Ecology and Environment ›› 2022, Vol. 31 ›› Issue (6): 1253-1262.DOI: 10.16258/j.cnki.1674-5906.2022.06.022
• Research Articles • Previous Articles Next Articles
ZHU Li'an(), ZHANG Huihua, CHENG Jiong*(
), LI Ting, LIN ZI, LI Junjie
Received:
2021-06-16
Online:
2022-06-18
Published:
2022-07-29
Contact:
CHENG Jiong
朱立安(), 张会化, 程炯*(
), 李婷, 林梓, 李俊杰
通讯作者:
程炯
作者简介:
朱立安(1974年生),男,副研究员,主要从事土壤环境与区域生态、水土保持与生态修复研究。E-mail: 715546440@qq.com
基金资助:
CLC Number:
ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta[J]. Ecology and Environment, 2022, 31(6): 1253-1262.
朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.06.022
潜在污染风险等级 Potential pollution risk level | 土壤重金属 Soil heavy metal | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
镉 Cd | 镉 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | ||||||||
低潜在生态风险 Low potential ecological risk | ≤0.15 | ≤0.13 | ≤100 | ≤480 | ≤1540 | ≤256 | ≤224 | ≤3880 | |||||||
中潜在生态风险 Moderate potential ecological risk | 0.29 | 0.26 | 200 | 960 | 3080 | 512 | 448 | 7760 | |||||||
较强潜在生态风险 Relatively strong potential ecological risk | 0.59 | 0.52 | 400 | 1920 | 6160 | 1024 | 896 | 15520 | |||||||
强潜在生态风险 Strong potential ecological risk | 1.17 | 1.04 | 800 | 3840 | 12320 | 2048 | 1792 | 31040 | |||||||
极强潜在生态风险 Extremely strong potential ecological risk | >1.17 | >1.04 | >800 | >3840 | >12320 | >2048 | >1792 | >31040 |
Table 1 Risk value of potential ecological risks based on Hakanson mg∙kg-1
潜在污染风险等级 Potential pollution risk level | 土壤重金属 Soil heavy metal | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
镉 Cd | 镉 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | ||||||||
低潜在生态风险 Low potential ecological risk | ≤0.15 | ≤0.13 | ≤100 | ≤480 | ≤1540 | ≤256 | ≤224 | ≤3880 | |||||||
中潜在生态风险 Moderate potential ecological risk | 0.29 | 0.26 | 200 | 960 | 3080 | 512 | 448 | 7760 | |||||||
较强潜在生态风险 Relatively strong potential ecological risk | 0.59 | 0.52 | 400 | 1920 | 6160 | 1024 | 896 | 15520 | |||||||
强潜在生态风险 Strong potential ecological risk | 1.17 | 1.04 | 800 | 3840 | 12320 | 2048 | 1792 | 31040 | |||||||
极强潜在生态风险 Extremely strong potential ecological risk | >1.17 | >1.04 | >800 | >3840 | >12320 | >2048 | >1792 | >31040 |
项目Item | 土壤重金属 Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
筛选值 Screening values * | 0.09 | 0.06 | 35 | 167.9 | 21.1 | 88.4 | 25.1 | 90.1 |
Table 2 Screening values of risk assessment analysis mg∙kg-1
项目Item | 土壤重金属 Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
筛选值 Screening values * | 0.09 | 0.06 | 35 | 167.9 | 21.1 | 88.4 | 25.1 | 90.1 |
统计项目 Statistical item | 土壤重金属含量 Content of soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
土壤含量平均值 Soil mean content | 0.102 | 0.096 | 14.41 | 41.65 | 38.76 | 15.31 | 12.05 | 53.72 |
标准差 Standard deviation | 0.128 | 0.091 | 31.33 | 30.83 | 26.70 | 16.79 | 10.01 | 30.30 |
最大值 Maximum | 1.03 | 0.921 | 579.97 | 520.00 | 130.67 | 192.00 | 78.10 | 227.37 |
最小值 Minimum | 0.001 | 0.01 | 0.71 | 4.79 | 0.01 | 0.02 | 1.73 | 0.01 |
变异系数 Variation coefficient | 1.25 | 0.95 | 2.17 | 0.74 | 0.69 | 1.10 | 0.83 | 0.56 |
中位数 Median | 0.067 | 0.072 | 7.59 | 37.97 | 33.17 | 11.18 | 9.02 | 46.28 |
珠江三角洲背景值 Background values of Pearl River Delta* | 0.11 | 0.13 | 25 | 60 | 77 | 32 | 28 | 97 |
Table 3 Soil heavy metal content analysis in the study area mg∙kg-1
统计项目 Statistical item | 土壤重金属含量 Content of soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
土壤含量平均值 Soil mean content | 0.102 | 0.096 | 14.41 | 41.65 | 38.76 | 15.31 | 12.05 | 53.72 |
标准差 Standard deviation | 0.128 | 0.091 | 31.33 | 30.83 | 26.70 | 16.79 | 10.01 | 30.30 |
最大值 Maximum | 1.03 | 0.921 | 579.97 | 520.00 | 130.67 | 192.00 | 78.10 | 227.37 |
最小值 Minimum | 0.001 | 0.01 | 0.71 | 4.79 | 0.01 | 0.02 | 1.73 | 0.01 |
变异系数 Variation coefficient | 1.25 | 0.95 | 2.17 | 0.74 | 0.69 | 1.10 | 0.83 | 0.56 |
中位数 Median | 0.067 | 0.072 | 7.59 | 37.97 | 33.17 | 11.18 | 9.02 | 46.28 |
珠江三角洲背景值 Background values of Pearl River Delta* | 0.11 | 0.13 | 25 | 60 | 77 | 32 | 28 | 97 |
风险值 The risk value | 土壤重金属Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
低潜在生态风险 Low potential ecological risk | 91.17 | 83.17 | 99.32 | 99.77 | 100 | 100 | 100 | 100 |
中潜在生态风险 Moderate potential ecological risk | 7.27 | 13.18 | 0.45 | 0.23 | — | — | — | — |
较强潜在生态风险 Relatively strong potential ecological risk | 1.36 | 2.51 | — | — | — | — | — | — |
强潜在生态风险 Strong potential ecological risk | 0.2 | 1.14 | 0.23 | — | — | — | — | — |
极强潜在生态风险 Extremely strong potential ecological risk | — | — | — | — | — | — | — | — |
Table 4 Proportion of soil area in forest land with ecological risk of heavy metals at different levels %
风险值 The risk value | 土壤重金属Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
低潜在生态风险 Low potential ecological risk | 91.17 | 83.17 | 99.32 | 99.77 | 100 | 100 | 100 | 100 |
中潜在生态风险 Moderate potential ecological risk | 7.27 | 13.18 | 0.45 | 0.23 | — | — | — | — |
较强潜在生态风险 Relatively strong potential ecological risk | 1.36 | 2.51 | — | — | — | — | — | — |
强潜在生态风险 Strong potential ecological risk | 0.2 | 1.14 | 0.23 | — | — | — | — | — |
极强潜在生态风险 Extremely strong potential ecological risk | — | — | — | — | — | — | — | — |
筛选值 Screening value | 土壤重金属 Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
可接受风险(低于筛选值) Acceptable risk (below screening value) | 73.37 | 20.51 | 95.27 | 99.84 | 21.56 | 99.85 | 96.25 | 96.25 |
不可接受风险(高于筛选值)Unacceptable risk (higher than screening value) | 26.73 | 79.49 | 4.73 | 0.16 | 78.46 | 0.15 | 3.75 | 3.75 |
Table 5 Soil area proportion of ecological risk forest land based on screening value %
筛选值 Screening value | 土壤重金属 Soil heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
镉 Cd | 汞 Hg | 砷 As | 铅 Pb | 铬 Cr | 铜 Cu | 镍 Ni | 锌 Zn | |
可接受风险(低于筛选值) Acceptable risk (below screening value) | 73.37 | 20.51 | 95.27 | 99.84 | 21.56 | 99.85 | 96.25 | 96.25 |
不可接受风险(高于筛选值)Unacceptable risk (higher than screening value) | 26.73 | 79.49 | 4.73 | 0.16 | 78.46 | 0.15 | 3.75 | 3.75 |
[1] | BUCH A C, BROWN G G, CORREIA M E F, et al., 2017. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms[J]. Science of the Total Environment, 589: 222-231. |
[2] |
CHEN J W, ZHANG H, LI J J, et al., 2020. The toxic factor of copper should be adjusted during the ecological risk assessment for soil bacterial community[J]. Ecological Indicators, DOI: 10.1016/j.ecolind.2020.106072.
DOI URL |
[3] | FANG T, LU W X, LI J, et al., 2017. Levels and risk assessment of metals in sediment and fish from Chaohu Lake, Anhui Province, China[J]. Environmental Science &Pollution Research, 24(18): 15390-15400. |
[4] | FREY B, STEMMER M, WIDMER F, et al., 2006. Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem[J]. Soil Biology & Biochemistry, 38(7): 1745-1756. |
[5] | HAKANSON L, 1980. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 14(8): 975-1001. |
[6] | HE W, BAI Z L, LIU W X, et al., 2016. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu)[J]. Environmental Science and Pollution Research, 23(11): 10335-10348. |
[7] | HU Y N, LIU X P, BAI J M, et al., 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization[J]. Environmental Science and Pollution Research, 20(9): 6150-6159. |
[8] | JIANG R, WANG M E, CHEN W P, et al., 2019. Ecological risk of combined pollution on soil ecosystem functions: Insight from the functional sensitivity and stability[J]. Environmental Pollution, 255(1): 113184. |
[9] |
LIU K H, LI C M, TANG S Q, et al., 2020. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2020.126415.
DOI URL |
[10] | LIU Y Q, DU Q Y, WANG Q, et al., 2017. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region[J]. Environmental Pollution, 226: 370-378. |
[11] | MULLER G, 1969. Index of geoaccumlation in sediments of the Rhine river[J]. Geojournal, 2(3): 108-118. |
[12] | RICO A, WAICHMAN A V, GEBER CORRȆA R, et al., 2011. Effects of malathion and carbendazim on Amazonian freshwater organisms: comparison of tropical and temperate species sensitivity distributions[J]. Ecotoxicology, 20(4): 625-634. |
[13] |
WAN Y N, JIANG B, WEI D P, et al., 2020. Ecological criteria for zinc in Chinese soil as affected by soil properties[J]. Ecotoxicology and Environmental Safety, DOI: 10.1016/j.ecoenv.2020.110418.
DOI URL |
[14] | ZHANG C S, WANG L J, 2001. Multi-element Geochemistry of Sediments from the Pearl River System, China[J]. Applied Geochemistry, 16(9-10): 1251-1259. |
[15] | ZHANG H H, CHEN J J, ZHU L, et al., 2014. Anthropogenic mercury enrichment factors and contributions in soils of Guangdong Province, South China[J]. Journal of Genchemical Exploration, 144(Part B): 312-319. |
[16] | ZHANG Y M, WANG J, MENG K, et al., 2019. Changes of heavy metal content in sediments at Haizhou Bay and risk assessment[J]. Applied ecology and environmental research, 17(5): 11327-11339. |
[17] | 楚春晖, 佘宇晨, 佘济云, 等, 2014. 亚热带不同森林类型的土壤重金属空间分布特征及其潜在生态风险[J]. 水土保持学报, 28(5): 258-263. |
CHU C H, SHE Y C, SHE J Y, et al., 2014. Spatial distribution and ecological risk assessment of heavy metals in soil from different forrests in subtropics[J]. Journal of Soil and Water Conservation, 28(5): 258-263. | |
[18] | 陈文新, 1990. 土壤与环境微生物学[M]. 北京: 中国农业大学出版社: 70-233. |
CHEN W X, 1990. Soil and environmental microbiology[M]. Beijing: China Agricultural University Press: 70-233. | |
[19] | 常春英, 肖荣波, 林亲铁, 等, 2016. 珠三角地区土壤氧化物对重金属生物有效性的影响[J]. 广东工业大学学报, 33(4): 84-94. |
CHANG C Y, XIAO R B, LIN Q T, et al., 2016. Effect of soil oxides on the bioavailability of heavy metals in the Pearl River Delta region[J]. Journal of Guangdong University of Technology, 33(4): 84-94. | |
[20] | 陈俊坚, 张会化, 刘鉴明, 等, 2011. 广东省区域地质背景下土壤表层重金属元素空间分布特征及其影响因子分析[J]. 生态环境学报, 20(4): 646-651. |
CHEN J J, ZHANG H H, LIU J M, et al., 2011. Spatial distributions and controlled factors of heavy metals in surface soils in Guangdong based on the regional geology[J]. Ecology and Environmental Sciences, 20(4): 646-651. | |
[21] | 方晰, 唐志娟, 田大伦, 等, 2012. 长沙城市森林土壤7种重金属含量特征及其潜在生态风险[J]. 生态学报, 32(23): 7595-7606. |
FANG X, TANG Z J, TIAN D L, et al., 2012. Distribution and ecological risk assessment of 7 heavy metals in urban forest soils in Changsha City[J]. Acta Ecologica Sinica, 32(23): 7595-7606. | |
[22] | 广东省质量技术监督局, 2014. 土壤重金属风险评价筛选值珠江三角洲: DB 44/T 1414-2014[S]. |
Guangdong Burean of Quality and Technical Supervision, 2014. Screening values of soil heavy metals risk assessment in Pearl River Delta: DB 44/T 1414-2014[S]. | |
[23] | 国家环境保护局, 1997. 土壤质量铅、镉的测定石墨炉原子吸收分光光度法: GB/T 17141-1997[S]. |
National Environmental Protection Agency, 1997. Soil quality- determination of lead and cadmium-graphite furnace atomic absorption spectrophotometry: GB/T 17141-1997[S]. | |
[24] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2008. 土壤质量总汞、总砷、总铅的测定原子荧光法: GB/T 22105.1-2008、GB/T 22105.2-2008[S]. 北京: 中国标准出版社. |
General Administration of Quality Supervision Inspection and Quarantine of The People's Republic of China, Standardization Administration of The People's Republic of China, 2008. Soil mass - Determination of total mercury, total arsenic and total lead-atomic fluorescence method GB/T 22105.1- 2008, GB/T 22105.2-2008[S]. Beijing: Standards Press of China. | |
[25] | 韩志轩, 王学求, 迟清华, 等, 2018. 珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 38(9): 3455-3463. |
HAN Z X, WANG X Q, CHI Q H, et al., 2018. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, south China[J]. China Environmental Science, 38(9): 3455-3463. | |
[26] | 何博, 赵慧, 王铁宇, 等, 2019. 典型城市化区域土壤重金属污染的空间特征与风险评价[J]. 环境科学, 40(6): 2869-2876. |
HE B, ZHAO H, WANG T Y, et al., 2019. Spatial distribution and risk assessment of heavy metals in soils from a typical urbanized area[J]. Environmental Science, 40(6): 2869-2876. | |
[27] | 李敏, 滕泽栋, 朱静, 等, 2018. 解磷微生物修复土壤重金属污染研究进展[J]. 生态学报, 38(10): 3393-3402. |
LI M, TENG Z D, ZHU J, et al., 2018. Research advances in heavy metal contaminated soil remediation by phosphate solubilizing microorganisms[J]. Acta Ecologica Sinica, 38(10): 3393-3402. | |
[28] | 李铖, 李芳柏, 吴志峰, 等, 2015. 景观格局对农业表层土壤重金属污染的影响[J]. 应用生态学报, 26(4): 1137-1144. |
LI C, LI F B, WU Z F, et al., 2015. Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China[J]. Chinese Journal of Applied Ecology, 26(4): 1137-1144. | |
[29] | 李飞, 黄瑾辉, 李雪, 等, 2015. 基于随机模糊理论的土壤重金属潜在生态风险评价及溯源分析[J]. 环境科学学报, 35(4): 1233-1240. |
LI F, HUANG J H, LI X, et al., 2015. Potential ecological risk assessment based on stochastic-fuzzy simulation for soils and pollution source identification[J]. Acta Scientiae Circumstantiae, 35(4): 1233-1240. | |
[30] | 孟紫强, 2006. 生态毒理学原理与方法[M]. 北京: 科学出版社: 324-325. |
MENG Z Q, 2006. Principles and methods of ecotoxicology[M]. Beijing: Science Press: 324-325. | |
[31] | 潘勇军, 陈步峰, 王兵, 等, 2013. 广州市森林生态系统服务功能评估[J]. 中南林业科技大学学报, 33(5): 73-78. |
PAN Y J, CHEN B F, WANG B, et al., 2013. Assessment of service functions of forest ecosystem for Guangzhou[J]. Journal of Central South University of Forestry & Technology, 33(5): 73-78. | |
[32] | 生态环境保护部, 2018. 生态安全土壤环境基准制定技术指南(征求意见稿)[EB/OL][2018-07-25]. https://www.sohu.com/a/245245191_760587. |
Ministry of Ecology and Environment of the People's Republic of China, 2018. Technical guideline for deriving soil environmmengtal criteria for ecological safety (draft for comments)[EB/OL][2018-07-25]. https://www.sohu.com/a/245245191_760587. | |
[33] | 生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618-2018[S]. 北京: 中国标准出版社. |
Ministry of Ecology and Environment of the People's Republic of China, State Administration for Market Regulation, 2018. Soil environmental quality Soil pollution risk control standard for construction Land (Trial): GB 36600-2018[S]. Beijing: Standards Press of China. | |
[34] | 生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量建设用地土壤污染风险管控标准(试行): GB 36600-2018[S]. 北京: 中国标准出版社. |
Ministry of Ecology and Environment of the People's Republic of China, State Administration for Market Regulation, 2018. Soil environmental quality Soil pollution risk control standard for Construction Land (Trial): GB 36600-2018[S]. Beijing: Standards Press of China. | |
[35] | 史明易, 王祖伟, 王嘉宝, 2019. Hakanson指数法在评价土壤重金属生态风险上的应用进展[J]. 土壤通报, 50(4): 1002-1008. |
SHI M Y, WANG Z W, WANG J B, 2019. Assessment for Ecological Risk of Soil Heavy Metals with Hakanson Index Method: A Review[J]. Chinese Journal of Soil Science, 50(4): 1002-1008. | |
[36] | 陶玲, 任珺, 祝广华, 等, 2007. 重金属对植物种子萌发的影响研究进展[J]. 农业环境科学学报, 26(S1): 52-57. |
TAO L, REN J, ZHU G H, et al., 2007. Advance on the effects of heavy metals on seed germination[J]. Journal of Agro-Environment Science, 26(S1): 52-57. | |
[37] | 田大勇, 常琛朝, 王成志, 等, 2015. 环境中重金属和有机污染物的物种敏感性分布研究进展[J]. 生态毒理学报, 2015, 10(3): 38-49. |
TIAN D Y, CHANG C C, WANG C Z, et al., 2015. Review of species sensitivity distributions for heavy metals and organic contaminants[J]. Asian Journal of Ecotoxicology, 2015, 10(3): 38-49. | |
[38] | 王小庆, 李菊梅, 韦东普, 等, 2014. 土壤中铜生态阈值的影响因素及其预测模型[J]. 中国环境科学, 34(2): 445-451. |
WANG X Q, LI J M, WEI D P, et al., 2014. Major soil factors affecting ecological threshold for copper and the predictable model[J]. China Environmental Science, 34(2): 445-451. | |
[39] | 王玉军, 刘存, 周东美, 等, 2016. 一种农田土壤重金属影响评价的新方法: 土壤和农产品综合质量指数法[J]. 农业环境科学学报, 35(7): 1225-1232. |
WANG Y J, LIU C, ZHOU D M, et al., 2016. A new approach for evaluating soil heavy metal impact: A comprehensive index combined soil environmental quality and agricultural products quality[J]. Journal of Agro-Environment Science, 35(7): 1225-1232. | |
[40] | 王玉军, 吴同亮, 周东美, 等, 2017. 农田土壤重金属污染评价研究进展[J]. 农业环境科学学报, 36(12): 2365-2378. |
WANG Y J, WU T L, ZHOU D M, et al., 2017. Advances in soil heavy metal pollution evaluation based on bibliometrics analysis[J]. Journal of Agro-Environment Science, 36(12): 2365-2378. | |
[41] | 王紫泉, 2017. 土壤酶对As污染毒性响应及作用机理研究[D]. 杨凌: 西北农林科技大学. |
WANG Z Q, 2017. Toxicity response of soil enzyme to arsenic pollution and the inhibition mechanism[D]. Yangling: Northwest A & F University. | |
[42] | 奚旦立, 孙裕生, 刘秀英, 2004. 环境监测[M]. 第3版. 北京: 高等教育出版社. |
XI D L, SUN Y S, LIU X Y, 2004. Environmental monitoring[M]. 3rd edition. Beijing: Higher Education Press. | |
[43] | 夏建东, 龙锦云, 高亚萍, 等, 2020. 巢湖沉积物重金属污染生态风险评价及来源解析[J]. 地球与环境, 48(2): 220-227. |
XIA J D, LONG J Y, GAO Y P, et al., 2020. Ecological risk assessment and source analysis of heavy metal pollutions in sediments of the Chaohu Lake[J]. Earth and Environment, 48(2): 220-227. | |
[44] |
夏星, 杨建军, 2019. 基于同步辐射技术研究土壤铁氧化物固定重金属分子机制的进展[J]. 应用生态学报, 30(1): 348-358.
DOI |
XIA X, YANG J J, 2019. Molecular sequestration mechanisms of heavy metals by iron oxides in soils using synchrotron-based techniques: A review[J]. Chinese Journal of Applied Ecology, 30(1): 348-358. | |
[45] | 徐湘博, 马中, 王瑛莹, 等, 2017. 湖南长株潭中度污染区土壤镉概率生态风险评价[J]. 环境保护科学, 43(4): 115-121. |
XU X B, MA Z, WANG Y Y, et al., 2017. Probabilistic ecological risk assessment of cadmium in the soils of Changsha-ZhuzhouXiangtan Area of Hunan Province[J]. Environmental Protection Science, 43(4): 115-121. | |
[46] | 夏增禄, 1994. 中国主要类型土壤若干重金属临界含量和环境容量区域分异的影响[J]. 土壤学报 (2): 161-169. |
XIA Z L, 1994. The influence of the critical content of heavy metals and the regional differentiation of environmental capacity in the main types of soils in China[J]. Acta Pedologica Sinica (2): 161-169. | |
[47] | 徐争启, 倪师军, 庹先国, 等, 2008. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 148(2): 112-115. |
XU Z Q, NI S J, TUO X G, et al., 2008. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 148(2): 112-115. | |
[48] | 游秀花, 聂丽华, 杨桂娣, 2005. 森林生态系统植物重金属 (Cu、Zn、Cd) 污染研究进展[J]. 福建林业科技, 32(3):154-159. |
YOU X H, NIE L H, YANG G D, 2005. Research progress in the plant heavy metal (Cu, Zn, Cd) pollution of forestry ecological system[J]. Journal of Fujian Forestry Science and Technology, 32(3): 154-159. | |
[49] | 张金池, 严逸伦, 曾锋, 2001. 重金属对森林生态系统效应的研究进展[J]. 南京林业大学学报 (自然科学版), 25(5): 52-56. |
ZHANG J C, YAN Y L, ZENG F, 2001. Advance in the research on domino effect of heavy metal ions in forest ecosystem[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 25(5): 52-56. | |
[50] | 章明奎, 王丽平, 2007. 重金属污染对土壤有机质积累的影响[J]. 应用生态学报, 7(18): 1479-1483. |
ZHANG M K, WANG L P, 2007. Impact of heavy metals pollution on soil or ganic matter accumulation[J]. Chinese Journal of Applied Ecology, 7(18): 1479-1483. | |
[51] | 郑丽萍, 王国庆, 龙涛, 等, 2018. 不同国家基于生态风险的土壤筛选值研究及启示[J]. 生态毒理学报, 13(6): 39-49. |
ZHENG L P, WANG G Q, LONG T, et al., 2018. A study of risk-based ecological soil screening levels among different countries and its implication for China[J]. Asian Journal of Ecotoxicology, 13(6): 39-49. | |
[52] | 朱立安, 胡羡聪, 柯欢, 等, 2020a. 佛山市城市森林生态系统服务价值估算研究[J]. 西南师范大学学报 (自然科学版), 45(3): 137-142. |
ZHU L A, HU X C, KE H, et al., 2020. On evaluation of urban forest ecosystem services in Foshan[J]. Journal of Southwest China Normal University (Natural Science Edition), 45(3): 137-142. | |
[53] | 朱立安, 曾清苹, 柳勇, 等, 2020b. 佛山城市典型森林群落土壤重金属分布、流通及枯落物富集特征研究[J]. 生态学报, 40(13): 4659-4669. |
ZHU L A, ZENG Q P, LIU Y, et al., 2020. Heavy metals distribution and circulation in soils and their enrichment characteristics by litter in urban typical forest communities in Foshan, China[J]. Acta Ecologica Sinica, 40(13): 4659-4669. | |
[54] | 朱永官, 陈保冬, 林爱军, 等, 2005. 珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J]. 环境科学学报, 5(12): 3-7. |
ZHU Y G, CHEN B D, LIN A J, et al., 2005. Heavy metal contamination in Pearl River Delta-Status and research priorities[J]. Acta Scientiae Circumstantiae, 25(12): 3-7. | |
[55] |
宗庆霞, 窦磊, 侯青叶, 等, 2017. 基于土地利用类型的土壤重金属区域生态风险评价: 以珠江三角洲经济区为例[J]. 地球科学进展, 32(8): 875-884.
DOI |
ZONG Q X, DOU L, HOU Q Y, et al., 2017. Regional ecological risk assessment of soil heavy metals in Pearl River Delta economic zone based on different land uses[J]. Advances in Earth Science, 32(8): 875-884. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | YANG Chunliang, LIU Minxia, WANG Qianyue, MIAO Lele, XIAO Yindi, WANG Min. Spatial Pattern and Correlation of Populations of Anemone rivularis and Kobresia myosuroides under Single-household Management and Multi-household Management Grazing Patterns [J]. Ecology and Environment, 2023, 32(4): 651-659. |
[3] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[4] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
[5] | XIANG Xing, MAN Baiying, ZHANG Junzhong, LUO Yang, MAO Xiaotao, ZHANG Chao, SUN Binghua, WANG Xi. Vertical Distribution of Bacterial Community and Functional Groups Mediating Nitrogen Cycling in Mount Huangshan, Anhui, China [J]. Ecology and Environment, 2023, 32(1): 56-69. |
[6] | XIAO Yihua, FU Zhigao, XU Han, SHI Xin, TANG Haiming, CHEN Bufeng. Effects of Urbanization on Leaf Functional Traits of Different Functional Groups in Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1783-1793. |
[7] | JIANG Ming, ZHANG Ziyang, LI Tingting, LIN Boji, ZHANG Zhengen, LIAO Tong, YUAN Luan, PAN Suhong, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope [J]. Ecology and Environment, 2022, 31(9): 1840-1848. |
[8] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1590-1598. |
[9] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[10] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[11] | LIANG Junfen, CAI Xun, FENG Shanshan, TAO Liang. Evaluation of the Development Degree and Restriction Factors of Agricultural and Rural Modernization in the Pearl River Delta Region [J]. Ecology and Environment, 2022, 31(8): 1680-1689. |
[12] | LUO Songying, LI Qiuxia, QIU Jinkun, DENG Suyan, LI Yifeng, CHEN Bishan. Speciation Characteristics, Migration and Transformation of Heavy Metals in Mangrove Soil-plant System in Nansan Island [J]. Ecology and Environment, 2022, 31(7): 1409-1416. |
[13] | PENG Hongli, TAN Haixia, WANG Ying, WEI Jianmei, FENG Yang. The Discrepancy of Heavy Metals Morphological Distribution in Soil and Its Associated Ecological Risk Evaluation under Different Planting Patterns [J]. Ecology and Environment, 2022, 31(6): 1235-1243. |
[14] | HUANG Min, ZHAO Xiaofeng, LIANG Rongxiang, WANG Pengzhong, DAI Anran, HE Xiaoman. Comparison of Three Chelating Agents to Remove the Cd and Cu in Contaminated Soil [J]. Ecology and Environment, 2022, 31(6): 1244-1252. |
[15] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environment, 2022, 31(5): 1015-1023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn