.13 | N\A |
8:2氟调磺酸 | 8:2 Fluorotelomer sulfonic acid | 8:2 FTSA | C8F17CH2CH2SO3H | 4.5×10−4 | 0.179 | 1.93×10−2 | 4.00 | 4.10 | 3.14 | 754 | 741 | 17.2 | N\A |
全氟癸烷羧酸 | Perfluorodecanoic acid | PFDA | C9F19COOH | 2.96×10−2 | 8.04×10−3 | 25.1 | 6.15 | 4.14 | 3.56 | 1.24×106 | 1.37×104 | 0.369 | N/A |
全氟壬烷磺酸 | Perfluorononane sulfonic acid | PFNS | C9F19SO3H | 4.56×10−3 | 1.33×10−2 | 5.77×10−2 | 5.16 | 4.79 | 3.78 | 1.21×105 | 4.6×103 | N/A | N/A |
全氟癸烷磺酸 | Perfluorodecane sulfonic acid | PFDS | C10F21SO3H | 3.25×10−3 | 1.68×10−3 | 0.298 | 5.83 | 4.73 | 4.15 | 1.79×105 | 8.88×103 | N/A | N/A |
年份 | 地区 | 环境介质 | PFASs种类 | 参考文献 |
---|---|---|---|---|
2016 | 中国阜新 | 工业区大气 | TFA, PFPrA, PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, GenX, PFBS, PFHxS, PFOS, 8:2 FTUCA, 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, 6:2 FTI, 8:2 FTI, 10:2 FTI, N-MeFOSA, N-EtFOSA, N-MeFOSE, N-EtFOSE | Chen et al., |
2023 | 中国天津 | 工业区大气 | 14种中性型PFASs, 26种可电离型PFASs | Qiao et al., |
2007 | 美国纽约 | 人口聚集区大气 | PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFHxS, PFOS, PFDS, PFOSA, FTOHs | Kim et al., |
2011 | 日本、印度、 中国 | 人口聚集区大气 | FTAs, FTOH, FOSAs, FOSEs | Li et al., |
2015 | 中国天津 | 人口聚集区大气 | FTOHs, L-PFCAs, S-PFCAs, PFSAs, FOSE/As, diPAPs | Yao et al., |
2018 | 中国上海 | 人口聚集区大气 | PFHpA, PFOA, PFNA, PFHxS, PFDA, PFUnDA, PFDoDA, PFOS | Guo et al., |
2019 | 中国成都 | 人口聚集区大气 | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFOS, PFDS | Fang et al., |
2005‒2006 | 北极 | 极端地区大气 | 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, MeFOSE, MeFOSE/A, EtFOSE | Shoeib et al., |
2011‒2013 | 中国青藏高原 | 极端地区大气 | 8:2 FTOs, 4:2 FTOH, 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, 12:2 FTOH, MeFBSA, N-MeFOSA, N-EtFOSA, N-MeFBSE, N-MeFOSE, N-EtFOSE | Wang et al., |
2006‒2008 | 美国 | 地表水 | PFPeA, PFHxA, PFHpA, PFOA, PFOA, PFNA, PFDA, PFBS, PFHxS, PFHxS, PFOS, PFOS, PFECHS, PFMeCHS | De Silva et al., |
2011 | 中国浙江 | 地表水 | PFBS, PFHxS, PFHpS, PFOS, PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, FOSA | Lu et al., |
2016 | 中国珠江 中国巢湖 | 地表水 | PFBS, PFHxS, PFOS, 4:2 Cl-PFESA, 6:2 Cl-PFESA, 8:2 Cl-PFESA, 6:2 H-PFESA, 4:2 FTSA, 6:2 FTSA, 8:2 FTSA | Pan et al., |
2018 | 美国 | 饮用水处理厂饮用水 | PFBS, PFBA, PFDA, PFDoDA, PFHpA, PFHxS, PFHxA, PFOS, PFOA, PFPeA, PFTeDA, PFUnDA | Liu et al., |
2023 | 中国广州 | 饮用水处理厂饮用水 | PFBA, PFPeA, PFHxA, PFBS, PFOS, PFHpA, PFOA, PFNA, PFDA | Wang et al., |
2017 | 中国31个省级行政区 | 自来水 | PFBA, PFPeA, PFHxA, PFBS, PFHpA, PFOA, PFHxS, PFNA, PFDA, PFOS, PFUdA, PFDoA, PFDS, PFTrDA, PFTeDA, PFHxDA, PFODA | Li et al., |
2023 | 中国阜新 中国淄博 中国苏州 | 地下水 地表水 | OBS, 8:2 FTUCA, 6:2 FTUCA, 5:3 FTCA, 7:3 FTCA, 6:2 FTCA, 8:2 FTCA, FHxSA, FHSA, FOSA, 6:2 diPAP, PFECHS, HFPO-DA, 6:2 Cl-PFESA, 8:2 Cl-PFESA, N-EtFOSAA, N-MeFOSAA, 6:2 FTS, 8:2 FTS, 4:2 FTS, PFDS, PFOS, PFHpS, PFHxS, PFPeS, PFBS, PFTeDA, PFTrDA, PFDoA, PFUdA, PFDA, PFNA, PFOA, PFHpA, PFHxA, PFPeA, PFBA | Song et al., |
2020 | 中国上海 | 消防站、工业区、机场、垃圾填埋场和农业区土壤 | PFHpA, PFHxA, PFPeA, PFBA, PFOA, PFPrA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFHxDA, PFOdA, PFBS, PFHxS, PFOS, HFPO-DA | Zhu et al., |
2014 | 中国山东 | 工业区土壤 | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFBS, PFHxS, PFOS | Liu et al., |
2014 | 中国江苏 | 工业区土壤 | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFHxDA, PFOcDA, PFBS, PFHxS, PFOS, PFDS | 陈舒等, |
2016 | 中国辽宁 | 工业区土壤 | TFA, PFPrA, PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoDA, PFBS, PFHxS, PFOS,8:2FTUCA | Chen et al., |
2014 | 中国山东 | 工业区周边农田土壤 | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFBS, PFHxS, PFOS | Liu et al., |
2018 | 中国四川 | 工业区周边农田土壤 | PFOS, PFBS, PFTeDA, PFUdA, PFDA, PFOA, PFNA, PFBA, PFPeA, PFHxA, PFHpA | Gan et al., |
2020 | 比利时 | 木虱、蜗牛 | PFBA, PFPeA, PFOA, PFDA, PFBS, PFOS | Groffen et al., |
2018 | 中国渤海 | 无脊椎动物、鱼类、海鸟和哺乳动物 | 6:2 Cl-PFESA | Chen et al., |
2012‒2013 | 格陵兰岛 | 北极熊、海豹 和海豚肝脏 | F-53B, PFBS, PFHxS, PFOS, PFDS, FOSA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFPeDA | Gebbink et al., |
2003 | 北极 | 大型藻类、鱼类、海鸟和白鲸 | PFCA, PFSA, PFOSA,GenX, PFDA, PFUnA, PFOA, PFNA | Kelly et al., |
2015 | 中国山东 | 鱼类、人体肝脏 | C8 Cl-PFESA, C10 Cl-PFESA | Shi et al., |
Table 2 Environmental pollution status of PFASs
年份 | 地区 | 环境介质 | PFASs种类 | 参考文献 |
---|---|---|---|---|
2016 | 中国阜新 | 工业区大气 | TFA, PFPrA, PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, GenX, PFBS, PFHxS, PFOS, 8:2 FTUCA, 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, 6:2 FTI, 8:2 FTI, 10:2 FTI, N-MeFOSA, N-EtFOSA, N-MeFOSE, N-EtFOSE | Chen et al., |
2023 | 中国天津 | 工业区大气 | 14种中性型PFASs, 26种可电离型PFASs | Qiao et al., |
2007 | 美国纽约 | 人口聚集区大气 | PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFHxS, PFOS, PFDS, PFOSA, FTOHs | Kim et al., |
2011 | 日本、印度、 中国 | 人口聚集区大气 | FTAs, FTOH, FOSAs, FOSEs | Li et al., |
2015 | 中国天津 | 人口聚集区大气 | FTOHs, L-PFCAs, S-PFCAs, PFSAs, FOSE/As, diPAPs | Yao et al., |
2018 | 中国上海 | 人口聚集区大气 | PFHpA, PFOA, PFNA, PFHxS, PFDA, PFUnDA, PFDoDA, PFOS | Guo et al., |
2019 | 中国成都 | 人口聚集区大气 | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFOS, PFDS | Fang et al., |
2005‒2006 | 北极 | 极端地区大气 | 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, MeFOSE, MeFOSE/A, EtFOSE | Shoeib et al., |
2011‒2013 | 中国青藏高原 | 极端地区大气 | 8:2 FTOs, 4:2 FTOH, 6:2 FTOH, 8:2 FTOH, 10:2 FTOH, 12:2 FTOH, MeFBSA, N-MeFOSA, N-EtFOSA, N-MeFBSE, N-MeFOSE, N-EtFOSE | Wang et al., |
2006‒2008 | 美国 | 地表水 | PFPeA, PFHxA, PFHpA, PFOA, PFOA, PFNA, PFDA, PFBS, PFHxS, PFHxS, PFOS, PFOS, PFECHS, PFMeCHS | De Silva et al., |
2011 | 中国浙江 | 地表水 | PFBS, PFHxS, PFHpS, PFOS, PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, FOSA | Lu et al., |
2016 | 中国珠江 中国巢湖 | 地表水 | PFBS, PFHxS, PFOS, 4:2 Cl-PFESA, 6:2 Cl-PFESA, 8:2 Cl-PFESA, 6:2 H-PFESA, 4:2 FTSA, 6:2 FTSA, 8:2 FTSA | Pan et al., |
2018 | 美国 | 饮用水处理厂饮用水 | PFBS, PFBA, PFDA, PFDoDA, PFHpA, PFHxS, PFHxA, PFOS, PFOA, PFPeA, PFTeDA, PFUnDA | Liu et al., |
2023 | 中国广州 | 饮用水处理厂饮用水 | PFBA, PFPeA, PFHxA, PFBS, PFOS, PFHpA, PFOA, PFNA, PFDA | Wang et al., |
2017 | 中国31个省级行政区 | 自来水 | PFBA, PFPeA, PFHxA, PFBS, PFHpA, PFOA, PFHxS, PFNA, PFDA, PFOS, PFUdA, PFDoA, PFDS, PFTrDA, PFTeDA, PFHxDA, PFODA | Li et al., |
2023 | 中国阜新 中国淄博 中国苏州 | 地下水 地表水 | OBS, 8:2 FTUCA, 6:2 FTUCA, 5:3 FTCA, 7:3 FTCA, 6:2 FTCA, 8:2 FTCA, FHxSA, FHSA, FOSA, 6:2 diPAP, PFECHS, HFPO-DA, 6:2 Cl-PFESA, 8:2 Cl-PFESA, N-EtFOSAA, N-MeFOSAA, 6:2 FTS, 8:2 FTS, 4:2 FTS, PFDS, PFOS, PFHpS, PFHxS, PFPeS, PFBS, PFTeDA, PFTrDA, PFDoA, PFUdA, PFDA, PFNA, PFOA, PFHpA, PFHxA, PFPeA, PFBA | Song et al., |
2020 | 中国上海 | 消防站、工业区、机场、垃圾填埋场和农业区土壤 | PFHpA, PFHxA, PFPeA, PFBA, PFOA, PFPrA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFHxDA, PFOdA, PFBS, PFHxS, PFOS, HFPO-DA | Zhu et al., |
2014 | 中国山东 | 工业区土壤 | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFBS, PFHxS, PFOS | Liu et al., |
2014 | 中国江苏 | 工业区土壤 | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFHxDA, PFOcDA, PFBS, PFHxS, PFOS, PFDS | 陈舒等, |
2016 | 中国辽宁 | 工业区土壤 | TFA, PFPrA, PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoDA, PFBS, PFHxS, PFOS,8:2FTUCA | Chen et al., |
2014 | 中国山东 | 工业区周边农田土壤 | PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFBS, PFHxS, PFOS | Liu et al., |
2018 | 中国四川 | 工业区周边农田土壤 | PFOS, PFBS, PFTeDA, PFUdA, PFDA, PFOA, PFNA, PFBA, PFPeA, PFHxA, PFHpA | Gan et al., |
2020 | 比利时 | 木虱、蜗牛 | PFBA, PFPeA, PFOA, PFDA, PFBS, PFOS | Groffen et al., |
2018 | 中国渤海 | 无脊椎动物、鱼类、海鸟和哺乳动物 | 6:2 Cl-PFESA | Chen et al., |
2012‒2013 | 格陵兰岛 | 北极熊、海豹 和海豚肝脏 | F-53B, PFBS, PFHxS, PFOS, PFDS, FOSA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFPeDA | Gebbink et al., |
2003 | 北极 | 大型藻类、鱼类、海鸟和白鲸 | PFCA, PFSA, PFOSA,GenX, PFDA, PFUnA, PFOA, PFNA | Kelly et al., |
2015 | 中国山东 | 鱼类、人体肝脏 | C8 Cl-PFESA, C10 Cl-PFESA | Shi et al., |
水域 | PFOA | PFOS | PFBA | PFNA | PFDA | PFBS | 参考文献 |
---|---|---|---|---|---|---|---|
长江 | 36.5 | 12.1 | 9.61 | 1.2 | 1.59 | 4.68 | Pan et al., |
珠江 | 8.7 | 11 | N/A | 3.1 | 0.67 | 3.4 | Pan et al., |
黄河 | 4.92 | 4.4 | 3.52 | 0.39 | 0.06 | 0.99 | Pan et al., |
辽河 | 12.3 | 5.66 | 7.52 | 0.9 | 0.36 | 0.94 | Pan et al., |
淮河 | 9.06 | 3.72 | 22.8 | 1.35 | 0.36 | 1.59 | Pan et al., |
巢湖 | 10.5 | 29.7 | 11.7 | 1.65 | 2.02 | 81.5 | Pan et al., |
太湖 | 44.5 | 15.2 | 12.9 | 5.73 | 5.75 | 4.85 | Pan et al., |
绍兴 | 200 | 5 | 2.7 | 2.4 | 11 | 14 | Lu et al., |
上海 | 182 | 9.7 | 5 | 2.9 | 2.6 | 12 | Lu et al., |
阜新 | 705 | 104 | 4.25×103 | 4 | 1.60 | 1.19×103 | Song et al., |
淄博 | 7.06×105 | 1.84×103 | 9.08×103 | 1.08×103 | 101 | 485 | Song et al., |
苏州 | 2.46×104 | 159 | 1.2×103 | 128 | 81.3 | 70 | Song et al., |
Table 3 The mass concentration of PFASs in domestic water ecosystems ng?L?1
水域 | PFOA | PFOS | PFBA | PFNA | PFDA | PFBS | 参考文献 |
---|---|---|---|---|---|---|---|
长江 | 36.5 | 12.1 | 9.61 | 1.2 | 1.59 | 4.68 | Pan et al., |
珠江 | 8.7 | 11 | N/A | 3.1 | 0.67 | 3.4 | Pan et al., |
黄河 | 4.92 | 4.4 | 3.52 | 0.39 | 0.06 | 0.99 | Pan et al., |
辽河 | 12.3 | 5.66 | 7.52 | 0.9 | 0.36 | 0.94 | Pan et al., |
淮河 | 9.06 | 3.72 | 22.8 | 1.35 | 0.36 | 1.59 | Pan et al., |
巢湖 | 10.5 | 29.7 | 11.7 | 1.65 | 2.02 | 81.5 | Pan et al., |
太湖 | 44.5 | 15.2 | 12.9 | 5.73 | 5.75 | 4.85 | Pan et al., |
绍兴 | 200 | 5 | 2.7 | 2.4 | 11 | 14 | Lu et al., |
上海 | 182 | 9.7 | 5 | 2.9 | 2.6 | 12 | Lu et al., |
阜新 | 705 | 104 | 4.25×103 | 4 | 1.60 | 1.19×103 | Song et al., |
淄博 | 7.06×105 | 1.84×103 | 9.08×103 | 1.08×103 | 101 | 485 | Song et al., |
苏州 | 2.46×104 | 159 | 1.2×103 | 128 | 81.3 | 70 | Song et al., |
城市 | 工业区 | 城市 | 农业区 | ||||
---|---|---|---|---|---|---|---|
PFOA | PFOS | 参考文献 | PFOA | PFOS | 参考文献 | ||
遂宁 | 13.3 | 117 | Zhao et al., | 德阳 | 0.12 | 0.15 | Gan et al., |
淄博 | 608 | 35.5 | Liu et al., | 淄博 | 181 | 0.14 | Liu et al., |
阜新 | 120 | 3.50 | Chen et al., | 无锡 | 16.0 | 1.00 | 陈舒等, |
上海 | 96.7 | 8.60 | 钱佳浩, | 上海 | 6.03 | 0.7 | 钱佳浩, |
宁波 | 12 | 7.85 | Tang et al., | 宁波 | 11.2 | 4.85 | Tang et al., |
武汉 | 186 | 1.2×103 | 高燕等, | 天津 | 0.37 | 1.58 | Ma et al., |
苏州 | 62.5 | N/A | Lu et al., | 苏州 | 3.9 | N/A | Lu et al., |
Table 4 The mass fraction of PFASs (ng?kg?1) in domestic soil ecosystems ng?kg?1
城市 | 工业区 | 城市 | 农业区 | ||||
---|---|---|---|---|---|---|---|
PFOA | PFOS | 参考文献 | PFOA | PFOS | 参考文献 | ||
遂宁 | 13.3 | 117 | Zhao et al., | 德阳 | 0.12 | 0.15 | Gan et al., |
淄博 | 608 | 35.5 | Liu et al., | 淄博 | 181 | 0.14 | Liu et al., |
阜新 | 120 | 3.50 | Chen et al., | 无锡 | 16.0 | 1.00 | 陈舒等, |
上海 | 96.7 | 8.60 | 钱佳浩, | 上海 | 6.03 | 0.7 | 钱佳浩, |
宁波 | 12 | 7.85 | Tang et al., | 宁波 | 11.2 | 4.85 | Tang et al., |
武汉 | 186 | 1.2×103 | 高燕等, | 天津 | 0.37 | 1.58 | Ma et al., |
苏州 | 62.5 | N/A | Lu et al., | 苏州 | 3.9 | N/A | Lu et al., |
地区/水域 | 大型溞 Daphnia magna | 斑马鱼 Danio rerio | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PFOA | PFOS | PFBA | PFNA | PFDA | PFBS | PFOA | PFOS | PFBA | PFNA | PFDA | PFBS | ||
长江 | 7.66 | 9.05 | 0.184 | 0.792 | 0.975 | 0.216 | 36.5 | 121 | 4.37 | 14.3 | 159 | 10.4 | |
珠江 | 1.83 | 8.21 | 0 | 2.05 | 0.411 | 0.157 | 8.7 | 110 | 0 | 36.9 | 67 | 7.56 | |
黄河 | 1.03 | 3.28 | 6.74×10−3 | 0.257 | 3.68×10−3 | 4.56×10−3 | 4.92 | 44 | 1.6 | 4.64 | 6 | 2.2 | |
辽河 | 2.58 | 4.23 | 0.144 | 0.594 | 0.221 | 0.0433 | 12.3 | 56.6 | 3.42 | 10.7 | 36 | 2.09 | |
淮河 | 1.9 | 2.78 | 0.437 | 0.891 | 0.221 | 0.0733 | 9.06 | 37.2 | 10.3 | 16.1 | 36 | 3.53 | |
巢湖 | 2.2 | 22.2 | 0.224 | 1.09 | 1.24 | 3.76 | 10.5 | 297 | 5.32 | 19.6 | 202 | 181 | |
太湖 | 9.34 | 11.4 | 0.247 | 3.78 | 3.53 | 0.224 | 44.5 | 152 | 5.86 | 68.2 | 575 | 10.8 | |
绍兴 | 41.9 | 3.73 | 0.05 | 1.58 | 6.75 | 0.65 | 200 | 50 | 1.23 | 28.6 | 1.1×104 | 31.1 | |
上海 | 38.2 | 7.24 | 0.1 | 1.91 | 1.6 | 0.55 | 182 | 97 | 2.27 | 34.5 | 260 | 26.7 | |
阜新 | 148 | 77.7 | 81.4 | 2.64 | 0.98 | 54.8 | 705 | 1.04×103 | 1.93×103 | 47.6 | 160 | 2.64×103 | |
淄博 | 1.48×106 | 1.37×104 | 174 | 711 | 62 | 22.4 | 7.06×105 | 1.84×103 | 4.13×103 | 1.28×104 | 1.08×103 | 1.08×103 | |
苏州 | 5.17×104 | 119 | 23 | 84.5 | 49.9 | 3.23 | 2.46×104 | 1.59×103 | 545 | 1.52×103 | 8.13×103 | 156 |
Table 5 RQ of PFASs in the domestic water environment
地区/水域 | 大型溞 Daphnia magna | 斑马鱼 Danio rerio | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PFOA | PFOS | PFBA | PFNA | PFDA | PFBS | PFOA | PFOS | PFBA | PFNA | PFDA | PFBS | ||
长江 | 7.66 | 9.05 | 0.184 | 0.792 | 0.975 | 0.216 | 36.5 | 121 | 4.37 | 14.3 | 159 | 10.4 | |
珠江 | 1.83 | 8.21 | 0 | 2.05 | 0.411 | 0.157 | 8.7 | 110 | 0 | 36.9 | 67 | 7.56 | |
黄河 | 1.03 | 3.28 | 6.74×10−3 | 0.257 | 3.68×10−3 | 4.56×10−3 | 4.92 | 44 | 1.6 | 4.64 | 6 | 2.2 | |
辽河 | 2.58 | 4.23 | 0.144 | 0.594 | 0.221 | 0.0433 | 12.3 | 56.6 | 3.42 | 10.7 | 36 | 2.09 | |
淮河 | 1.9 | 2.78 | 0.437 | 0.891 | 0.221 | 0.0733 | 9.06 | 37.2 | 10.3 | 16.1 | 36 | 3.53 | |
巢湖 | 2.2 | 22.2 | 0.224 | 1.09 | 1.24 | 3.76 | 10.5 | 297 | 5.32 | 19.6 | 202 | 181 | |
太湖 | 9.34 | 11.4 | 0.247 | 3.78 | 3.53 | 0.224 | 44.5 | 152 | 5.86 | 68.2 | 575 | 10.8 | |
绍兴 | 41.9 | 3.73 | 0.05 | 1.58 | 6.75 | 0.65 | 200 | 50 | 1.23 | 28.6 | 1.1×104 | 31.1 | |
上海 | 38.2 | 7.24 | 0.1 | 1.91 | 1.6 | 0.55 | 182 | 97 | 2.27 | 34.5 | 260 | 26.7 | |
阜新 | 148 | 77.7 | 81.4 | 2.64 | 0.98 | 54.8 | 705 | 1.04×103 | 1.93×103 | 47.6 | 160 | 2.64×103 | |
淄博 | 1.48×106 | 1.37×104 | 174 | 711 | 62 | 22.4 | 7.06×105 | 1.84×103 | 4.13×103 | 1.28×104 | 1.08×103 | 1.08×103 | |
苏州 | 5.17×104 | 119 | 23 | 84.5 | 49.9 | 3.23 | 2.46×104 | 1.59×103 | 545 | 1.52×103 | 8.13×103 | 156 |
地区/ 水域 | 工业区 | 地区/ 水域 | 农业区 | ||
---|---|---|---|---|---|
PFOA | PFOS | PFOA | PFOS | ||
遂宁 | 0.07 | 43.3 | 德阳 | 6.05×10−4 | 5.56×10−2 |
淄博 | 3.2 | 13.1 | 淄博 | 0.951 | 5.18×10−2 |
阜新 | 0.631 | 1.3 | 无锡 | 8.42×10−3 | 0.37 |
上海 | 0.508 | 3.19 | 上海 | 3.17×10−3 | 0.259 |
宁波 | 6.28×10−3 | 2.91 | 宁波 | 5.91×10−2 | 1.79 |
武汉 | 0.978 | 444 | 天津 | 0 | 0.556 |
苏州 | 0.328 | 0 | 苏州 | 2.05×10−2 | 0 |
Table 6 RQ of PFASs in the domestic soil environment
地区/ 水域 | 工业区 | 地区/ 水域 | 农业区 | ||
---|---|---|---|---|---|
PFOA | PFOS | PFOA | PFOS | ||
遂宁 | 0.07 | 43.3 | 德阳 | 6.05×10−4 | 5.56×10−2 |
淄博 | 3.2 | 13.1 | 淄博 | 0.951 | 5.18×10−2 |
阜新 | 0.631 | 1.3 | 无锡 | 8.42×10−3 | 0.37 |
上海 | 0.508 | 3.19 | 上海 | 3.17×10−3 | 0.259 |
宁波 | 6.28×10−3 | 2.91 | 宁波 | 5.91×10−2 | 1.79 |
武汉 | 0.978 | 444 | 天津 | 0 | 0.556 |
苏州 | 0.328 | 0 | 苏州 | 2.05×10−2 | 0 |
国家 | 政策(年份) | PFOS | PFOA | GenX | PFBS | PFASs Group |
---|---|---|---|---|---|---|
美国 | PFASs联邦清理计划地下水指南 (2019) | 40* 1), 70** 2) | 40*, 70** | |||
美国 | 临时健康建议值 (2022) | 0.02 | 0.004 | 10 | 2000 | |
美国 | 2023最大浓度水平(MCL) (2023) | 4 | 4 | |||
丹麦 | 饮用水中12种PFASs总限值 (2015) | 100 | ||||
瑞士 | 设置饮用水总值 (2017) | 90 | ||||
德国 | 公共卫生部门发布指南 (2018) | 100 | 100 | 300 | ||
欧盟 | 食物链中PFOS和PFOA限值 (2018) | 6.5 | 3 | |||
日本 | 水环境指导值 (2020) | 50 | 50 | |||
日本 | 水质管理目标项目 (2020) | 50 | ||||
中国 | GB 5749—2022生活饮用水卫生标准 | 40 | 80 |
Table 7 Regulatory parameters for PFASs ng?L?1
国家 | 政策(年份) | PFOS | PFOA | GenX | PFBS | PFASs Group |
---|---|---|---|---|---|---|
美国 | PFASs联邦清理计划地下水指南 (2019) | 40* 1), 70** 2) | 40*, 70** | |||
美国 | 临时健康建议值 (2022) | 0.02 | 0.004 | 10 | 2000 | |
美国 | 2023最大浓度水平(MCL) (2023) | 4 | 4 | |||
丹麦 | 饮用水中12种PFASs总限值 (2015) | 100 | ||||
瑞士 | 设置饮用水总值 (2017) | 90 | ||||
德国 | 公共卫生部门发布指南 (2018) | 100 | 100 | 300 | ||
欧盟 | 食物链中PFOS和PFOA限值 (2018) | 6.5 | 3 | |||
日本 | 水环境指导值 (2020) | 50 | 50 | |||
日本 | 水质管理目标项目 (2020) | 50 | ||||
中国 | GB 5749—2022生活饮用水卫生标准 | 40 | 80 |
地区 | 出台年份 | 名称 | 类别 | 内容 |
---|---|---|---|---|
美国 | 2017 | 《国防授权法案》 | 法案 | 授权美国疾病控制与预防中心 (CDC) 和ATSDR研究PFASs对人类健康的影响, 并在 “之前和现在已知在饮用水、地下水、任何其他水源和相关暴露途径中存在PFASs污染的军事地区” 附近的社区进行暴露评估 |
2018 | 《综合环境响应、赔偿和责任法》 | 法案 | 授权美国毒物和疾病登记署 (ATSDR) 和EPA创建一份危险物质清单, 并确定每种物质的环境健康风险 | |
2019 | 《2019 PFASs行动计划》 | 战略报告 | 概述了该机构为解决PFASs问题和保护公众健康而采取的具体措施 | |
2019 | 《PFASs联邦清理计划地下水指南》 | 规章 | 1) 以40 ng∙L−1的筛查水平来确定某一地点是否存在PFOA和PFOS, 可能需要进一步关注; 2) 对于当前或潜在的饮用水源的地下水, 超过70 ng∙L−1被认定为受污染地下水 | |
2019 | 《2019年PFASs行动方案》 | 战略报告 | 1) 要求环保局监管PFASs; 2) 某些PFASs指定为危险物质,这需要对其释放到环境中进行补救; 3) 要求环保局在五年内确定剩余的PFASs是否也应被指定为危险物质; 4) 要求环保局制定一项赠款计划; 5) 该法案要求环保局在两年内公布某些PFASs的人类健康用水标准 | |
欧盟 | 2006 | 欧盟法规EC No. 1907/2006 | 法案 | PFOS被确定为高度关注物质 (SVHC), 并被列入REACH候选清单, 对PFOA也进行了限制 |
2010 | 欧盟法规EC No. 757/2010 | 法案 | 禁止、限制PFOS的使用、生产、进口和出口 | |
2014 | 德国与挪威合作提案 | 公众咨询 | 限制PFOA的使用、生产、进口和出口 | |
2017 | 德国与瑞典合作提案 | 公众咨询 | PFHxS列入REACH候选名单, 同时限制PFNA等6种PFASs的制造和市场投入 | |
2021 | 欧盟法规EC No. 2021/1297 | 法案 | 增加了对PFCAs (C9—C14) 及其盐和相关化合物的使用禁令, 2023年2月25日实施 | |
2023 | 《地表水和地下水优先物质清单》 | 法案 | 加入24种PFASs | |
日本 | 2010 | 《化学物质审查及制造管理法》 | 法案 | 指定PFOS为I类特定化学物质, 除特定用途外, 禁止PFOS的制造和进口, 2018年PFOS被全面禁止 |
2020 | 水质检测指标 | 指标 | 日本环保省对自来水的水质检测指标中加入了PFOS和PFOA, 并暂定限值为50 ng∙L−1, PFHxS也被加入, 但未设限值 | |
2020 | 《PFOS和PFOA的应对指南》 | 战略报告 | 将PFOS和PFOA定位为保护人类健康的监测指标 | |
2021 | 《化学物质审查及制造管理法》 | 法案 | 指定PFOA为I类特定化学物质 | |
2022 | 《含PFOS和PFOA废弃物处置的注意事项》 | 规章 | 宣传对含有PFOS和PFOA废弃物采取适合环境的处理措施 | |
2023 | 《水污染控制法》 | 法案 | 列入PFOS和PFOA | |
中国 | 2014 | 《关于持久性有机污染物的斯德哥尔摩公约》新增列9种POPs的《关于附件A、附件B和附件C修正案》 | 法规 | 禁止PFOS及其盐类和相关化合物生产、流通、使用和进出口, 特定豁免和可接受用途外的应抓紧研发替代品代替 |
2016 | “十三五” 生态环境保护规划 | 规章 | 提出削减淘汰PFOS, 并计划于2020年基本淘汰PFOS以及其相关化合物 | |
2019 | 《中国严格限制的有毒化学品名录》 | 规章 | 将PFOS等物质列入《中国严格限制的有毒化学品名录》(2020年) | |
2022 | 《国务院办公厅关于印发新污染物治理行动方案的通知》 | 规章 | 完善法规制度, 建立健全新污染物治理体系; 开展调查监测,评估新污染物环境风险状况; 严格源头管控, 防范新污染物产生; 强化过程控制, 减少新污染物排放; 深化末端治理, 降低新污染物环境风险; 加强能力建设, 夯实新污染物治理基础 | |
2022 | 重点管控新污染物清单 (2023年版) | 规章 | 主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等 |
Table 8 policy on PFASs
地区 | 出台年份 | 名称 | 类别 | 内容 |
---|---|---|---|---|
美国 | 2017 | 《国防授权法案》 | 法案 | 授权美国疾病控制与预防中心 (CDC) 和ATSDR研究PFASs对人类健康的影响, 并在 “之前和现在已知在饮用水、地下水、任何其他水源和相关暴露途径中存在PFASs污染的军事地区” 附近的社区进行暴露评估 |
2018 | 《综合环境响应、赔偿和责任法》 | 法案 | 授权美国毒物和疾病登记署 (ATSDR) 和EPA创建一份危险物质清单, 并确定每种物质的环境健康风险 | |
2019 | 《2019 PFASs行动计划》 | 战略报告 | 概述了该机构为解决PFASs问题和保护公众健康而采取的具体措施 | |
2019 | 《PFASs联邦清理计划地下水指南》 | 规章 | 1) 以40 ng∙L−1的筛查水平来确定某一地点是否存在PFOA和PFOS, 可能需要进一步关注; 2) 对于当前或潜在的饮用水源的地下水, 超过70 ng∙L−1被认定为受污染地下水 | |
2019 | 《2019年PFASs行动方案》 | 战略报告 | 1) 要求环保局监管PFASs; 2) 某些PFASs指定为危险物质,这需要对其释放到环境中进行补救; 3) 要求环保局在五年内确定剩余的PFASs是否也应被指定为危险物质; 4) 要求环保局制定一项赠款计划; 5) 该法案要求环保局在两年内公布某些PFASs的人类健康用水标准 | |
欧盟 | 2006 | 欧盟法规EC No. 1907/2006 | 法案 | PFOS被确定为高度关注物质 (SVHC), 并被列入REACH候选清单, 对PFOA也进行了限制 |
2010 | 欧盟法规EC No. 757/2010 | 法案 | 禁止、限制PFOS的使用、生产、进口和出口 | |
2014 | 德国与挪威合作提案 | 公众咨询 | 限制PFOA的使用、生产、进口和出口 | |
2017 | 德国与瑞典合作提案 | 公众咨询 | PFHxS列入REACH候选名单, 同时限制PFNA等6种PFASs的制造和市场投入 | |
2021 | 欧盟法规EC No. 2021/1297 | 法案 | 增加了对PFCAs (C9—C14) 及其盐和相关化合物的使用禁令, 2023年2月25日实施 | |
2023 | 《地表水和地下水优先物质清单》 | 法案 | 加入24种PFASs | |
日本 | 2010 | 《化学物质审查及制造管理法》 | 法案 | 指定PFOS为I类特定化学物质, 除特定用途外, 禁止PFOS的制造和进口, 2018年PFOS被全面禁止 |
2020 | 水质检测指标 | 指标 | 日本环保省对自来水的水质检测指标中加入了PFOS和PFOA, 并暂定限值为50 ng∙L−1, PFHxS也被加入, 但未设限值 | |
2020 | 《PFOS和PFOA的应对指南》 | 战略报告 | 将PFOS和PFOA定位为保护人类健康的监测指标 | |
2021 | 《化学物质审查及制造管理法》 | 法案 | 指定PFOA为I类特定化学物质 | |
2022 | 《含PFOS和PFOA废弃物处置的注意事项》 | 规章 | 宣传对含有PFOS和PFOA废弃物采取适合环境的处理措施 | |
2023 | 《水污染控制法》 | 法案 | 列入PFOS和PFOA | |
中国 | 2014 | 《关于持久性有机污染物的斯德哥尔摩公约》新增列9种POPs的《关于附件A、附件B和附件C修正案》 | 法规 | 禁止PFOS及其盐类和相关化合物生产、流通、使用和进出口, 特定豁免和可接受用途外的应抓紧研发替代品代替 |
2016 | “十三五” 生态环境保护规划 | 规章 | 提出削减淘汰PFOS, 并计划于2020年基本淘汰PFOS以及其相关化合物 | |
2019 | 《中国严格限制的有毒化学品名录》 | 规章 | 将PFOS等物质列入《中国严格限制的有毒化学品名录》(2020年) | |
2022 | 《国务院办公厅关于印发新污染物治理行动方案的通知》 | 规章 | 完善法规制度, 建立健全新污染物治理体系; 开展调查监测,评估新污染物环境风险状况; 严格源头管控, 防范新污染物产生; 强化过程控制, 减少新污染物排放; 深化末端治理, 降低新污染物环境风险; 加强能力建设, 夯实新污染物治理基础 | |
2022 | 重点管控新污染物清单 (2023年版) | 规章 | 主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等 |
[1] |
ABRAHAM K, MIELKE H, FROMME H, et al., 2020. Internal exposure to perfluoroalkyl substances (PFASs) and biological markers in 101 healthy 1-year-old children: Associations between levels of perfluorooctanoic acid (PFOA) and vaccine response[J]. Archives of Toxicology, 94(6): 2131-2147.
DOI PMID |
[2] | AGENCY U E P, 2021. PFAS strategic roadmap: EPA's commitments to action 2021-2024 [EB/OL]. US Environmental Protection Agency, [2021-10-18]. https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024. |
[3] | ANDERSEN M E, BUTENHOFF J L, CHANG S, et al., 2008. Perfluoroalkyl acids and related chemistries - toxicokinetics and modes of action[J]. Toxicological Sciences, 102(1): 3-14. |
[4] | ANDERSON R S, 2022. PFAS pollution, the precautionary principle, and a path forward: Potential regulatory regimes for PFAS under the safe drinking water act[J]. Tulane Environmental Law Journal, 35: 143. |
[5] | AVERINA M, BROX J, HUBER S, et al., 2021. Exposure to perfluoroalkyl substances (PFAS) and dyslipidemia, hypertension and obesity in adolescents. the fit futures study[J]. Environmental Research, 195: 110740. |
[6] |
BALLESTEROS V, COSTA O, INIGUEZ C, et al., 2017. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies[J]. Environment International, 99: 15-28.
DOI PMID |
[7] | BARRETT E S, CHEN C, THURSTON S W, et al., 2015. Perfluoroalkyl substances and ovarian hormone concentrations in naturally cycling women[J]. Fertility And Sterility, 103(5): 1261. |
[8] | BEGGS C, MACKIE R, VRANA B, et al., 2023. Estimation of per- and poly-fluoroalkyl substances mass loads in the Danube River using passive sampling[J]. Science of The Total Environment, 892: 164458. |
[9] |
BJORK A, BUTENHOFF J, WALLACE K, 2011. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes[J]. Toxicology, 288(1-3): 8-17.
DOI PMID |
[10] | BODEN S, 2020. Presumptive innocence v. the precautionary principle: the story of PFAS regulation in the United States[J]. Environs: Environmental Law and Policy Journal, 44(1): 41-66. |
[11] |
BOHANNON M E, NARIZZANO A M, GUIGNI B A, et al., 2023. Next-generation PFAS 6:2 fluorotelomer sulfonate reduces plaque formation in exposed white-footed mice[J]. Toxicological Sciences, 192(1): 97-105.
DOI PMID |
[12] | BOONE J S, VIGO C, BOONE T, et al., 2019. Per- and polyfluoroalkyl substances in source and treated drinking waters of the United States[J]. Science of The Total Environment, 653: 359-369. |
[13] | BRENDEL S, FETTER É, STAUDE C, et al., 2018. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH[J]. Environmental Sciences Europe, 30(1): 1-11. |
[14] | BRENNAN N M, EVANS A T, FRITZ M K, et al., 2021. Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): A scoping review[J]. International Journal of Environmental Research and Public Health, 18(20): 10900. |
[15] | BUSER M C, 2018. Derivation of the agency for toxic substances and disease registry's (ATSDR's) provisional minimal risk levels (MRLs) for PFOA, PFOS, PFHXs, and PFNA[J/OL]. ISEE Conference Abstracts, [2021-10-18]. https://ehp.niehs.nih.gov/doi/10.1289/isesisee.2018.O01.02.33# tab-citations. |
[16] |
CASAS G, MARTINEZ-VARELA A, VILA-COSTA M, et al., 2021. Rain amplification of persistent organic pollutants[J]. Environmental Science and Technology, 55(19): 12961-12972.
DOI PMID |
[17] |
CHEN H, HAN J B, CHENG J Y, et al., 2018. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China[J]. Environmental Pollution, 241: 504-510.
DOI PMID |
[18] |
CHEN H, WANG X M, ZHANG C, et al., 2017. Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China[J]. Environmental Pollution, 221: 234-243.
DOI PMID |
[19] |
CHEN H, YAO Y M, ZHAO Z, et al., 2018. Multimedia distribution and transfer of per- and polyfluoroalkyl substances (PFASs) surrounding two fluorochemical manufacturing facilities in Fuxin, China[J]. Environmental Science and Technology, 52(15): 8263-8271.
DOI PMID |
[20] | COLOMER-VIDAL P, JIANG L, MEI W, et al., 2022. Plant uptake of perfluoroalkyl substances in freshwater environments (Dong zhulong and Xiaoqing Rivers, China)[J]. Journal of Hazardous Materials, 421: 126768. |
[21] |
CORDNER A, DE LA ROSA V Y, SCHAIDER L A, et al., 2019. Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors[J]. Journal of Exposure Science and Environmental Epidemiology, 29(2): 157-171.
DOI PMID |
[22] |
CORSINI E, AVOGADRO A, GALBIATI V, et al., 2011. In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs)[J]. Toxicology and Applied Pharmacology, 250(2): 108-116.
DOI PMID |
[23] |
DE SILVA A O, SPENCER C, SCOTT B F, et al., 2011. Detection of a cyclic perfluorinated acid, perfluoroethylcyclohexane sulfonate, in the Great Lakes of North America[J]. Environmental Science and Technology, 45(19): 8060-8066.
DOI PMID |
[24] | DI NISIO A, SABOVIC I, VALENTE U, et al., 2019. Endocrine disruption of androgenic activity by perfluoroalkyl substances: clinical and experimental evidence[J]. Journal of Clinical Endocrinology and Metabolism, 104(4): 1259-1271. |
[25] | DUBOCQ F, BAERINGSDÓTTIR B, WANG T, et al., 2022. Comparison of extraction and clean-up methods for comprehensive screening of organic micropollutants in fish using gas chromatography coupled to high-resolution mass spectrometry[J]. Chemosphere, 286(Part 3): 131743. |
[26] | EUROPEAN F S A, 2014. A systematic procedure for the identification of emerging chemical risks in the food and feed chain[EB/OL]. EFSA Supporting Publications, [2014-01]. https://doi.org/10.2903/sp.efsa.2014.EN-547. |
[27] | EPA. U S, 2022. Technical fact sheet: drinking water health advisories for four PFAS (PFOA, PFOS, GenX chemicals, and PFBS)[EB/OL]. US Environmental Protection Agency, [2022-06]. https://www.epa.gov/system/files/documents/2022-06/technical-factsheet-four-PFAS.pdf. |
[28] | EVANS N, CONLEY J, CARDON M et al., 2022. In vitro activity of a panel of per- and polyfluoroalkyl substances (PFAS), fatty acids, and pharmaceuticals in peroxisome proliferator-activated receptor (PPAR) alpha, PPAR gamma, and estrogen receptor assays[J]. Toxicology and Applied Pharmacology, 449: 116136. |
[29] | FANG S H, LI C, ZHU L Y, et al., 2019. Spatiotemporal distribution and isomer profiles of perfluoroalkyl acids in airborne particulate matter in Chengdu City, China[J]. Science of The Total Environment, 689: 1235-1243. |
[30] |
FANG X, MATT F, THOMAS R, et al., 2015. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure[J]. Water Research, 72: 64-74.
DOI PMID |
[31] | GAN C D, PENG M Y, LIU H B, et al., 2022. Concentration and distribution of metals, total fluorine, per- and poly-fluoroalkyl substances (PFAS) in vertical soil profiles in industrialized areas[J]. Chemosphere, 302: 134855. |
[32] |
GEBBINK W A, BOSSI R, RIGÉT F F, et al., 2016. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals[J]. Chemosphere, 144: 2384-2391.
DOI PMID |
[33] | GLASSMEYER S T, FURLONG E T, KOLPIN D W, et al., 2017. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States[J]. Science of The Total Environment, 581: 909-922. |
[34] | GRANDJEAN P, ERIKSEN M L, ELLEGAARD O, et al., 2011. The Matthew effect in environmental science publication: A bibliometric analysis of chemical substances in journal articles[J]. Environmental Health, 10(1): 96. |
[35] | GROFFEN T, ELS P, DEVOS S, et al., 2023. PFAS accumulation in several terrestrial plant and invertebrate species reveals species-specific differences[J]. Environmental Science and Pollution Research, 30(9): 23820-23835. |
[36] | GUNDACKER C, AUDOUZE K, WIDHALM R, et al., 2022. Reduced birth weight and exposure to per- and polyfluoroalkyl substances: A review of possible underlying mechanisms using the AOP-HelpFinder[J]. Toxics, 10(11): 684. |
[37] |
GUO M J, LÜ Y, XU T T, et al., 2018. Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai[J]. Environmental Pollution, 234: 9-19.
DOI PMID |
[38] | GWYNN R, 2022, PFAS in soil and groundwater following historical land application of biosolids[J]. Water Research, 211: 118035. |
[39] | HALEY V, PRATIBHA N, ZYMUNT D, et al., 2021. Perfluoroalkyl substances exposure and immunity, allergic response, infection, and asthma in children: Review of epidemiologic studies[J]. Heliyon, 7(11): e08160. |
[40] | HAMID N, JUNAID M, MANZOOR R, et al., 2023. An integrated assessment of ecological and human health risks of per- and polyfluoroalkyl substances through toxicity prediction approaches[J]. Science of The Total Environment, 905(10): 167213. |
[41] | HELMER R W, REEVES D M, CASSIDY D P, 2022. Per- and polyfluorinated alkyl substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants[J]. Water Research, 210: 117983. |
[42] |
HEYDEBRECK F, TANG J H, XIE Z Y, et al., 2015. Correction to alternative and legacy perfluoroalkyl substances: Differences between European and Chinese River/Estuary Systems[J]. Environmental Science and Technology, 49(24): 14742-14743.
DOI PMID |
[43] | JOB C, FRECH B, 2023. Groundwater federal regulatory summary for 2022[J]. Groundwater Monitoring and Remediation, 43(1): 32-34. |
[44] |
JOHN T, VENNELA A, REBECCA C, et al., 2020. Perfluoroalkyl substances (PFAS) and their effects on the placenta, pregnancy, and child development: A potential mechanistic role for placental peroxisome proliferator-activated receptors (PPARs)[J]. Current Environmental Health Reports, 7(3): 222-230.
DOI PMID |
[45] |
KELLY B, IKONOMOU M, BLAIR J, et al., 2009. Perfluoroalkyl contaminants in an arctic marine food web: Trophic magnification and wildlife exposure[J]. Environmental Science and Technology, 43(11): 4037-4043.
PMID |
[46] | KIM S-K, KANNAN K, 2007. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes[J]. Environmental Science and Technology, 41(24): 8328-8334. |
[47] | KNOX S S, JACKSON T, JAVINS B, et al., 2011. Implications of early menopause in women exposed to perfluorocarbons[J]. Journal of Clinical Endocrinology and Metabolism, 96(6): 1747-1753. |
[48] |
KRAFFT M P, RIESS J G, 2015. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability-Part one[J]. Chemosphere, 129: 4-19.
DOI PMID |
[49] | KRAFFT M P, RIESS J G, 2009. Chemistry, physical chemistry, and uses of molecular fluorocarbon-hydrocarbon diblocks, triblocks, and related compounds-unique "Apblar" components for self-assembled colloid and interface engineering[J]. Chemical Reviews, 109(5): 1714-1792. |
[50] |
KUDO N, SUZUKI E, KATAKURA M, et al., 2001. Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats[J]. Chemico-biological Interactions, 134(2): 203-216.
DOI PMID |
[51] | KYLE S, ANDREA W, 2021. PFAS and cancer, a scoping review of the epidemiologic evidence[J]. Environmental Research, 194: 110690. |
[52] |
LENTERS V, ISZATT N, FORNS J, et al., 2019. Early-life exposure to persistent organic pollutants (OCPs, PBDEs, PCBs, PFASs) and attention-deficit/hyperactivity disorder: A multi-pollutant analysis of a Norwegian birth cohort[J]. Environment International, 125: 33-42.
DOI PMID |
[53] | LI J, DEL V S, SCHUSTER J, et al., 2011. Perfluorinated compounds in the Asian atmosphere[J]. Environmental Science and Technology, 125: 33-42. |
[54] | LI J, XI B D, ZHU G H, et al., 2023. A critical review of the occurrence, fate and treatment of per- and polyfluoroalkyl substances (PFASs) in landfills[J]. Environmental Research, 218(19): 114980. |
[55] |
LI Y, LI J F, ZHANG L F, et al., 2019. Perfluoroalkyl acids in drinking water of China in 2017: Distribution characteristics, influencing factors and potential risks[J]. Environment International, 123: 87-95.
DOI PMID |
[56] | LI Y, NIU Z G, ZHANG Y, 2022. Occurrence of legacy and emerging poly- and perfluoroalkyl substances in water: A case study in Tianjin (China)[J]. Chemosphere, 287(Part 4): 132409. |
[57] | LIEN G W, HUANG C C, SHIU J S, et al., 2016. Perfluoroalkyl substances in cord blood and attention deficit/hyperactivity disorder symptoms in seven-year-old children[J]. Chemosphere, 156: 118-127. |
[58] |
LIU X H, JIN Y H, LIU W, et al., 2011. Possible mechanism of perfluorooctane sulfonate and perfluorooctanoate on the release of calcium ion from calcium stores in primary cultures of rat hippocampal neurons[J]. Toxicology In Vitro, 25(7): 1294-1301.
DOI PMID |
[59] |
LIU Z Y, LU Y L, SHI Y J, et al., 2017. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China[J]. Environment International, 106: 37-47.
DOI PMID |
[60] |
LIU Z Y, LU Y L, SONG X, et al., 2019. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety[J]. Environment International, 127: 671-684.
DOI PMID |
[61] | LU G H, JIAO X C, PIAO H T, et al., 2018. The extent of the impact of a fluorochemical industrial park in Eastern China on adjacent rural areas[J]. Archives of Environmental Contamination and Toxicology, 74(3): 484-491. |
[62] |
LU Z B, SONG L N, ZHAO Z, et al., 2015. Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of eastern China[J]. Chemosphere, 119: 820-827.
DOI PMID |
[63] |
MA D H, ZHONG H F, LÜ J T, et al., 2022. Levels, distributions, and sources of legacy and novel per- and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin, China[J]. Journal of Environmental Sciences, 112: 71-81.
DOI PMID |
[64] | MADDALON A, PIERZCHALSKI A, KRETSCHMER T, et al., 2023. Mixtures of per- and poly-fluoroalkyl substances (PFAS) reduce the in vitro activation of human T cells and basophils[J]. Chemosphere, 336: 139204. |
[65] | MCCOY J A, BANGMA J T, REINER J L, et al., 2017. Associations between perfluorinated alkyl acids in blood and ovarian follicular fluid and ovarian function in women undergoing assisted reproductive treatment[J]. Science of The Total Environment, 605-606: 9-17. |
[66] |
MELZER D, RICE N, DEPLEDGE M H, et al., 2010. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the US national health and nutrition examination survey[J]. Environmental Health Perspectives, 118(5): 686-692.
DOI PMID |
[67] | MIRALLES P, BESER M I, SANCHÍS Y, et al., 2023. Determination of 21 per-and poly-fluoroalkyl substances in paper-and cardboard-based food contact materials by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry[J]. Analytical Methods, 15(12): 1559-1568. |
[68] | MITCHELL J, 2020. PFAS contamination from US military facilities in mainland Japan and Okinawa[J]. Asia-Pacific Journal-Japan Focus, 18(16): 1-21. |
[69] | MOGHADASI R, MUMBERG T, WANNER P, 2023. Spatial prediction of concentrations of per- and polyfluoroalkyl substances (PFAS) in European soils[J]. Environmental Science and Technology Letters, 10(11): 1125-1129. |
[70] |
OHMORI K, KUDO N, KATAYAMA K, et al., 2003. Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length[J]. Toxicology, 184(2-3): 135-140.
DOI PMID |
[71] |
OLSEN G W, GILLARD F D, BURLEW M M, et al., 1998. An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid[J]. Journal of Occupational and Environmental Medicine, 40(7): 614-622.
PMID |
[72] |
PAN Y T, ZHANG H X, CUI Q Q, et al., 2018. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water[J]. Environmental Science and Technology, 52(14): 7621-7629.
DOI PMID |
[73] |
POWER M C, WEBSTER T F, BACCARELLI A A, et al., 2013. Cross-sectional association between polyfluoroalkyl chemicals and cognitive limitation in the national health and nutrition examination survey[J]. Neuroepidemiology, 40(2): 125-132.
DOI PMID |
[74] |
QIAO B T, SONG D B, FANG B, et al., 2023. Nontarget screening and fate of emerging per- and polyfluoroalkyl substances in wastewater treatment plants in Tianjin, China[J]. Environmental Science and Technology, 57(48): 20127-20137.
DOI PMID |
[75] | REYNOLDS D, 2019. EPA’s PFAS groundwater guidance draws wide-ranging criticisms[J]. Water Policy Report, 2019(13): 36. |
[76] | RUDIN E, GLÜGE J, SCHERINGER M, 2023. Per-and polyfluoroalkyl substances (PFASs) registered under REACH—What can we learn from the submitted data and how important will mobility be in PFASs hazard assessment[J]. Science of the Total Environment, 877(7): 162618. |
[77] |
SHI Y L, VESTERGREN R, XU L, et al., 2016. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs)[J]. Environmental Science and Technology, 50(5): 2396-2404.
DOI PMID |
[78] |
SHI Y L, VESTERGREN R, XU L, et al., 2015. Characterizing direct emissions of perfluoroalkyl substances from ongoing fluoropolymer production sources: A spatial trend study of Xiaoqing River, China[J]. Environmental Pollution, 206: 104-112.
DOI PMID |
[79] | SHIMIZU M S, MOTT R, POTTER A, et al., 2021. Atmospheric deposition and annual flux of legacy perfluoroalkyl substances and replacement perfluoroalkyl ether carboxylic acids in wilmington, NC, USA[J]. Environmental Science and Technology Letters, 8(5): 366-372. |
[80] | SHOEIB M, HARNER T, VLAHOS P, 2007. Perfluorinated chemicals in the artic atmosphere[J]. Environmental Science and Technology, 40(24): 7577-7583. |
[81] |
SKOGHEIM T S, VILLANGER G D, WEYDE K V F, et al., 2020. Prenatal exposure to perfluoroalkyl substances and associations with symptoms of attention-deficit/hyperactivity disorder and cognitive functions in preschool children[J]. International Journal of Hygiene and Environmental Health, 223(1): 80-92.
DOI PMID |
[82] | SMALLING K L, ROMANOK K M, BRADLEY P M, et al., 2023. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: comparison of underserved private-well and public-supply exposures and associated health implications[J]. Environment International, 178: 108033. |
[83] | SOLAN M E, KOPERSKI C P, SENTHILKUMAR S, et al., 2023. Short-chain per- and polyfluoralkyl substances (PFAS) effects on oxidative stress biomarkers in human liver, kidney, muscle, and microglia cell lines[J]. Environmental Research, 223: 115424. |
[84] | SONG D B, QIAO B T, YAO Y M, et al., 2023. Target and nontarget analysis of per- and polyfluoroalkyl substances in surface water, groundwater and sediments of three typical fluorochemical industrial parks in China[J]. Journal of Hazardous Materials, 460: 132411. |
[85] | SUN Z B, WEN Y Q, WANG B H, et al., 2023. Toxic effects of per- and polyfluoroalkyl substances on sperm: epidemiological and experimental evidence[J]. Frontiers In Endocrinology, 14: 1114463. |
[86] | SZNAJDER-KATARZYNSKA K, SURMA M, CIESLIK I, 2019. A review of perfluoroalkyl acids (PFAAs) in terms of sources, applications, human exposure, dietary intake, toxicity, legal regulation, and methods of determination[J]. Journal of Chemistry, 2019(6): 1-20. |
[87] | TAIBL K R, DUNLOP A L, BARR D B, et al., 2023. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation[J]. Nature Communications, 14(1): 3120. |
[88] | TANG L, LIU X, YANG G, et al., 2021. Spatial distribution, sources and risk assessment of perfluoroalkyl substances in surface soils of a representative densely urbanized and industrialized city of China[J]. Catena, 198: 105059. |
[89] | UNION E, 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs[J]. Official Journal of the European Union, 49(364): 5-24. |
[90] |
VERKHRATSKY A J, PETERSEN O H, 1998. Neuronal calcium stores[J]. Cell Calcium, 24(5-6): 333-343.
PMID |
[91] | WANG C, FU H Y, YANG J, et al., 2023. PFO5DoDA disrupts hepatic homeostasis primarily through glucocorticoid signaling inhibition[J]. Journal of Hazardous Materials, 447(5): 130831. |
[92] |
WANG J H, PAN Y T, CUI Q Q, et al., 2018. Penetration of PFASs across the blood cerebrospinal fluid barrier and its determinants in humans[J]. Environmental Science and Technology, 52(22): 13553-13561.
DOI PMID |
[93] | WANG L Q, LIU T, YANG S, et al., 2021. Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome[J]. Nature Communications, 12(1): 2915. |
[94] | WANG X, SCHUSTER J, JONES K C, et al., 2018. Occurrence and spatial distribution of neutral perfluoroalkyl substances and cyclic volatile methylsiloxanes in the atmosphere of the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 18(12): 8745-8755. |
[95] | WANG Y Q, HU L X, LIU T, et al., 2022. Per- and polyfluoralkyl substances (PFAS) in drinking water system: Target and non-target screening and removal assessment[J]. Environment International, 163: 107219. |
[96] |
WANG Z Y, DEWITT J C, HIGGINS C P, et al., 2017. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environmental Science and Technology, 51(5): 2508-2518.
DOI PMID |
[97] |
XIAO F, 2017. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature[J]. Water Research, 124: 482-495.
DOI PMID |
[98] | XIE Z Y, WANG Z, MI W Y, et al., 2015. Neutral poly-/perfluoroalkyl substances in air and snow from the arctic[J]. Scientifics Reports, 5(1): 8912. |
[99] |
YAO Q, SHI R, WANG C F, et al., 2019. Cord blood per- and polyfluoroalkyl substances, placental steroidogenic enzyme, and cord blood reproductive hormone[J]. Environment International, 129: 573-582.
DOI PMID |
[100] |
YAO Y M, ZHAO Y Y, SUN H W, et al., 2018. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: implications for human exposure[J]. Environmental Science and Technology, 52(5): 3156-3166.
DOI PMID |
[101] | YUAN Y Y, DING X B, CHENG Y M, et al., 2020. PFOA evokes extracellular Ca2+ influx and compromises progesterone-induced response in human sperm[J]. Chemosphere, 241: 125074. |
[102] | ZENG X W, LODGE C J, DHARMAGE S C, et al., 2019. Isomers of per- and polyfluoroalkyl substances and uric acid in adults: Isomers of C8 health project in China[J]. Environment International, 133(Part A): 105160. |
[103] | ZHANG D Q, LI J Y, LI X, et al., 2023. Phytoremediation of fluoroalkylethers (ether-PFASs): A review on bioaccumulation and ecotoxilogical effects[J]. Science of The Total Environment, 865: 161260. |
[104] | ZHANG J F, HU L H, XU H Y, et al., 2024. Dietary exposure to per- and polyfluoroalkyl substances: Potential health impacts on human liver[J]. Science of The Total Environment, 907: 167945. |
[105] | ZHAO M S, YAO Y M, DONG X Y, et al., 2023. Nontarget identification of novel per- and polyfluoroalkyl substances (PFAS) in soils from an oil refinery in Southwestern China: A combined approach with TOP assay[J]. Environmental Science and Technology, 57(48): 20194-20205. |
[106] | ZHENG L, DONG G H, ZHANG Y H, et al., 2011. Type 1 and Type 2 cytokines imbalance in adult male C57BL/6 mice following a 7-day oral exposure to perfluorooctane sulfonate (PFOS)[J]. Journal of Immunotoxicology, 8(1): 30-38. |
[107] | ZHU Q H, QIAN J H, HUANG S F, et al., 2022. Occurrence, distribution, and input pathways of per- and polyfluoroalkyl substances in soils near different sources in Shanghai[J]. Environmental Pollution, 308: 119620. |
[108] | 白瑜, 周向梅, 尹晓敏, 等, 2009. PrP106-126诱导的小鼠成神经瘤N2a细胞NF-κB激活及神经毒性研究[J]. 畜牧兽医学报, 40(4): 544-547. |
BAI Y, ZHOU X M, YIN X M, et al., 2009. NF-κB activated in PrP106-126-induced neurotoxicity in mouse neuroblastoma cells N2a[J]. Acta Veterinaria et Zootechnica Sinica, 40(4): 544-547. | |
[109] | 曹莹, 周腾耀, 刘秀华, 等, 2013. 我国环境中全氟辛酸 (PFOA) 的预测无效应浓度推导[J]. 环境化学, 32(7): 1180-1187. |
CAO Y, ZHOU T Y, LIU X H, et al., 2013. Predicted non-effect concentration of perfluorooctanic acid (PFOA) in the environment of China[J]. Environmental Chemistry, 32(7): 1180-1187. | |
[110] | 陈敏燕, 汪子夏, 田英, 等, 2022. 全氟化合物免疫毒性研究进展[J]. 环境与职业医学, 39(2): 223-228. |
CHEN M Y, WANG Z X, TIAN Y, et al., 2022. Advances on immunotoxicities induced by per- and polyfluoroalkylated substances[J]. Journal of Environmental and Occupational Medicine, 39(2): 223-228. | |
[111] | 陈舒, 焦杏春, 盖楠, 等, 2015. 中国东部农村地区土壤及水环境中全氟化合物的组成特征和来源初探[J]. 岩矿测试, 34(5): 579-585. |
CHEN S, JIAO X C, GAI N, et al., 2015. Composition and source of perfluorinated compounds in soil and waters from the rural areas in Eastern China[J]. Rock and Mineral Analysis, 34(5): 579-585. | |
[112] | 方晴, 2023. 东京都井水检出致癌物, 疑与美军基地有关[N]. 环球时报, 2023-01-04( 4). |
FANG Q. 2023. Carcinogens detected in well water in Tokyo, it is suspected to be related to a US military base[N]. Global Times, 2023-01-04 ( 4). | |
[113] | 冯雪敏, 2021. 典型环境中新型全氟/多氟化合物的污染特征及人体内外暴露研究[D]. 天津: 南开大学. |
FENG X M, 2021. Pollution characteristics and human external and internal exposure of novel per-/poly- fluoroalkyl substances in typical environment[D]. Tian Jin:Nankai University. | |
[114] | 高吉喜, 2015. 生态安全是国家安全的重要组成部分[J]. 求是 (24): 43-44. |
GAO J X, 2015. Ecological security is an important part of national security[J]. Qiu Shi (24): 43-44. | |
[115] | 高燕, 傅建捷, 王亚韡, 等, 2014. 全氟化工厂土芯中全氟化合物的分布规律[J]. 环境化学, 33(10): 1686-1691. |
GAO Y, FU J J, WANG Y W, et al., 2014. Spatial and vertical distribution of perfluoroalkyl substances in soil cores around manufacturing facilities in China[J]. Environmental Chemistry, 33(10): 1686-1691. | |
[116] | 黄润秋, 2023. 国务院关于2022年度环境状况和环境保护目标完成情况的报告——2023年4月24日在第十四届全国人民代表大会常务委员会第二次会议上[J]. 中国生态文明 (2): 6-12. |
HUANG R Q, 2023. Report of the state council on the environmental situation and the achievement of environmental protection targets in 2022——At the second meeting of the Standing Committee of the 14th National People’s Congress on April 24, 2023[J]. Ecological Civilization in China (2): 6-12. | |
[117] | 纪涛, 邱倩, 江河, 2017. 《“十三五”生态环境保护规划》的特点分析——基于与《国家环境保护“十二五”规划》的对比[J]. 环境保护, 45(22): 56-59. |
JI T, QIU Q, JIANG H, 2017. Analysis on the characteristics of the “13th Five-Year” environmental protection planning[J]. Environmental Protection, 45(22): 56-59. | |
[118] | 钱佳浩, 2023. 上海市不同功能区土壤中PFAS的赋存特征及吸附研究[D]. 上海: 华东理工大学. |
QIAN J H, 2023. Study on the occurrence and sorption of PFAS in soil from different functional areas in Shanghai[D]. Shanghai: East China University of Science and Technology. | |
[119] | 孙红文, 方博, 陈浩, 等, 2023. 全氟和多氟烷基化合物微生物降解与转化研究进展[J]. 环境科学, 44(3): 1214-1227. |
SUN H W, FANG B, CHEN H, et al., 2023. Advances in microbial degradation and transformation of per- and polyfluoroalkyl substances (PFASs)[J]. Environmental Science, 44(3): 1214-1227. | |
[120] | 许银丰, 汪倩, 钱楚莹, 等, 2022. mTORC1信号通路调控细胞自噬的研究进展[J]. 中国科学:生命科学, 52(2): 266-272. |
XU Y F, WANG Q, QIAN C Y, et al., 2022. mTORC1, the master regulator of autophagy[J]. Scientia Sinica (Vitae), 52(2): 266-272. | |
[121] | 余威, 王鹏翔, 田亮, 等, 2010. PFOS受控的公约进展及中国消防行业使用PFOS情况[J]. 消防科学与技术, 29(6): 513-515. |
YU W, WANG P X, TIAN L, et al., 2010. The latest information of the Stockholm Convention and an introduction of the using of PFOS in China fire industry[J]. Fire Science and Technology, 29(6): 513-515. | |
[122] |
张清清, 毕海普, 舒中俊, 等, 2022. 泡沫灭火剂中全氟辛烷磺酸类物质的管控行为及替代物研究进展[J]. 化工进展, 41(S1): 340-350.
DOI |
ZHANG Q Q, BI H P, SHU Z J, et al., 2022. Research progress on control behaviors and substitutes of PFOS in foam extinguishing agents[J]. Chemical Industry and Engineering Progress, 41(S1): 340-350.
DOI |
|
[123] | 张亚辉, 曹莹, 周腾耀, 等, 2013. 我国环境中PFOS的预测无效应浓度[J]. 中国环境科学, 33(9): 1670-1677. |
WANG Y F, CAO Y, ZHOU T Y, et al., 2013. Predicted non-effect concentrations for PFOS of environment in China[J]. China Environmental Science, 33(9): 1670-1677. | |
[124] | 张志果, 2022. 实施生活饮用水卫生新标准推动供水高质量发展——《生活饮用水卫生标准》 (GB 5749—2022) 解读[J]. 工程建设标准化 (5): 32-35. |
ZHANG Z G, 2022. Implementing the new standard for drinking water sanitation to promote the development of high quality Water supply——Interpretation of the Standard for Drinking Water Sanitation (GB 5749—2022)[J]. Interpretations of Standards (5): 32-35. |
[1] | WANG Luying, LI Xiaoma, GAN Dexin, LIU Pengao, GUO Sheng, LI Yi. Spatial Heterogeneity and Driving Factors of Ecosystem Service Trade-offs and Synergies in the Changsha-Zhuzhou-Xiangtan Urban Agglomeration [J]. Ecology and Environment, 2024, 33(6): 969-979. |
[2] | YUAN Xi, FU Kaidao, TAO Yuchen, ZHANG Nian, YANG Lisha. Spatial-temporal Distribution and Influencing Factors of Nitrous Oxide Flux Across the Water-air Interface in Lancang River, China [J]. Ecology and Environment, 2024, 33(1): 54-61. |
[3] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[4] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[5] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[6] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[7] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[8] | HU Xibang, GUAN Xiaotong, XIE Zixia, ZHANG Xiuyu. Pollution Status and Ecological Risk Assessment of Diethylhexyl Phthalate in Agricultural Soil [J]. Ecology and Environment, 2023, 32(12): 2083-2093. |
[9] | LI Shuting, HU Guanjiu, LUO Xiaosan. Sources, Spatial-temporal Distribution, and Health Risks of Per- and Polyfluoroalkyl Substances (PFASs) in the Atmospheric Environment: A Review [J]. Ecology and Environment, 2023, 32(12): 2103-2114. |
[10] | ZHAO Hongyan, WANG Bin. Distribution Characteristics and Exposure Risk of Per- and Polyfluoroalkyl Substances in Indoor Environments [J]. Ecology and Environment, 2023, 32(11): 2007-2018. |
[11] | LIU An, WU Hao, HE Beibei. Toxic Effects of Nanoplastics on Terrestrial Environment: A Review [J]. Ecology and Environment, 2023, 32(11): 2030-2040. |
[12] | SUN Zheng, CAO Yafei, WANG Decai, LIU Feng, SONG Xiaodong, ZHANG Ganlin, WU Huayong. Spatial-temporal Evolution Characteristics and Trend Prediction of Electroplating Sites in the Beijing-Tianjin-Hebei Region over the Past 30 Years [J]. Ecology and Environment, 2023, 32(1): 183-194. |
[13] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[14] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[15] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn