Ecology and Environment ›› 2023, Vol. 32 ›› Issue (8): 1365-1375.DOI: 10.16258/j.cnki.1674-5906.2023.08.002
• Research Article [Ecology] • Previous Articles Next Articles
WANG Ning1,2(), LIU Xiaodong1, GAN Xianhua2, SU Yuqiao2, WU Guozhang1,2, HUANG Fangfang2, ZHANG Weiqiang2,*(
)
Received:
2023-05-23
Online:
2023-08-18
Published:
2023-11-08
Contact:
ZHANG Weiqiang
王宁1,2(), 刘效东1, 甘先华2, 苏宇乔2, 吴国章1,2, 黄芳芳2, 张卫强2,*(
)
通讯作者:
张卫强
作者简介:
王宁(1998年生),男,硕士研究生,主要从事森林生态水文研究。E-mail: 13475823960@163.com
基金资助:
CLC Number:
WANG Ning, LIU Xiaodong, GAN Xianhua, SU Yuqiao, WU Guozhang, HUANG Fangfang, ZHANG Weiqiang. Water Quality Effect in Precipitation by Typical Forests in Subtropical Region of China[J]. Ecology and Environment, 2023, 32(8): 1365-1375.
王宁, 刘效东, 甘先华, 苏宇乔, 吴国章, 黄芳芳, 张卫强. 亚热带典型林分降水过程中的水质效应[J]. 生态环境学报, 2023, 32(8): 1365-1375.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.08.002
森林类型 | 林分密度/ (plant∙hm-2) | 郁闭度/ % | 坡度/ (o) | 坡向 | 优势树种 |
---|---|---|---|---|---|
针叶林 | 4476 | 80.7 | 30 | 北 | 杉木 (Cunninghamia lanceolata) |
针阔混交林 | 6192 | 75.5 | 30 | 北 | 杉木、木荷 (Schima superba)、五列木 (Pentaphylax euryoides)、马尾松 (Pinus massoniana)、 浙江润楠 (Machilus chekiangensis)、细齿叶柃 (Eurya nitida)、罗浮柿 (Diospyros morrisiana)、黄樟 (Cinnamomum parthenoxylon) |
常绿阔叶林 | 6520 | 88.0 | 27 | 西北 | 红锥 (Castanopsis hystrix)、黄果厚壳桂 (Cryptocarya concinna)、厚壳桂 (Cryptocarya chinensis)、鹿角锥 (Castanopsis lamontii)、橄榄 (Canarium album)、木荷、罗浮柿、华润楠 (Machilus chinensis) |
Table 1 The basic characteristics of sample plots
森林类型 | 林分密度/ (plant∙hm-2) | 郁闭度/ % | 坡度/ (o) | 坡向 | 优势树种 |
---|---|---|---|---|---|
针叶林 | 4476 | 80.7 | 30 | 北 | 杉木 (Cunninghamia lanceolata) |
针阔混交林 | 6192 | 75.5 | 30 | 北 | 杉木、木荷 (Schima superba)、五列木 (Pentaphylax euryoides)、马尾松 (Pinus massoniana)、 浙江润楠 (Machilus chekiangensis)、细齿叶柃 (Eurya nitida)、罗浮柿 (Diospyros morrisiana)、黄樟 (Cinnamomum parthenoxylon) |
常绿阔叶林 | 6520 | 88.0 | 27 | 西北 | 红锥 (Castanopsis hystrix)、黄果厚壳桂 (Cryptocarya concinna)、厚壳桂 (Cryptocarya chinensis)、鹿角锥 (Castanopsis lamontii)、橄榄 (Canarium album)、木荷、罗浮柿、华润楠 (Machilus chinensis) |
林分类型 | 森林降水层次 | TN | TP | NH4+-N | NO3--N |
---|---|---|---|---|---|
大气降水沉降量/ (kg∙hm-2) | 13.3 | 0.829 | 1.66 | 2.60 | |
常绿阔叶林 | 穿透水沉降量/ (kg∙hm-2) | 10.2 | 0.674 | 0.672 | 3.01 |
树干茎流沉降量/ (kg∙hm-2) | 1.72 | 1.72 | 0.233 | 0.403 | |
ΔF截留量/ (kg∙hm-2) | 1.39 | -1.57 | 0.754 | -0.82 | |
截留率/% | 10.5 | -189.2 | 45.5 | -31.6 | |
针阔混交林 | 穿透水沉降量/ (kg∙hm-2) | 7.66 | 0.38 | 0.795 | 3.71 |
树干茎流沉降量/ (kg∙hm-2) | 2.51 | 0.074 | 0.277 | 0.41 | |
ΔF截留量/ (kg∙hm-2) | 3.11 | 0.375 | 0.587 | -1.53 | |
截留率/% | 23.4 | 45.3 | 35.4 | -58.9 | |
针叶林 | 穿透水沉降量/ (kg∙hm-2) | 7.88 | 0.573 | 0.544 | 3.00 |
树干茎流沉降量/ (kg∙hm-2) | 3.14 | 0.06 | 0.24 | 0.605 | |
ΔF截留量/ (kg∙hm-2) | 2.26 | 0.20 | 0.88 | -1.02 | |
截留率/% | 17.0 | 23.5 | 52.7 | -39.3 |
Table 2 Canopy interception of TN, TP, NH4+-N and NO3--N in typical forests during the observation period
林分类型 | 森林降水层次 | TN | TP | NH4+-N | NO3--N |
---|---|---|---|---|---|
大气降水沉降量/ (kg∙hm-2) | 13.3 | 0.829 | 1.66 | 2.60 | |
常绿阔叶林 | 穿透水沉降量/ (kg∙hm-2) | 10.2 | 0.674 | 0.672 | 3.01 |
树干茎流沉降量/ (kg∙hm-2) | 1.72 | 1.72 | 0.233 | 0.403 | |
ΔF截留量/ (kg∙hm-2) | 1.39 | -1.57 | 0.754 | -0.82 | |
截留率/% | 10.5 | -189.2 | 45.5 | -31.6 | |
针阔混交林 | 穿透水沉降量/ (kg∙hm-2) | 7.66 | 0.38 | 0.795 | 3.71 |
树干茎流沉降量/ (kg∙hm-2) | 2.51 | 0.074 | 0.277 | 0.41 | |
ΔF截留量/ (kg∙hm-2) | 3.11 | 0.375 | 0.587 | -1.53 | |
截留率/% | 23.4 | 45.3 | 35.4 | -58.9 | |
针叶林 | 穿透水沉降量/ (kg∙hm-2) | 7.88 | 0.573 | 0.544 | 3.00 |
树干茎流沉降量/ (kg∙hm-2) | 3.14 | 0.06 | 0.24 | 0.605 | |
ΔF截留量/ (kg∙hm-2) | 2.26 | 0.20 | 0.88 | -1.02 | |
截留率/% | 17.0 | 23.5 | 52.7 | -39.3 |
林分类型 | 森林降水层次 | Cd | Cr6+ | Pb | Hg | Cu | Mn |
---|---|---|---|---|---|---|---|
大气降水沉降量/(g∙hm-2) | 0.823 | 160.9 | 10.5 | 0.275 | 25.9 | 363.5 | |
常绿阔叶林 | 穿透水沉降量/(g∙hm-2) | 0.558 | 388.7 | 33.5 | 0.245 | 182.9 | 553.3 |
树干茎流沉降量/(g∙hm-2) | 0.071 | 47.7 | 4.74 | 0.036 | 9.38 | 55.7 | |
ΔF截留量/(g∙hm-2) | 0.194 | -275.5 | -27.7 | -0.007 | -166.3 | -245.5 | |
截留率/% | 23.6 | -171.2 | -263.7 | -2.67 | -641.5 | -67.6 | |
针阔混交林 | 穿透水沉降量/(g∙hm-2) | 0.369 | 171.5 | 18.4 | 0.284 | 91.2 | 760.7 |
树干茎流沉降量/(g∙hm-2) | 0.075 | 35.9 | 7.70 | 0.036 | 38.4 | 109.7 | |
ΔF截留量/(g∙hm-2) | 0.379 | -46.5 | -15.6 | -0.045 | -103.7 | -506.9 | |
截留率/% | 46.1 | -28.9 | -148.0 | -16.6 | -399.8 | -139.5 | |
针叶林 | 穿透水沉降量/(g∙hm-2) | 0.463 | 346.3 | 15.8 | 0.133 | 66.1 | 566.0 |
树干茎流沉降量/(g∙hm-2) | 0.106 | 77.4 | 16.6 | 0.035 | 75.6 | 131.9 | |
ΔF截留量/(g∙hm-2) | 0.255 | -263.7 | -21.9 | 0.107 | -115.7 | -334.4 | |
截留率/% | 30.9 | -163.2 | -208.3 | 38.8 | -446.3 | -92.0 |
Table 3 Canopy interception of six heavy metals in typical forest during observation period
林分类型 | 森林降水层次 | Cd | Cr6+ | Pb | Hg | Cu | Mn |
---|---|---|---|---|---|---|---|
大气降水沉降量/(g∙hm-2) | 0.823 | 160.9 | 10.5 | 0.275 | 25.9 | 363.5 | |
常绿阔叶林 | 穿透水沉降量/(g∙hm-2) | 0.558 | 388.7 | 33.5 | 0.245 | 182.9 | 553.3 |
树干茎流沉降量/(g∙hm-2) | 0.071 | 47.7 | 4.74 | 0.036 | 9.38 | 55.7 | |
ΔF截留量/(g∙hm-2) | 0.194 | -275.5 | -27.7 | -0.007 | -166.3 | -245.5 | |
截留率/% | 23.6 | -171.2 | -263.7 | -2.67 | -641.5 | -67.6 | |
针阔混交林 | 穿透水沉降量/(g∙hm-2) | 0.369 | 171.5 | 18.4 | 0.284 | 91.2 | 760.7 |
树干茎流沉降量/(g∙hm-2) | 0.075 | 35.9 | 7.70 | 0.036 | 38.4 | 109.7 | |
ΔF截留量/(g∙hm-2) | 0.379 | -46.5 | -15.6 | -0.045 | -103.7 | -506.9 | |
截留率/% | 46.1 | -28.9 | -148.0 | -16.6 | -399.8 | -139.5 | |
针叶林 | 穿透水沉降量/(g∙hm-2) | 0.463 | 346.3 | 15.8 | 0.133 | 66.1 | 566.0 |
树干茎流沉降量/(g∙hm-2) | 0.106 | 77.4 | 16.6 | 0.035 | 75.6 | 131.9 | |
ΔF截留量/(g∙hm-2) | 0.255 | -263.7 | -21.9 | 0.107 | -115.7 | -334.4 | |
截留率/% | 30.9 | -163.2 | -208.3 | 38.8 | -446.3 | -92.0 |
[1] |
BÉJAR PULIDO S J, CANTÚ SILVA I, DOMÍNGUEZ GÓMEZ T G, et al., 2018. Rainfall redistribution and nutrient input Pinus cooperi C.E. Blanco[J]. Revista Mexicana de Ciencias Forestales, 9(50): 94-120.
DOI URL |
[2] |
CHEN L, ZHOU S L, WU S H, et al., 2019. Concentration, fluxes, risks, and sources of heavy metals in atmospheric deposition in the Lihe River watershed, Taihu region, eastern China[J]. Environmental Pollution, 255: 113301.
DOI URL |
[3] |
DRAAIJERS G P J, Van EK R, BLEUTEN W, 1994. Atmospheric deposition in complex forest landscapes[J]. Boundary-Layer Meteorology, 69(4): 343-366.
DOI URL |
[4] |
DUAN J C, TAN J H, 2013. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies[J]. Atmospheric Environment, 74: 93-101.
DOI URL |
[5] |
EISALOU H K, ŞENGÖNÜL K, GÖKBULAK F, et al., 2013. Effects of forest canopy cover and floor on chemical quality of water in broad leaved and coniferous forests of Istanbul, Turkey[J]. Forest Ecology and Management, 289: 371-377.
DOI URL |
[6] |
HUANG X, HU J, LI C, et al., 2009. Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake, Guizhou, P.R.China[J]. International Journal of Environmental Health Research, 19(6): 405-419.
DOI URL |
[7] | JIANG J, WANG Y P, YU M X, et al., 2016. Responses of soil buffering capacity to acid treatment in three typical subtropical forests[J]. Science of The Total Environment, 563: 1068-1077. |
[8] |
LI Y, ZHOU S L, JIA Z Y, et al., 2021. Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China[J]. Environmental Pollution, 284: 117465.
DOI URL |
[9] |
LIE Z Y, HUANG W J, ZHOU G Y, et al., 2023. Acidity of soil and water decreases in acid-sensitive forests of tropical China[J]. Environmental Science & Technology, 57(30): 11075-11083.
DOI URL |
[10] | MICHOPOULOS P, BOURLETSIKAS A, KAOUKIS K, et al., 2019. The distribution and variability of heavy metals in a mountainous fir forest ecosystem in two hydrological years[J]. Global Network of Environmental Science and Technology Journal, 20(2): 188-197. |
[11] |
TAN S Y, ZHAO H R, YANG W Q, et al., 2019. Forest canopy can efficiently filter trace metals in deposited precipitation in a subalpine spruce plantation[J]. Forests, 10(4): 318.
DOI URL |
[12] |
WANG Y Y, ZHU F F, KANG R H, et al., 2022. Chemical composition and deposition characteristics of precipitation into a typical temperate forest in northeastern China[J]. Forests, 13(12): 2024.
DOI URL |
[13] |
WILLIAMS M W, BROOKS P D, MOSIER A, et al., 1996. Mineral nitrogen transformations in and under seasonal snow in a high-elevation catchment in the Rocky Mountains, United States[J]. Water Resources Research, 32(10): 3161-3171.
DOI URL |
[14] |
WU J P, SU Y X, CHEN X Z, et al., 2019. Redistribution characteristics of atmospheric precipitation in different spatial levels of Guangzhou urban typical forests in southern China[J]. Atmospheric Pollution Research, 10(5): 1404-1411.
DOI URL |
[15] |
ZANG C F, WU M W, ZHANG J M, et al., 2020. Research on the chemical element transport characteristics of the larch forest ecosystem of Greater Xing'an Mountain in China[J]. Physics and Chemistry of the Earth, Parts A/B/C, 120: 102919.
DOI URL |
[16] |
ZHU J J, YU L Z, XU T L, et al., 2019. Comparison of water quality in two catchments with different forest types in the headwater region of the Hun River, Northeast China[J]. Journal of Forestry Research, 30(2): 565-576.
DOI |
[17] | 白薇扬, 张成, 赵铮, 等, 2015. 三峡库区长寿湖水体不同形态汞的空间分布特征[J]. 环境科学, 36(8): 2863-2869. |
BAI W Y, ZHANG C, ZHAO Z, et al., 2015. Spatial distribution characteristics of different species mercury in water body of Changshou Lake in Three Gorges Reservoir region[J]. Environmental Science, 36(8): 2863-2869. | |
[18] | 陈军, 孟小星, 张卫东, 等, 2009. 重庆四面山森林冠层对降水化学组成的影响[J]. 安徽农业科学, 37(32): 16098-16101. |
CHEN J, MENG X X, ZHANG W D, et al., 2009. Effects of Chongqing Simian Mountain forest canopy on chemical composition of precipitation[J]. Journal of Anhui Agricultura Sciences, 37(32): 16098-16101. | |
[19] | 陈晓滢, 植秋滢, 杨肖, 等, 2021. 广州市3种典型绿化树冠层降水再分配对重金属元素沉降的影响[J]. 生态学杂志, 40(7): 1937-1946. |
CHEN X Y, ZHI Q Y, YANG X, et al., 2021. The effects of rainfall partitioning on heavy metal deposition for three typical urban tree species in Guangzhou[J]. Chinese Journal of Ecology, 40(7): 1937-1946. | |
[20] | 杜子璇, 刘荣花, 魏璐, 2010. 郑州市酸雨变化特征及影响因素分析[J]. 气象与环境科学, 33(2): 32-36. |
DU Z X, LIU R H, WEI L, 2010. Variation characteristic and influencing factor analysis of acid rain in Zhengzhou[J]. Meteorological and Environmental Sciences, 33(2): 32-36. | |
[21] | 段江飞, 2022. 贵州松桃县某水库锰污染现状及成因分析[J]. 中国煤炭地质, 34(S1): 20-23. |
DUAN J F, 2022. Analysis on manganese pollution status and cause of a reservoir in Songtao County, Guizhou Province[J]. Coal Geology of China, 34(S1): 20-23. | |
[22] | 付淑清, 殷学博, 方国祥, 等, 2013. 新丰江上游铁矿区河流沉积剖面微量元素特征[J]. 安全与环境学报, 13(6): 123-127. |
FU S Q, YIN X B, FANG G X, et al., 2013. Characteristic analysis of the trace elements abundance in the river-bed sediments near the ferris mine area in the upper reach of Xinfengjian[J]. Journal of Safety and Environment, 13(6): 123-127. | |
[23] |
葛晓敏, 卢晓强, 陈水飞, 等, 2020. 武夷山常绿阔叶林生态系统降水分配与离子输入特征[J]. 生态环境学报, 29(2): 250-259.
DOI |
GE X M, LU X Q, CHEN S F, et al., 2020. Reallocation and chemical characteristics of atmospheric precipitation in a mid-subtropical evergreen broad-leaved Forest in Wuyi Mountains, Fujian province, China[J]. Ecology and Environmental Sciences, 29(2): 250-259. | |
[24] | 蒋雨芮, 周蛟, 李晗, 等, 2020. 亚高山森林溪流镉储量与分配的动态变化特征[J]. 生态学报, 40(13): 4436-4444. |
JIANG Y R, ZHOU J, LI H, et al., 2020. Dynamic characteristics of cadmium storage and distribution in the subalpine forest streams[J]. Acta Ecologica Sinica, 40(13): 4436-4444. | |
[25] | 康希睿, 张涵丹, 王小明, 等, 2021. 北亚热带3种森林群落对大气湿沉降重金属的调控[J]. 生态学报, 41(6): 2107-2117. |
KANG X R, ZHANG H D, WANG X M, et al., 2021. Distribution of heavy metals in precipitation by three forest communities in northern subtropical region of China[J]. Acta Ecologica Sinica, 41(6): 2107-2117. | |
[26] | 李佳, 李巍, 侯锦湘, 等, 2010. 贵州地区酸雨作用下典型森林植被冠层淋溶规律研究[J]. 中国环境科学, 30(10): 1297-1302. |
LI J, LI W, HOU J X, et al., 2010. Typical forests’ leaching characteristics during acid rain in Guizhou[J]. China Environmental Science, 30(10): 1297-1302. | |
[27] |
李凯, 程金花, 陈仲旭, 2019. 密云水库库滨带不同植被配置下面源污染特征分析[J]. 生态环境学报, 28(6): 1183-1192.
DOI |
LI K, CHENG J H, CHEN Z X, 2019. Analysis on the characteristics of non-point source pollution in the bank zone of Miyun Resevoir[J]. Ecology and Environment Sciences, 28(6): 1183-1192.
DOI |
|
[28] | 李可见, 黄芳芳, 张卫强, 等, 2018. 新丰江水库及库区地表水水质分析与评价[J]. 林业与环境科学, 34(3): 6-13. |
LI K J, HUANG F F, ZHANG W Q, et al., 2018. Analysis and assessment of surface water quality in Xinfengjiang Reservoir area[J]. Forestry and Environmental Science, 34(3): 6-13. | |
[29] | 李怡然, 刘素梅, 2019. 河源市新丰江水库可持续发展的环境保护方法研究[J]. 科技资讯, 17(10): 77-78. |
LI Y R, LIU S M, 2019. A study on environmental protection methods for sustainable development of Xinfengjiang Reservoir in Heyuan[J]. Science & Technology Information, 17(10): 77-78. | |
[30] | 廖剑宇, 彭秋志, 郑楚涛, 等, 2013. 东江干支流水体氮素的时空变化特征[J]. 资源科学, 35(3): 505-513. |
LIAO J Y, PENG Q Z, ZHENG C T, et al., 2013. Temporal-Spatial distribution of nitrogen in the Dongjiang River and Its Tributaries[J]. Resources Science, 35(3): 505-513. | |
[31] | 刘菊秀, 2003. 酸沉降对森林生态系统影响的研究现状及展望[J]. 生态学杂志, 22(5): 113-117. |
LIU J X, 2003. Current and future study about effects of acid deposition on forest ecosystems[J]. Chinese Journal of Ecology, 22(5): 113-117. | |
[32] | 刘菊秀, 张德强, 周国逸, 等, 2003. 鼎湖山酸沉降背景下主要森林类型水化学特征初步研究[J]. 应用生态学报, 14(8): 1223-1228. |
LIU J X, ZHANG D Q, ZHOU G Y, et al., 2003. A preliminary study on the chemical properties of precipitation, throughfall, stemflow and surface run-off in major forest types at Dinghushan under acid deposition[J]. Chinese Journal of Applied Ecology, 14(8): 1223-1228. | |
[33] |
刘佩伶, 刘效东, 冯英杰, 等, 2022. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 31(10): 1993-2001.
DOI |
LIU P L, LIU X D, FENG Y J, et al., 2022. Characteristics of soil saturated hydraulic conductivity of water conservation forests in the Xinfengjiang Reservoir Area[J]. Ecology and Environmental Sciences, 31(10): 1993-2001. | |
[34] | 刘效东, 张卫强, 冯英杰, 等, 2022. 森林生态系统水源涵养功能研究进展与展望[J]. 生态学杂志, 41(4): 784-791. |
LIU X D, ZHANG W Q, FENG Y J, et al., 2022. Research on water conservation function of forest ecosystem:Progress and prospect[J]. Chinese Journal of Ecology, 41(4): 784-791. | |
[35] | 刘逸菲, 鲁绍伟, 赵娜, 等, 2021. 森林影响降水水质研究概述[J]. 世界林业研究, 34(5): 14-19. |
LIU Y F, LU S W, ZHAO N, et al., 2021. Research progress in forests’ influence on precipitation water quality[J]. World Forestry Research, 34(5): 14-19. | |
[36] | 刘永杰, 党坤良, 王连贺, 等, 2014. 秦岭南坡2种林分类型林冠层对大气降水水质的生态效应[J]. 西北农林科技大学学报(自然科学版), 42(7): 89-94. |
LIU Y J, DANG K L, WANG L H, et al., 2014. Ecological effects of canopies of two forest types on rain water quality on the south slope of Qinling Mountains[J]. Journal of Northwest A & F University (Natural Science Edition), 42(7): 89-94. | |
[37] | 卢晓强, 杨万霞, 丁访军, 等, 2015. 茂兰喀斯特地区森林降水分配的水化学特征[J]. 生态学杂志, 34(8): 2115-2122. |
LU X Q, YANG W X, DING F J, et al., 2015. Reallocation and chemical characteristics of precipitation in a Maolan karst forest[J]. Chinese Journal of Ecology, 34(8): 2115-2122. | |
[38] | 钱学诗, 钱壮壮, 王波, 等, 2022. 森林生态系统对降水过程中的重金属影响研究综述[J]. 世界林业研究, 35(3): 8-13. |
QIAN X S, QIAN Z Z, WANG B, et al., 2022. A Review of the effect of forest ecosystems on heavy metals in precipitation[J]. World Forestry Research, 35(3): 8-13. | |
[39] | 孙涛, 马明, 王定勇, 2016. 中亚热带典型森林生态系统对降水中铅镉的截留特征[J]. 生态学报, 36(1): 218-225. |
SUN T, MA M, WANG D Y, 2016. Interceptive characteristics of lead and cadmium in a representative forest ecosystem in mid-subtropical area in China[J]. Acta Ecologica Sinica, 36(1): 218-225.
DOI URL |
|
[40] | 覃芳华, 王彬, 王云琦, 等, 2014. 重庆缙云山三种典型林分穿透水和树干茎流中氮素特征研究[J]. 土壤通报, 45(4): 884-891. |
TAN F H, WANG B, WANG Y Q, et al., 2014. Nitrogen characteristics in throughfall and stemflow in three typical forests on Jinyun Mountain, Chongqing City[J]. Chinese Journal of Soil Science, 45(4): 884-891. | |
[41] | 田大伦, 2002. 会同广坪林区降雨和杉木林内雨的养分含量[J]. 中南林学院学报, 22(3): 9-13. |
TIAN D L, 2002. Nutrient contents in the rainfall inside and outside the stands of Guangping forest zone, Huitong[J]. Journal of Central South University of Forestry & Technology, 22(3): 9-13. | |
[42] | 温美丽, 杨龙, 方国祥, 等, 2015. 新丰江水库上游氮磷污染的时空变化[J]. 热带地理, 35(1): 103-110. |
WEN M L, YANG L, FANG G X, et al., 2015. Spatio-Temporal variation of nitrogen and phosphorus pollution in upriver watercourse of the Xinfengjiang Reservoir in Guangdong Province[J]. Tropical Geography, 35(1): 103-110. | |
[43] | 伍琪, 任世奇, 姜同强, 等, 2020. 南方四种速生树种凋落叶在不同模拟酸雨环境中变化特性研究[J]. 基因组学与应用生物学, 39(4): 1758-1768. |
WU Q, REN S Q, JIANG T Q, et al., 2020. The Study of variation characteristic of litters of four fast-growing species on simulated acid rain with different acidities[J]. Genomics and Applied Biology, 39(4): 1758-1768. | |
[44] | 肖以华, 陈步峰, 潘勇军, 等, 2010. 广州帽峰山常绿阔叶林森林生态系统水文环境效应[J]. 东北林业大学学报, 38(3): 78-81. |
XIAO Y H, CHEN B F, PAN Y J, et al., 2010. Effects of hydrological environment on tropical evergreen broad-leaved forest in Maofengshan Mountain of Guangzhou[J]. Journal of Northeast Forestry University, 38(3): 78-81. | |
[45] | 徐小勤, 于澎涛, 王彦辉, 等, 2023. 六盘山华北落叶松林的结构随林龄变化及其水文影响[J]. 林业科学研究, 36(1): 109-116. |
XU X Q, YU P T, WANG Y H, et al., 2023. The Variation of stand structure with age and its hydrological effects of larch plantation in Liupan Mountains[J]. Forest Research, 36(1): 109-116. | |
[46] | 杨丽丽, 邢元军, 王彦辉, 等, 2019. 宁夏六盘山4种典型森林伴随降水的无机氮通量变化特征[J]. 生态学报, 39(8): 2851-2861. |
YANG L L, XING Y J, WANG Y H, et al., 2019. The spatial variability of inorganic nitrogen flux with precipitation for four typical forests of the Liupan Mountain of Ningxia, China[J]. Acta Ecologica Sinica, 39(8): 2851-2861. | |
[47] | 张楠, 范春楠, 陈思羽, 等, 2019. 次生落叶阔叶林降雨过程中的4种金属元素特征[J]. 南京林业大学学报 (自然科学版), 43(4): 178-184. |
ZHANG N, FAN C N, CHEN S Y, et al., 2019. Effects of precipitation characteristics on the distribution of four metal elements by rainfalls in a secondary deciduous broad-leaved forest[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 43(4): 178-184. | |
[48] | 张运, 许仕荣, 卢少勇, 2018. 新丰江水库表层沉积物重金属污染特征与评价[J]. 环境工程, 36(1): 134-141. |
ZHANG Y, XU S R, LU S Y, 2018. Pollution characteristics and assessment of heavy metals in the surface sediment of Xinfengjiang reservoir[J]. Environmental Engineering, 36(1): 134-141. | |
[49] | 赵银, 令狐文生, 2020. 铬离子的危害及其处理研究进展[J]. 河南化工, 37(5): 6-8. |
ZHAO Y, LING H W S, 2020. The Harm of chromium ion and its treatment research progress[J]. Henan Chemical Industry, 37(5): 6-8. | |
[50] | 赵宇寒, 曹建生, 朱春雨, 等, 2022. 壤中流形成机制及其生态水文效应研究进展[J]. 中国生态农业学报 (中英文), 30(1): 38-46. |
ZHAO Y H, CAO J S, ZHU C Y, et al., 2022. Research progress on the formation mechanism of subsurface flow and its ecohydrological effects[J]. Chinese Journal of Eco-Agriculture, 30(1): 38-46. |
[1] | LIU Bingyu, WANG Yipei, YAO Zuofang, YANG Gairen, XU Xiaonan, DENG Yusong, HUANG Yuhan. Risk Assessment and Safe Consumption Analysis of Heavy Metals under Different Planting Patterns of Biogas Slurry [J]. Ecology and Environment, 2023, 32(8): 1507-1515. |
[2] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[3] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[4] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[5] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[6] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[7] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
[8] | HUANG Min, ZHAO Xiaofeng, LIANG Rongxiang, WANG Pengzhong, DAI Anran, HE Xiaoman. Comparison of Three Chelating Agents to Remove the Cd and Cu in Contaminated Soil [J]. Ecology and Environment, 2022, 31(6): 1244-1252. |
[9] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[10] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environment, 2022, 31(5): 1015-1023. |
[11] | QIAN Xueshi, LI Yong, QIAN Zhuangzhuang, GE Xiaomin, TANG Luozhong. Changes of Cadmium, Lead and Arsenic Contents during Precipitation in the Secondary Broad-leaved Forest in the Eastern Area of North Subtropics, China [J]. Ecology and Environment, 2022, 31(5): 979-989. |
[12] | YU Fei, YE Caihong, XU Tiaozi, ZHANG Zhongrui, ZHU Hangyong, ZHANG Geng, HUA Lei, DENG Jianfeng, DING Xiaogang. Evaluation of Heavy Metal Pollution in Woodland Soil of Granite Area in Shaoguan City [J]. Ecology and Environment, 2022, 31(2): 354-362. |
[13] | LIU Di, SU Chao, ZHANG Hong, QIN Guanyu. Pollution Characteristics and Risk Assessment of Heavy Metal Pollution in A Typical Coal-based Industrial Cluster Zone [J]. Ecology and Environment, 2022, 31(2): 391-399. |
[14] | XIE Shaowen, GUO Xiaosong, YANG Fen, HUANG Qiang, CHEN Manjia, WEI Xinghu, LIU Chengshuai. Accumulation Characteristics, Geochemical Fractions Distribution and Ecological Risk of Heavy Metals in Soils of Urban Parks in Guangzhou, China [J]. Ecology and Environment, 2022, 31(11): 2206-2215. |
[15] | LIU Zhijian, DONG Yuanhua, ZHANG Xiu, QING Chengshi. Contamination and Ecological Risk Assessment of Heavy Metals in the Soil of Agricultural Land in Weining Plain, Northwest China [J]. Ecology and Environment, 2022, 31(11): 2216-2224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn