Ecology and Environment ›› 2024, Vol. 33 ›› Issue (1): 54-61.DOI: 10.16258/j.cnki.1674-5906.2024.01.006
• Research Article • Previous Articles Next Articles
YUAN Xi1,2(), FU Kaidao1,2,*(
), TAO Yuchen1,2, ZHANG Nian1,2, YANG Lisha1,2
Received:
2023-10-19
Online:
2024-01-18
Published:
2024-03-19
Contact:
FU Kaidao
袁茜1,2(), 傅开道1,2,*(
), 陶雨晨1,2, 张年1,2, 杨丽莎1,2
通讯作者:
傅开道
作者简介:
袁茜(1999年生),女,硕士研究生,主要研究方向为水利工程生态环境影响与风险防范。E-mail: yuixan@163.com
基金资助:
CLC Number:
YUAN Xi, FU Kaidao, TAO Yuchen, ZHANG Nian, YANG Lisha. Spatial-temporal Distribution and Influencing Factors of Nitrous Oxide Flux Across the Water-air Interface in Lancang River, China[J]. Ecology and Environment, 2024, 33(1): 54-61.
袁茜, 傅开道, 陶雨晨, 张年, 杨丽莎. 澜沧江(云南段)水-气界面氧化亚氮释放通量时空分布特征及其影响因素研究[J]. 生态环境学报, 2024, 33(1): 54-61.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.01.006
指标 | WT | pH | DO | TN | NO3− | NH4+ | 流速 | 风速 | N2O |
---|---|---|---|---|---|---|---|---|---|
WT | 1 | 0.214 | −0.368**2) | −0.153 | 0.272* 1) | 0.075 | 0.184 | −0.189 | 0.341** |
pH | 1 | 0.083 | −0.363** | 0.164 | −0.369** | 0.077 | −0.093 | 0.180 | |
DO | 1 | 0.064 | −0.409** | −0.226 | −0.290* | 0.111 | −0.420** | ||
TN | 1 | 0.447** | 0.114 | 0.039 | 0.201 | −0.136 | |||
NO3− | 1 | −0.101 | 0.227 | −0.145 | 0.212 | ||||
NH4+ | 1 | −0.044 | 0.189 | 0.384** | |||||
流速 | 1 | 0.054 | 0.283* | ||||||
风速 | 1 | −0.003 | |||||||
N2O | 1 |
Table 1 N2O release flux and environmental indicator Pearson correlation analysis
指标 | WT | pH | DO | TN | NO3− | NH4+ | 流速 | 风速 | N2O |
---|---|---|---|---|---|---|---|---|---|
WT | 1 | 0.214 | −0.368**2) | −0.153 | 0.272* 1) | 0.075 | 0.184 | −0.189 | 0.341** |
pH | 1 | 0.083 | −0.363** | 0.164 | −0.369** | 0.077 | −0.093 | 0.180 | |
DO | 1 | 0.064 | −0.409** | −0.226 | −0.290* | 0.111 | −0.420** | ||
TN | 1 | 0.447** | 0.114 | 0.039 | 0.201 | −0.136 | |||
NO3− | 1 | −0.101 | 0.227 | −0.145 | 0.212 | ||||
NH4+ | 1 | −0.044 | 0.189 | 0.384** | |||||
流速 | 1 | 0.054 | 0.283* | ||||||
风速 | 1 | −0.003 | |||||||
N2O | 1 |
[1] |
BAULCH H, DILLON P, MARANGER R, et al., 2012. Night and day: Short-term variation in nitrogen chemistry and nitrous oxide emissions from streams[J]. Freshwater Biology, 57(3): 509-525
DOI URL |
[2] |
BEAULIEU J, NIETCH C, YOUNG J, 2015. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin[J]. Journal of Geophysical Research: Biogeosciences, 120(10): 1995-2010.
DOI URL |
[3] |
CHEN J S, CAO W Z, CAO D, et al., 2015. Nitrogen loading and nitrous oxide emissions from a river with multiple hydroelectric reservoirs[J]. Bulletin of Environmental Contamination and Toxicology, 94(5): 633-639.
DOI PMID |
[4] |
CHEN N W, CHEN Z H, WU Y Q, et al., 2014. Understanding gaseous nitrogen removal through direct measurement of dissolved N2 and N2O in a subtropical river-reservoir system[J]. Ecological Engineering, 70: 56-67.
DOI URL |
[5] |
CHENG F, ZHANG H M, ZHANG G L, et al., 2019. Distribution and emission of N2O in the largest river-reservoir system along the Yellow River[J]. Science of the Total Environment, 666: 1209-1219.
DOI URL |
[6] |
CLOUGH T, BUCKTHOUGHT L E, KELLIHER F M, et al., 2007. Diurnal fluctuationsof dissolved nitrous oxide (N2O) concentrations and estimates of N2O emissionsfrom a spring-fed river: Implications for IPCC methodology[J]. Global Change Biology, 13(5): 1016-1027.
DOI URL |
[7] |
COLE J J, CARACO N F, 2001. Emissions of nitrous oxide (N2O) from a tidal, freshwater river, the Hudson River, New York[J]. Environmental Science & Technology, 35(6): 991-996.
DOI URL |
[8] |
DEEMER B R, HARRISON J A, LI S Y, et al., 2016. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis[J]. Bioscience, 66(11): 949-964.
DOI PMID |
[9] |
DESCLOUX S, CHANUDET V, SERCA D, et al., 2017. Methane and nitrous oxide annual emissions from an old eutrophic temperate reservoir[J]. Science of the Total Environment, 598: 959-972.
DOI URL |
[10] |
DUCHEMIN E, LUCOTTE M, CANUEL R, 1999. Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies[J]. Environmental Science & Technology, 33(2): 350-357.
DOI URL |
[11] | GARCIARUIZ R, PATTINSON S N, WHITTON B A, 1998. Denitrification and nitrous oxide production in sediments of the Wiske, a lowland eutrophic river[J]. Science of the Total Environment, 210(1-6): 307-320. |
[12] |
GRIFFIS T J, CHEN Z C, BAKER J M, et al., 2017. Nitrous oxide emissions are enhanced in a warmer and wetter world[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(45): 12081-12085.
DOI PMID |
[13] | GUéRIN F, ABRIL G, TREMBLAY A, et al., 2008. Nitrous oxide emissions from tropical hydroelectric reservoirs[J] Geophysical Research Letters, 35(6): L06404-1-L06404-6. |
[14] |
HARRISON J, MATSON P, FENDORF S, 2005. Effects of a diel oxygen cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream[J]. Aquatic Sciences, 67(3): 308-315.
DOI URL |
[15] |
HE C Q, QI R, FENG H Y, et al., 2023. Spatiotemporal variations and dominated environmental parameters of nitrous oxide (N2O) concentrations from cascade reservoirs in southwest China[J]. Environmental Science and Pollution Research, 30(46): 102547-102559.
DOI |
[16] |
HENDZEL L L, MATTHEWS C J D, VENKITESWARAN J J, et al., 2005. Nitrous oxide fluxes in three experimental boreal forest reservoirs[J]. Environmental Science & Technology, 39(12): 4353-4360.
DOI URL |
[17] | IPCC, 2021. Climate Change 2021: The Physical Science Basis[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. |
[18] |
KUMAR A, YANG T, SHARMA M, 2019. Greenhouse gas measurement from Chinese freshwater bodies: A review[J]. Journal of Cleaner Production, 233: 368-378.
DOI |
[19] |
LAURSEN A E, SEITZINGER S P, 2004. Diurnal patterns of denitrification, oxygen consumption and nitrous oxide production in rivers measured at the whole-reach scale[J]. Freshwater Biology, 49(11): 1448-1458.
DOI URL |
[20] |
LI D, SHI L, GUO S, et al., 2022. Characteristics of N2O release from polluted creeks in the Taihu Lake Basin: sources and microbial population[J]. Aquatic Sciences, 84(3): 37. 1-37.11.
DOI |
[21] |
LIU X L, LIU C Q, LI S L, et al., 2011. Spatiotemporal variations of nitrous oxide (N2O) emissions from two reservoirs in SW China[J]. Atmospheric Environmental, 45(31): 5458-5468.
DOI URL |
[22] |
MA P, LI X Y, CHEN F, et al., 2019. The isotopomer ratios of N2O in the Shaying River, the upper Huai River network, Eastern China: The significances of mechanisms and productions of N2O in the heavy ammonia polluted rivers[J]. Science of the Total Environment, 687: 1315-1326.
DOI URL |
[23] |
MUSENZE R, GRINHAM A, WERNER U, et al., 2014. Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs[J]. Environmental Science & Technology, 48(24): 14499-14507.
DOI URL |
[24] |
SHI W Q, CHEN Q W, ZHANG J Y, et al., 2020. Nitrous oxide emissions from cascade hydropower reservoirs in the upper Mekong River[J]. Water Research, 173: 115582.
DOI URL |
[25] |
STOW C A, WALKER J T, CARDOCH L, et al., 2005. N2O emissions from streams in the Neuse River Watershed, North Carolina[J]. Environmental Science & Technology, 39(18): 6999-7004.
DOI URL |
[26] |
VENKITESWARAN J J, ROSAMOND M S, SCHIFF S L, 2014. Nonlinear response of riverine N2O fluxes to oxygen and temperature[J]. Environmental Science & Technology, 48(3): 1566-1573.
DOI URL |
[27] | WANG D Q, CHEN Z L, SUN W W, et al., 2009. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net[J]. Science in China (Series B: Chemistry), 52(5): 652-661. |
[28] |
WANG J W, WU W, ZHOU X D, et al., 2021. Nitrous oxide (N2O) emissions from the high dam reservoir in longitudinal range-gorge regions on the Lancang-Mekong River, southwest China[J]. Journal of environmental management, 295: 113027.
DOI URL |
[29] |
WU W, WANG J W, ZHOU X D, et al., 2020. Spatiotemporal distribution of nitrous oxide (N2O) emissions from cascade reservoirs in Lancang-Mekong River Yunnan section, Southwestern China[J]. River Research and Applications, 37(8): 1055-1069.
DOI URL |
[30] |
WUEBBLES D J, 2009. Nitrous oxide: No laughing matter[J]. Science, 326(5949): 56-57.
DOI URL |
[31] |
XIA L, TAO X, LI J X, et al., 2023. Control of the hydraulic load on nitrous oxide emissions from Cascade Reservoirs[J]. Environmental Science & Technology, 53(20): 11745-11754.
DOI URL |
[32] |
XIA Y Q, LI Y F, LI X B, et al., 2013. Diurnal pattern in nitrous oxide emissions from a sewage-enriched river[J]. Chemosphere, 92(4): 421-428.
DOI PMID |
[33] |
YAN Q Y, BI Y H, DENG Y, et al., 2015. Impacts of the Three Gorges Dam on microbial structure and potential function[J]. Scientific Reports, 5(1): 8605.
DOI |
[34] |
YU Z J, DENG H G, WANG D Q, et al., 2013. Nitrous oxide emissions in the Shanghai river network: implications for the effects of urban sewage and IPCC methodology[J]. Global Change Biology, 19(10): 2999-3010.
DOI PMID |
[35] | ZHAO B J, ZHANG Q F, 2021. N2O emission and its influencing factors in subtropical streams, China[J]. Ecological Processes, 10(1): 735-748. |
[36] |
ZHANG B Y, DING W, XU B, et al., 2020. Spatial characteristics of total phosphorus loads from different sources in the Lancang River Basin[J]. Science of The Total Environment, 722: 137863.
DOI URL |
[37] |
ZHU D, CHEN H, YUAN X, et al., 2013. Nitrous oxide emissions from the surface of the Three Gorges Reservoir[J]. Ecological Engineering, 60: 150-154.
DOI URL |
[38] | 程芳, 丁帅, 刘素美, 等, 2019. 三峡库区及其下游溶解氧化亚氮 (N2O) 分布和释放[J]. 环境科学, 40(9): 4230-4237. |
CHENG F, DING S, LIU S M, et al., 2019. Distribution and emissions of Nitrous oxide (N2O) in Three Gorges Reservoir and Downstream River[J]. Environmental Science, 40(9): 4230-4237. | |
[39] | 高蝶, 陈赛男, 李思亮, 等, 2020. 峡谷型水库温度分层期关键界面N2O的产生和释放机理[J]. 生态学杂志, 39(8): 2737-2747. |
GAO D, CHEN S N, LI S L, et al., 2020. Nitrous oxide production and emission mechanisms in key interfaces of canyon-reservoirs during stratification period[J]. Journal of Ecology, 39(8): 2737-2747. | |
[40] | 郭俏利, 2017. 基于涡度相关法SWI的N2O通量及其水动力影响研究[D]. 重庆: 重庆大学. |
GUO Q L, 2017. Study on N2O flux and hydrodynamic influence of SWI based on the eddy covariance method[D]. Chongqing: Chongqing University. | |
[41] | 刘婷婷, 王晓锋, 袁兴中, 等, 2019. 湖、库水体N2O排放研究进展[J]. 湖泊科学, 31(2): 319-335. |
LIU T T, WANG X F, YUAN X Z, et al., 2019. Review on N2O emission from lakes and reservoirs[J]. Lake Science, 31(2): 319-335. | |
[42] | 刘小龙, 汪福顺, 白莉, 等, 2015. 河流梯级开发对乌江中上游水体溶存N2O释放的影响[J]. 上海大学学报, 21(3): 1007-1261. |
LIU X L, WANG F S, BAI L, et al., 2015. Impact of cascade reservoir development on N2O emissions in the Wujiang River[J]. Journal of Shanghai University (Natural Science), 21(3): 1007-1261. | |
[43] | 王亮, 王雨春, 段玉杰, 等, 2012. 三峡水库香溪河库湾水-气界面N2O通量特征[J]. 三峡大学学报(自然科学版), 34(1): 14-18. |
WANG L, WANG Y C, DUAN Y J, et al., 2012. Characteristics of nitrous oxide flux across water-air interface of Xiangxi River Bay of Three-Gorges Reservoir[J]. Journal of China Three Gorges University (Natural Science), 34(1): 14-18. |
[1] | MIAO Jingjie, ZHANG Kai, MENG Yubo, WANG Naijia, LI Hainan, GUO Kangjun, ZHANG Jun, GAO Xining, WANG Liwei. Effects of Plastic Film Mulching and Ridge Tillage on N2O Emission from Rain-Fed Potato Fields in Dryland [J]. Ecology and Environment, 2024, 33(1): 62-71. |
[2] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[3] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[4] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[5] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[6] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[7] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[8] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[9] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[10] | HE Xiaojia, FENG Shuhua, JIANG Ming, LI Mingrui, ZHAN Fangdong, LI Yuan, HE Yongmei. Effects of UV-B Radiation on Conversion of Active Organic Carbon and Methane Production Potential of Rice Rhizosphere Soil [J]. Ecology and Environment, 2022, 31(3): 556-564. |
[11] | LI Liangliang, DAI Liangyu, GAO Weichang, ZHANG Shuyi, LIU Taoze. The Occurrence Characteristics and Influencing Factors of Residual Mulching Film of Typical Farmland with Plastic Film in Guizhou Province [J]. Ecology and Environment, 2022, 31(11): 2189-2197. |
[12] | ZHAO Anzhou, TIAN Xinle. Spatiotemporal Evolution and Influencing Factors of Vegetation Coverage in the Loess Plateau from 1986 to 2021 Based on GEE Platform [J]. Ecology and Environment, 2022, 31(11): 2124-2133. |
[13] | LI Shaoning, TAO Xueying, LI Xiuhong, ZHAO Na, XU Xiaotian, LU Shaowei. Research Progress of Beneficial Biogenic Volatile Organic Compounds Released from Plants [J]. Ecology and Environment, 2022, 31(1): 187-195. |
[14] | LI Shengzeng, HAO Saimei, TAN Luyao, ZHANG Huaicheng, XU Biao, GU Shumao, PAN Guang, WANG Shuyan, YAN Huaizhong, ZHANG Guiqin. Characteristics of Spatiotemporal Variation, and Factors Influencing Secondary Components in PM2.5 in Ji'nan [J]. Ecology and Environment, 2022, 31(1): 100-109. |
[15] | CAI Yang, LI Wei, ZUO Xueyan, CUI Lijuan, LEI Yinru, ZHAO Xinsheng, ZHAI Xiajie, LI Jing, PAN Xu. Distribution Characteristics and Influencing Factors of PAHs in Yancheng Coastal Wetland Soil [J]. Ecology and Environment, 2021, 30(6): 1249-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn