Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (7): 1029-1041.DOI: 10.16258/j.cnki.1674-5906.2025.07.004
• Papers on “Emerging Pollutants” • Previous Articles Next Articles
XIAO Yongyin1,2(), WANG Fan1,2, LI Canhua1,2, WANG Chao1,2, WANG Wanjun1,2,*(
)
Received:
2025-02-05
Online:
2025-07-18
Published:
2025-07-11
肖咏茵1,2(), 王帆1,2, 李灿桦1,2, 汪超1,2, 王万军1,2,*(
)
通讯作者:
*E-mail: 作者简介:
肖咏茵(1998年生),女,硕士研究生,研究方向为水体耐药基因。E-mail: a448930285@163.com
基金资助:
CLC Number:
XIAO Yongyin, WANG Fan, LI Canhua, WANG Chao, WANG Wanjun. Enrichment Characteristics and Health Risks of Antibiotic Resistance Genes in Biofilms on Biodegradable Microplastics in Freshwater[J]. Ecology and Environmental Sciences, 2025, 34(7): 1029-1041.
肖咏茵, 王帆, 李灿桦, 汪超, 王万军. 淡水中可生物降解微塑料生物膜上耐药基因的富集特征及其健康风险[J]. 生态环境学报, 2025, 34(7): 1029-1041.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.07.004
[1] | CAO Z H, KIM C H, LI Z H, et al., 2024. Comparing environmental fate and ecotoxicity of conventional and biodegradable plastics: A critical review[J]. Science of the Total Environment, 951: 175735. |
[2] | CHEN X C, WANG L J, ZHOU J L, et al., 2017. Exiguobacterium sp. A1b/GX59 isolated from a patient with community-acquired pneumonia and bacteremia: Genomic characterization and literature review[J]. BMC Infectious Diseases, 17: 508. |
[3] | CHEN Y F, YAN Z H, ZHOU Y X, et al., 2024. Dynamic evolution of antibiotic resistance genes in plastisphere in the vertical profile of urban rivers[J]. Water Research, 249: 120946. |
[4] | DE GAETANO G V, LENTINI G, FAMA A, et al., 2023. Antimicrobial resistance: Two-component regulatory systems and multidrug efflux pumps[J]. Antibiotics, 12(6): 965. |
[5] |
DEFOIRDT T, BRACKMAN G, COENYE T, 2013. Quorum sensing inhibitors: How strong is the evidence?[J]. Trends in Microbiology, 21(12): 619-624.
DOI PMID |
[6] | DILKES-HOFFMAN L S, LANT P A, LAYCOCK B, et al., 2019. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study[J]. Marine Pollution Bulletin, 142: 15-24. |
[7] | ERNI-CASSOLA G, DOLF R, BURKHARDT-HOLM P, 2024. Microplastics in the water column of the Rhine River near Basel: 22 Months of sampling[J]. Environmental Science & Technology, 58(12): 5491-5499. |
[8] | FEICHTINGER S, LAZAR A A, LUEBBE M A, et al., 2023. Case report: Isolation of Hydrogenophaga from septic blood culture following near-death drowning in lakewater[J]. Access Microbiology, 5(9): 000533. |
[9] | FELZ S, KLEIKAMP H, ZLOPASA J, et al., 2020. Impact of metal ions on structural EPS hydrogels from aerobic granular sludge[J]. Biofilm, 2: 100011. |
[10] | FENG M B, YE C S, ZHANG S Q, et al., 2022. Bisphenols promote the conjugative transfer of antibiotic resistance genes without damaging cell membrane[J]. Environmental Chemistry Letters, 20(3): 1553-1560. |
[11] | GAO F Z, HE L Y, LIU Y S, et al., 2024b. Integrating global microbiome data into antibiotic resistance assessment in large rivers[J]. Water Research, 250: 121030. |
[12] | GAO J, WANG L W, WU W M, et al., 2024a. Microplastic generation from field-collected plastic gauze: Unveiling the aging processes[J]. Journal of Hazardous Materials, 467: 133615. |
[13] | GUO X P, SUN X L, CHEN Y R, et al., 2020. Antibiotic resistance genes in biofilms on plastic wastes in an estuarine environment[J]. Science of the Total Environment, 745: 140916. |
[14] | HAN Y, ZHOU Z C, ZHU L, et al., 2019. The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes[J]. Environmental Science and Pollution Research, 26(27): 28352-28360. |
[15] | IM S W, HWANG I J, KIM W J, et al., 2024. Enhancing methane production potential of biodegradable plastics by hydrothermal pretreatment[J]. Environmental Technology & Innovation, 34: 103599. |
[16] | JAHAN I, CHOWDHURY G, BAQUERO A O, et al., 2024. Microplastics pollution in the Surma River, Bangladesh: A rising hazard to upstream water quality and aquatic life[J]. Journal of Environmental Management, 360: 121117. |
[17] | JIA X B, ZHAO K, ZHAO J, et al., 2023. Degradation of poly(butylene adipate-co-terephthalate) films by Thermobifida fusca FXJ-1 isolated from compost[J]. Journal of Hazardous Materials, 441: 129958. |
[18] | JIANG C X, ZHAO Z L, ZHU D, et al., 2024. Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River[J]. Water Research, 249: 120911. |
[19] | KEYNAN Y, WEBER G, SPRECHER H, 2007. Molecular identification of Exiguobacterium acetylicum as the aetiological agent of bacteraemia[J]. Journal of Medical Microbiology, 56(4): 563-564. |
[20] | KHOURI N G, BAHU J O, BLANCOLLAMERO C, et al., 2024. Polylactic acid (PLA): Properties, synthesis, and biomedical applications: A review of the literature[J]. Journal of Molecular Structure, 1309: 138243. |
[21] |
KIM M, PARK J, KANG M, et al., 2021. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective[J]. Journal of Microbiology, 59(6): 535-545.
DOI PMID |
[22] | KONG F X, XU X, XUE Y G, et al., 2021. Investigation of the adsorption of sulfamethoxazole by degradable microplastics artificially aged by chemical oxidation[J]. Archives of Environmental Contamination and Toxicology, 81(1): 155-165. |
[23] | LEE J, CHA I T, LEE K E, et al., 2024. Complete genome sequence and potential pathogenic assessment of Flavobacterium plurextorum RSG-18 isolated from the gut of Schlegel's black rockfish, Sebastes schlegelii[J]. Environmental Microbiology Reports, 16(1): e13226. |
[24] | LIANG H X, DE HAAN W P, CERDA-DOMENECH M, et al., 2023. Detection of faecal bacteria and antibiotic resistance genes in biofilms attached to plastics from human-impacted coastal areas[J]. Environmental Pollution, 319: 120983. |
[25] | LIANG H B, HUANG J, TAO Y, et al., 2024. Investigating the antibiotic resistance genes and their potential risks in the megacity water environment: A case study of Shenzhen Bay Basin, China[J]. Journal of Hazardous Materials, 465: 133536. |
[26] |
LOBELLE D, CUNLIFFE M, 2011. Early microbial biofilm formation on marine plastic debris[J]. Marine Pollution Bulletin, 62(1): 197-200.
DOI PMID |
[27] | LUO G Y, LIANG B, CUI H L, et al., 2023b. Determining the contribution of micro/nanoplastics to antimicrobial resistance: Challenges and perspectives[J]. Environmental Science & Technology, 57(33): 12137-12152. |
[28] | LUO T Y, DAI X H, WEI W, et al., 2023a. Microplastics enhance the prevalence of antibiotic resistance genes in anaerobic sludge digestion by enriching antibiotic-resistant bacteria in surface biofilm and facilitating the vertical and horizontal gene transfer[J]. Environmental Science & Technology, 57(39): 14611-14621. |
[29] |
MACLEOD M, ARP H P H, TEKMAN M B, et al., 2021. The global threat from plastic pollution[J]. Science, 373(6550): 61-65.
DOI PMID |
[30] |
OMURA T, ISOBE N, MIURA T, et al., 2024. Microbial decomposition of biodegradable plastics on the deep-sea floor[J]. Nature Communications, 15(1): 568.
DOI PMID |
[31] | PANDIT S, FAZILATI M, GASKA K, et al., 2020. The exo-polysaccharide component of extracellular matrix is essential for the viscoelastic properties of Bacillus subtilis biofilms[J]. International Journal of Molecular Sciences, 21(18): 6755. |
[32] | QI A, REN Y W, WANG X G, 2017. New advances in the biodegradation of poly(lactic) acid[J]. International Biodeterioration & Biodegradation, 117: 215-223. |
[33] | QIANG L Y, CHENG J P, MIRZOYAN S, et al., 2021. Characterization of microplastic-associated biofilm development along a freshwater-estuarine gradient[J]. Environmental Science & Technology, 55(24): 16402-16412. |
[34] | REDDY V M, MAWATARI Y, YUKA Y, et al., 2016. Production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii[J]. Bioresource Technology, 215: 155-162. |
[35] | REN Y N, HU J, YANG M, et al., 2019. Biodegradation behavior of poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), and their blends under digested sludge conditions[J]. Journal of Polymers and the Environment, 27(12): 2784-2792. |
[36] | ROSENBOOM J G, LANGER R, TRAVERSO G, 2022. Bioplastics for a circular economy[J]. Nature Reviews Materials, 7(2): 117-137. |
[37] |
SHARMA V K, JOHNSON N, CIZMAS L, et al., 2016. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 150: 702-714.
DOI PMID |
[38] | SHRUTI V C, KUTRALAM-MUNIASAMY G, PEREZ-GUEVARA F, 2024. Microplastisphere antibiotic resistance genes: A bird’s-eye view on the plastic-specific diversity and enrichment[J]. Science of the Total Environment, 912: 169316. |
[39] | SONG R P, SUN Y Z, LI X F, et al., 2022. Biodegradable microplastics induced the dissemination of antibiotic resistance genes and virulence factors in soil: A metagenomic perspective[J]. Science of the Total Environment, 828: 154596. |
[40] | SUN R K, LI T, QIU S J, et al., 2023. Occurrence of antibiotic resistance genes carried by plastic waste from mangrove wetlands of the South China Sea[J]. Science of the Total Environment, 864: 161111. |
[41] | WANG B H, MA B, ZHANG Y N, et al., 2024c. Global diversity, coexistence and consequences of resistome in inland waters[J]. Water Research, 253: 121253. |
[42] | WANG F, HU Z X, WANG W J, et al., 2024a. Selective enrichment of high-risk antibiotic resistance genes and priority pathogens in freshwater plastisphere: Unique role of biodegradable microplastics[J]. Journal of Hazardous Materials, 480: 135901. |
[43] | WANG H X, XU K W, WANG J, et al., 2023. Microplastic biofilm: An important microniche that may accelerate the spread of antibiotic resistance genes via natural transformation[J]. Journal of Hazardous Materials, 459: 132085. |
[44] | WANG H, ZHU T T, WANG J, et al., 2025. Microplastic pollution in Pearl River networks: Characteristic, potential sources, and migration pathways[J]. Water Research, 276: 123261. |
[45] | WANG J, PENG C, DAI Y X, et al., 2022. Slower antibiotics degradation and higher resistance genes enrichment in plastisphere[J]. Water Research, 222: 118920. |
[46] | WANG X N, LI J H, PAN X L, 2024b. How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes: A review[J]. Science of the Total Environment, 944: 173881. |
[47] | WANG Y X, LIU X H, HUANG C D, et al., 2024d. Antibiotic resistance genes and virulence factors in the plastisphere in wastewater treatment plant effluent: Health risk quantification and driving mechanism interpretation[J]. Water Research, 271: 122896. |
[48] | WILSON D N, 2016. The ABC of ribosome-related antibiotic resistance[J]. mBio, 7(3): e00598-16. |
[49] | WISE A L, LAFRENTZ B R, KELLY A M, et al., 2024. Coinfection of channel catfish (Ictalurus punctatus) with virulent Aeromonas hydrophila and Flavobacterium covae exacerbates mortality[J]. Journal of Fish Diseases, https://doi.org/10.1111/jfd.13912. |
[50] | WU X J, PAN J, LI M, et al., 2019. Selective enrichment of bacterial pathogens by microplastic biofilm[J]. Water Research, 165: 114979. |
[51] | WU X N, FENG J C, CHEN X, et al., 2025. Effects of different types of microplastics on cold seep microbial diversity and function[J]. Environmental Science & Technology, 59(2): 1322-1333. |
[52] | XIA W L, RAO Q Y, LIU J R, et al., 2024. Occurrence and characteristics of microplastics across the watershed of the world’s third-largest river[J]. Journal of Hazardous Materials, 480: 135998. |
[53] | XIANG Y P, JIA M Y, XU R, et al., 2024. Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation[J]. Bioresource Technology, 391(Part A): 129983. |
[54] | YAN P H, ZHUANG S Z, LI M J, et al., 2024. Combined environmental pressure induces unique assembly patterns of micro-plastisphere biofilm microbial communities in constructed wetlands[J]. Water Research, 260: 121958. |
[55] | YANG K, CHEN Q L, CHEN M L, et al., 2020. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization[J]. Environmental Science & Technology, 54(18): 11322-11332. |
[56] | ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A, 2013. Life in the “plastisphere”: Microbial communities on plastic marine debris[J]. Environmental Science & Technology, 47(13): 7137-7146. |
[57] |
ZHANG A N, GASTON J M, DAI C L, et al., 2021. An omics-based framework for assessing the health risk of antimicrobial resistance genes[J]. Nature Communications, 12(1): 4765.
DOI PMID |
[58] | ZHANG S Q, YUAN H Z, MA X, et al., 2025. Carbon cycle of polyhydroxyalkanoates (CCP): Biosynthesis and biodegradation[J]. Environmental Research, 269: 120904. |
[59] | ZHANG Y H, MA Q P, SU B M, et al., 2018. A study on the role that quorum sensing play in antibiotic-resistant plasmid conjugative transfer in Escherichia coli[J]. Ecotoxicology, 27(2): 209-216. |
[60] |
ZHANG Z Y, ZHANG Q, WANG T Z, et al., 2022. Assessment of global health risk of antibiotic resistance genes[J]. Nature Communications, 13(1): 1553.
DOI PMID |
[61] | ZHAO R X, YU K, ZHANG J Y, et al., 2020a. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches[J]. Water Research, 186: 116318. |
[62] | ZHAO X H, YU Z X, DING T, 2020b. Quorum-sensing regulation of antimicrobial resistance in bacteria[J]. Microorganisms, 8(3): 425. |
[63] | ZHOU Q, ZHANG J, ZHANG M, et al., 2022. Persistent versus transient, and conventional plastic versus biodegradable plastic? — Two key questions about microplastic-water exchange of antibiotic resistance genes[J]. Water Research, 222: 118899. |
[64] | 顾昊宇, 薛银刚, 胡敏, 等, 2024. 污水不同类型微塑料生物膜特征及其对磷元素转化的影响[J]. 环境科学学报, 44(6): 113-122. |
GU H Y, XUE Y G, HU M, et al., 2024. Characteristics of different types of microplastics biofilms in sewage and their effects on phosphorus conversion[J]. Acta Scientiae Circumstantiae, 44(6): 113-122. | |
[65] |
何文宣, 李垒, 孙思宇, 等, 2023. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 32(11): 1901-1912.
DOI |
HE W X, LI L, SUN S Y, et al., 2023. Distribution characteristics of microplastics in water, sediment and fish in Beiyun River[J]. Ecology and Environmental Sciences, 32(11): 1901-1912. | |
[66] |
李海燕, 杨小琴, 简美鹏, 等, 2023. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 32(2): 407-420.
DOI |
LI H Y, YANG X Q, JIAN M P, et al., 2023. A critical review on the sources, occurrences and ecological risk of microplastics in urban waters[J]. Ecology and Environmental Sciences, 32(2): 407-420. | |
[67] |
秦坤, 王志康, 王章鸿, 等, 2022. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 31(2): 344-353.
DOI |
QIN K, WANG Z K, WANG Z H, et al., 2022. Cd(II) adsorption capability of the biochar derived from co-pyrolysis of lignin and polyethylene[J]. Ecology and Environmental Sciences, 31(2): 344-353. | |
[68] |
赵海英, 刘致远, 袁梦仙, 等, 2023. 纳米银对玉米幼苗傅里叶红外光谱特性的影响[J]. 生态环境学报, 32(7): 1285-1292.
DOI |
ZHAO H Y, LIU Z Y, YUAN M X, et al., 2023. Effects of silver nanoparticles on FTIR spectroscopic characterization of maize seedlings[J]. Ecology and Environmental Sciences, 32(7): 1285-1292. |
[1] | LIN Yulan, CHEN Houpu, YU Wenhao, WANG Baoying, ZHANG Yang, ZHANG Jinbo, CAI Zucong, ZHAO Jun. Effects of Reductive Soil Disinfestation on Common Antibiotics and Their Antibiotic Resistance Genes in Soil [J]. Ecology and Environmental Sciences, 2024, 33(7): 1107-1116. |
[2] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environmental Sciences, 2023, 32(4): 794-804. |
[3] | LI Shuting, HU Guanjiu, LUO Xiaosan. Sources, Spatial-temporal Distribution, and Health Risks of Per- and Polyfluoroalkyl Substances (PFASs) in the Atmospheric Environment: A Review [J]. Ecology and Environmental Sciences, 2023, 32(12): 2103-2114. |
[4] | LI Shuangshuang, CAI Mingcan, WANG Qing, QI Liying, WEI Hehong, WANG Chun. Research Progress on the Interaction Between Microplastics and Biofilms and Their Ecological Effects on Freshwater Environment [J]. Ecology and Environmental Sciences, 2023, 32(11): 2041-2049. |
[5] | GAO Xiaoyu, WANG Lei. The Accumulation, Transfer and Elimination of Antibiotic Resistance Genes in Soil: A Review [J]. Ecology and Environmental Sciences, 2023, 32(11): 2062-2071. |
[6] | TONG Yindong, HUANG Lanlan, YANG Ning, ZHANG Yiyan, LI Zipeng, SHAO Bo. Distribution Characteristics and Potential Environmental Risk Analysis of Microcystins in Global Water Bodies [J]. Ecology and Environmental Sciences, 2023, 32(1): 129-138. |
[7] | SHI Wenjing, ZHOU Hanpeng, SUN Tao, HUANG Jintao, YANG Wenhuan, LI Weiping. Research on Priority Control Factors and Health Risk Assessment of Heavy Metal Pollution in Soil Around Mining Areas [J]. Ecology and Environmental Sciences, 2022, 31(8): 1616-1628. |
[8] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environmental Sciences, 2022, 31(8): 1629-1636. |
[9] | CHEN Bishan, ZHENG Kanghui, WANG Jing, YE Linhai, SONG Junxia. Content Characteristics and Health Risk Analysis of Mercury in Soil-crop System in Leizhou Peninsula [J]. Ecology and Environmental Sciences, 2022, 31(3): 572-582. |
[10] | WANG Haihe, SUN Yuanyuan, ZhANG Shuai, XU Xiaorong, SHANG Chengmei, LI Chunxiang. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Drinking Water Source of Guiyang [J]. Ecology and Environmental Sciences, 2022, 31(10): 2039-2047. |
[11] | CHEN Jinghui, GUO Yi, YANG Bo, QU Chengtun. Pollution Level of Heavy Metals in Soil and Health Risk Assessment in Provincial Capital Cities of China [J]. Ecology and Environmental Sciences, 2022, 31(10): 2058-2069. |
[12] | REN Lijiang, ZHANG Yan, ZHANG Xin, SHAN Zexuan, ZHANG Chengqian. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Surface Water in Guanzhong Section of the Weihe River Basin [J]. Ecology and Environmental Sciences, 2022, 31(1): 131-141. |
[13] | LIU Zhuguang, FANG Zhang, DING Xiaofan. Heavy Metal Pollution and Health Risk Assessment of Soil in Ash Yard of Coal-fired Power Plant [J]. Ecology and Environmental Sciences, 2021, 30(9): 1916-1922. |
[14] | QIANG Chengkui, CAO Dan, ZHAO Hu, ZHANG Ming, DING Yonghui, GUAN Ying, ZHANG Guanqin, SHEN Wenyan, QIN Yuehua. Contents and Ecological Health Risk Assessment of Heavy Metals in Soil-Oil Peony System [J]. Ecology and Environmental Sciences, 2021, 30(6): 1286-1292. |
[15] | RAN Xiaozhui, LIU Hongyan, TU Yu, GU Xiaofeng, YU Enjiang. Micro-morphology, Heavy Metal Distribution Characteristics and Health Risk Assessment of TSP: A Case Study in Typical Watershed with Superposition of Industry Pollution under High Geological Background in Northwest Guizhou [J]. Ecology and Environmental Sciences, 2021, 30(12): 2339-2350. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn