Ecology and Environment ›› 2024, Vol. 33 ›› Issue (7): 1048-1062.DOI: 10.16258/j.cnki.1674-5906.2024.07.006
• Research Article [Ecology] • Previous Articles Next Articles
ZHANG Jinglei1,2(), WANG Guoliang1,*(
), WU Bo1, JIA Chunlin1, ZHANG Jinhong1, ZHOU Yuan3, MA Bing4
Received:
2024-03-07
Online:
2024-07-18
Published:
2024-09-04
Contact:
WANG Guoliang
张京磊1,2(), 王国良1,*(
), 吴波1, 贾春林1, 张进红1, 周圆3, 马冰4
通讯作者:
王国良
作者简介:
张京磊(1991年生),男,助理研究员,博士,主要从事草地生态学研究。E-mail: zhangjinglei910524@163.com
基金资助:
CLC Number:
ZHANG Jinglei, WANG Guoliang, WU Bo, JIA Chunlin, ZHANG Jinhong, ZHOU Yuan, MA Bing. The Effects of Alfalfa-Triticale Rotation on Soil Bacterial and Fungal Community Diversity and Co-occurrence Network in Coastal Saline-Alkaline Soil[J]. Ecology and Environment, 2024, 33(7): 1048-1062.
张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响[J]. 生态环境学报, 2024, 33(7): 1048-1062.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.07.006
Figure 6 Random forest (RF) predictor importance (percentage of increase of mean square error, MSE) of soil properties as drivers for bacterial and fungal diversity
Figure 7 Random forest (RF) predictor importance (percentage of increase of mean square error, MSE) of soil properties as drivers for bacterial and fungal community structure
作物系统 | 施肥 | 灌溉 |
---|---|---|
MT | 玉米 (N-P2O5-K2O: 26-12-12, 525 kg∙hm−2), 小黑麦 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2) | 根据土壤实际情况统一灌溉 |
AT | 苜蓿 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2), 小黑麦 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2) | 根据土壤实际情况统一灌溉 |
Table S1 The management practices of different rotation systems
作物系统 | 施肥 | 灌溉 |
---|---|---|
MT | 玉米 (N-P2O5-K2O: 26-12-12, 525 kg∙hm−2), 小黑麦 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2) | 根据土壤实际情况统一灌溉 |
AT | 苜蓿 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2), 小黑麦 (N-P2O5-K2O: 15-42-0, 225 kg∙hm−2) | 根据土壤实际情况统一灌溉 |
处理 | pH | 电导率/(μS∙cm−1) | w(盐分)/(g∙kg−1) | w(土壤有机质)/(g∙kg−1) | w(全氮)/(g∙kg−1) | w(全磷)/(g∙kg−1) | w(有效氮)/(g∙kg−1) | w(有效磷)/(g∙kg−1) |
---|---|---|---|---|---|---|---|---|
MT_2022 | 8.69±0.03 | 200.63±15.64 | 1.34±0.21 | 10.37±0.22a | 1.07±0.02 | 1.03±0.04 | 113.06±5.17 | 33.59±4.89 |
AT_2022 | 8.67±0.07 | 151.82±12.52 | 1.46±0.26 | 9.16±0.15b | 1.02±0.01 | 0.94±0.03 | 98.99±7.55 | 30.42±2.64 |
MT_2023 | 8.70±0.04b | 163.23±8.86 | 0.86±0.11 | 8.47±0.56 | 1.81±0.06 | 0.81±0.05 | 216.78±25.52 | 21.28±2.27a |
AT_2023 | 8.82±0.04a | 182.18±10.10 | 0.79±0.14 | 8.22±0.34 | 1.83±0.06 | 0.82±0.04 | 244.57±11.4 | 13.98±1.77b |
Table S2 Soil properties under different rotation systems
处理 | pH | 电导率/(μS∙cm−1) | w(盐分)/(g∙kg−1) | w(土壤有机质)/(g∙kg−1) | w(全氮)/(g∙kg−1) | w(全磷)/(g∙kg−1) | w(有效氮)/(g∙kg−1) | w(有效磷)/(g∙kg−1) |
---|---|---|---|---|---|---|---|---|
MT_2022 | 8.69±0.03 | 200.63±15.64 | 1.34±0.21 | 10.37±0.22a | 1.07±0.02 | 1.03±0.04 | 113.06±5.17 | 33.59±4.89 |
AT_2022 | 8.67±0.07 | 151.82±12.52 | 1.46±0.26 | 9.16±0.15b | 1.02±0.01 | 0.94±0.03 | 98.99±7.55 | 30.42±2.64 |
MT_2023 | 8.70±0.04b | 163.23±8.86 | 0.86±0.11 | 8.47±0.56 | 1.81±0.06 | 0.81±0.05 | 216.78±25.52 | 21.28±2.27a |
AT_2023 | 8.82±0.04a | 182.18±10.10 | 0.79±0.14 | 8.22±0.34 | 1.83±0.06 | 0.82±0.04 | 244.57±11.4 | 13.98±1.77b |
网络特征 | 细菌群落 | 真菌群落 | ||||
---|---|---|---|---|---|---|
MT | AT | MT | AT | |||
经验网络 | 节点数 | 780 | 866 | 341 | 280 | |
连接数 (负连接数) | 2573(1107) | 3346(1631) | 1157(672) | 881(465) | ||
平均连接度 | 6.60b | 7.73a | 6.79b | 6.29a | ||
平均聚集系数 | 0.37 | 0.34 | 0.23 | 0.22 | ||
平均路径长度 | 6.72a | 5.99b | 4.22 | 4.19 | ||
模块性 | 0.64 | 0.59 | 0.50 | 0.52 | ||
随机网络 | 平均路径长度 | 3.61 | 3.52 | 4.22 | 4.19 | |
平均聚集系数 | 0.01 | 0.01 | 0.23 | 0.22 | ||
模块性 | 0.35 | 0.32 | 0.34 | 0.36 |
Table S3 Topological properties of the bacterial and fungal networks under different rotation systems
网络特征 | 细菌群落 | 真菌群落 | ||||
---|---|---|---|---|---|---|
MT | AT | MT | AT | |||
经验网络 | 节点数 | 780 | 866 | 341 | 280 | |
连接数 (负连接数) | 2573(1107) | 3346(1631) | 1157(672) | 881(465) | ||
平均连接度 | 6.60b | 7.73a | 6.79b | 6.29a | ||
平均聚集系数 | 0.37 | 0.34 | 0.23 | 0.22 | ||
平均路径长度 | 6.72a | 5.99b | 4.22 | 4.19 | ||
模块性 | 0.64 | 0.59 | 0.50 | 0.52 | ||
随机网络 | 平均路径长度 | 3.61 | 3.52 | 4.22 | 4.19 | |
平均聚集系数 | 0.01 | 0.01 | 0.23 | 0.22 | ||
模块性 | 0.35 | 0.32 | 0.34 | 0.36 |
[1] | ADAMS R I, MILETTO M, TAYLOR J W, et al., 2013. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances[J]. The International Society for Microbial Ecology Journal, 7(7): 1262-1273. |
[2] | AI C, ZHANG S Q, ZHANG X, et al., 2018. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation[J]. Geoderma, 319: 156-166. |
[3] | BARBERÁN A, BATES S T, CASAMAYOR E O, et al., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The International Society for Microbial Ecology Journal, 6(2): 343-351. |
[4] | CHEN S F, ZHOU Y Q, CHEN Y R, et al., 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 34(17): i884-i890. |
[5] |
COYTE K Z, SCHLUTER J, FOSTER K R, 2015. The ecology of the microbiome: Networks, competition, and stability[J]. Science, 350(6261): 663-666.
DOI PMID |
[6] | DE VRIES F T, GRIFFITHS R I, BAILEY M, et al., 2018. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 9(1): 3033. |
[7] | DENG Y, JIANG Y H, YANG Y F, et al., 2012. Molecular ecological network analyses[J]. BMC Bioinformatics, 13(1): 113. |
[8] |
EDGAR R C, 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-998.
DOI PMID |
[9] | ESSEL E, XIE J H, DENG C C, et al., 2019. Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation[J]. Soil and Tillage Research, 194: 104302. |
[10] |
EVANS S E, WALLENSTEIN M D, BURKE I C, 2014. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought?[J]. Ecology, 95(1): 110-122.
PMID |
[11] | FENG K, PENG X, ZHANG Z, et al., 2022. iNAP: An integrated Network Analysis Pipeline for microbiome studies[J]. iMeta, 1(2): e13. |
[12] | FINN D R, LEE S, LANZEN A, et al., 2021. Cropping systems impact changes in soil fungal, but not prokaryote, alpha-diversity and community composition stability over a growing season in a long-term field trial[J]. FEMS Microbiology Ecology, 97(10): fiab136-1-fiab1367. |
[13] |
GHOUL M, MITRI S, 2016. The ecology and evolution of microbial competition[J]. Trends in Microbiology, 24(10): 833-845.
DOI PMID |
[14] | JIANG Y J, LIANG Y T, LI C M, et al., 2016. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia[J]. Soil Biology and Biochemistry, 95: 250-261. |
[15] | JIAO S, CHEN W M, WANG J L, et al., 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems[J]. Microbiome, 6(1): 1-13. |
[16] | LI G R, TANG X Q, HOU Q M, et al., 2023. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: A global meta-analysis[J]. Agriculture, Ecosystems & Environment, 342: 108231. |
[17] | LIU Q, ZHAO Y X, LI T, et al., 2023. Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: A global synthesis[J]. Applied Soil Ecology, 186: 104815. |
[18] |
MOUGI A, KONDOH M, 2012. Diversity of Interaction Types and Ecological Community Stability[J]. Science, 337(6092): 349-351.
DOI PMID |
[19] | NATH C P, HAZRA K K, KUNAR N, et al., 2019. Including grain legume in rice-wheat cropping system improves soil organic carbon pools over time[J]. Ecological Engineering, 129: 144-153. |
[20] | SAMADDAR S, SCHMIDT R, TAUTGES N E, et al., 2021. Adding alfalfa to an annual crop rotation shifts the composition and functional responses of tomato rhizosphere microbial communities[J]. Applied Soil Ecology, 167: 104102. |
[21] | SANDIPAN S, RADOMIR S, NICOLE E T, et al., 2021. Adding alfalfa to an annual crop rotation shifts the composition and functional responses of tomato rhizosphere microbial communities[J]. Applied Soil Ecology, 167: 104102. |
[22] | THOMPSON P L, ONZALEZ A, 2017. Dispersal governs the reorganization of ecological networks under environmental change[J]. Nature Ecology & Evolution, 1(6): 162. |
[23] |
TRIVEDI P, ANDERSON I C, SINGH B K, 2013. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction[J]. Trends in Microbiology, 21(12): 641-651.
DOI PMID |
[24] | VIRK A L, LIN B J, KAN Z R, et al., 2022. Simultaneous effects of legume cultivation on carbon and nitrogen accumulation in soil[J]. Advances in Agronomy, 171: 75-110. |
[25] | WANG H, LIU S R, ZHANG X, et al., 2018a. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China[J]. Soil Biology and Biochemistry, 127: 22-30. |
[26] |
WANG Q, GARRITY G M, TIEDJE J M, et al., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 73(16): 5261-5267.
DOI PMID |
[27] | WANG S, WANG X B, HAN X G, et al., 2018b. Higher precipitation strengthens the microbial interactions in semi-arid grassland soils[J]. Global Ecology and Biogeography, 27(5): 570-580. |
[28] | XU N, TAN G C, WANG H Y, et al., 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 74: 1-8. |
[29] | YU H, WANG F H, SHAO M M, et al., 2021. Effects of Rotations with legume on soil functional microbial communities involved in phosphorus transformation[J]. Frontiers in Microbiology, 12: 661100. |
[30] |
YU T B, NIE J W, ZANG H D, et al., 2023. Peanut-based rotation stabilized diazotrophic communities and increased subsequent wheat yield[J]. Microbial Ecology, 86(4): 2447-2460.
DOI PMID |
[31] | YUAN M M, GUO X, WU L W, et al., 2021. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 11(4): 343-348. |
[32] | ZHAO J, CHEN J, BEILLOUIN D, et al., 2022. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers[J]. Nature Communications, 13(1): 4926. |
[33] | ZHOU G P, FAN K K, GAO S J, et al., 2023. Green manuring relocates microbiomes in driving the soil functionality of nitrogen cycling to obtain preferable grain yields in thirty years[J]. Science China Life Sciences, 67: 596-610. |
[34] | ZOU J, YAO Q, LIU J, et al., 2020. Changes of diazotrophic communities in response to cropping systems in a Mollisol of Northeast China[J]. PeerJ, 8: e9550. |
[35] | 白春礼, 2020. 科技创新引领黄河三角洲农业高质量发展[J]. 中国科学院院刊, 35(2): 138-144. |
BAI C L, 2020. Scientific and technological innovation leads high-quality development of agriculture in the Yellow River Delta[J]. Bulletin of Chinese Academy of Sciences, 35(2): 138-144. | |
[36] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agricultural chemistry analysis[M]. 3rd edition. Beijing: China Agriculture Press. | |
[37] |
曹莉, 秦舒浩, 张俊莲, 等, 2013. 轮作豆科牧草对连作马铃薯田土壤微生物菌群及酶活性的影响[J]. 草业学报, 22(3): 139-145.
DOI |
CAO L, QIN S H, ZHANG J L, et al., 2013. Effect of leguminous forage rotations on soil microbe consortiums and enzyme activity in continuously cropped potato fields[J]. Acta Prataculturae Sinica, 22(3): 139-145.
DOI |
|
[38] | 曾昭海, 2018. 豆科作物与禾本科作物轮作研究进展及前景[J]. 中国生态农业学报, 26(1): 57-61. |
ZENG Z H, 2018. Progress and perspective of legume-gramineae rotations[J]. Chinese Journal of Eco-Agriculture, 26(1):57-61. | |
[39] | 郭耀东, 程曼, 赵秀峰, 等, 2018. 轮作绿肥对盐碱地土壤性质、后作青贮玉米产量及品质的影响[J]. 中国生态农业学报, 26(6): 856-864. |
GUO Y D, CHENG M, ZHAO X F, et al., 2018. Effects of green manure rotation on soil properties and yield and quality of silage maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 26(6): 856-864. | |
[40] | 侯喜庆, 禹桃兵, 王培欣, 等, 2023. 轮作模式对冬小麦根际和非根际土壤氨氧化微生物群落多样性和组成的影响[J]. 生态学报, 43(23): 9900-9911. |
HOU X Q, YU T B, WANG P X, et al., 2023. Diversity and composition of ammonia-oxidizing archaeal and bacterial communities in rhizosphere and bulk soils of winter wheat in crop rotations[J]. Acta Ecologica Sinica, 43(23): 9900-9911. | |
[41] |
靳海洋, 岳俊芹, 闫雅倩, 等, 2022. 不同轮作茬口土壤细菌群落及后茬小麦产量[J]. 应用生态学报, 33(11): 2954-2962.
DOI |
JIN H Y, YUE J Q, YAN Y Q, et al., 2022. Soil bacterial communities of different crop rotations and yield of succeeding wheat[J]. Chinese Journal of Applied Ecology, 33(11): 2954-2962.
DOI |
|
[42] |
刘蕾, 徐梦, 王凌, 等, 2021. 引入豆科作物的轮作模式对设施蔬菜土壤微生物群落组成的影响[J]. 华北农学报, 36(3): 203-215.
DOI |
LIU L, XU M, WANG L, et al., 2021. Effects of crop rotation with legumes on the composition of microbial community in greenhouse vegetable soils[J]. Acta Agriculturae Boreali-Sinica, 36(3): 203-215.
DOI |
|
[43] | 于淑婷, 2023. 华北轮作制度转换下土壤微生物群落及作物产量变化机制研究[D]. 武汉: 华中农业大学. |
YU S T, 2023. Soil microbial community and crop yield changes with cropping system conversions in North China Plain[D]. Wuhan: Huazhong Agricultural University. | |
[44] | 张进红, 王国良, 吴波, 等, 2018. 黄河三角洲盐碱地不同柳枝稷品种生长特性比较[J]. 中国农业大学学报, 23(12): 158-165. |
ZHANG J H, WANG G L, WU B, et al., 2018. Comparative study on the growth characteristics of different switchgrass varieties in saline-alkali soil of the Yellow River Delta[J]. Journal of China Agricultural University, 23(12): 158-165. | |
[45] | 张志强, 王晓宇, 王黎梅, 等, 2020. 不同牧草品种用作绿肥对盐碱地土壤养分的影响[J]. 畜牧与饲料科学, 41(3): 35-41. |
ZHANG Z Q, WANG X Y, WANG L M, et al., 2020. Effects of different forage varieties used as green manure on saline-alkali soil nutrients[J]. Animal Husbandry and Feed Science, 41(3): 35-41. | |
[46] |
朱瑞芬, 刘杰淋, 王建丽, 等, 2020. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 53(13): 2637-2646.
DOI |
ZHU R F, LIU J L, WANG J L, et al., 2020. Molecular ecological network analyses revealing the effects of nitrogen application on soil microbial community in the degraded grasslands[J]. Scientia Agricultura Sinica, 53(13): 2637-2646.
DOI |
[1] | LI Chengyang, LIANG Zhihui, LI Zhenming, CAI Min, XU Ruiyao, CHEN Xiuyu, DING Jiayin, XU Qiuyun, PENG Fei. Plant Community Characteristics and Soil Characteristics of Degraded Alpine Meadows in the Beilu River Basin of the Yangtze River Source Area [J]. Ecology and Environment, 2024, 33(7): 1063-1071. |
[2] | WANG Zihan, LÜ Shijie, WANG Zhongwu, LIU Hongmei. Effects of Grazing Intensity on Dominant Population and Species Diversity and Their Typical Relationships [J]. Ecology and Environment, 2024, 33(6): 869-876. |
[3] | GUAN Yuliang, GAN Xianhua, YIN Zuoyun, HUANG Yuhui, TAO Yuzhu, LI Kuan, ZHANG Weiqiang, DENG Caiqiong, ZENG Xiangyao, HUANG Fangfang. Distribution Pattern of Plant Diversity at Different Elevations in Nanling Nature Reserve [J]. Ecology and Environment, 2024, 33(6): 877-887. |
[4] | WANG Junwei, CHEN Yonghao, ZENG Zhefei, CHEN Mengyan, LA Qiong. Study on Species Diversity of Invasive Plant Datura stramonium Community in Lhasa, Tibet [J]. Ecology and Environment, 2024, 33(6): 900-907. |
[5] | JIANG Yunfeng, YAN Ting, LIU Junnan, MA Bingzeng, WANG Haimeng, DOU Xiaomeng. Responses of Soil Mesofauna in Agricultural Fields to the Frequency of Corn Stover Mulching in Northeastern China’s Black Soil Region [J]. Ecology and Environment, 2024, 33(5): 699-707. |
[6] | QING Caixia, CHEN Shengbin, DENG Jiewen, DENG Xingwei, LI Zhe, QIU Lu. The Effects of Habitat Amount, Habitat Quality and Meteorological Factors on the Species Diversity of Dung Beetles in Chengdu [J]. Ecology and Environment, 2024, 33(5): 708-719. |
[7] | HUANG Qian, ZHU Shiying, LI Tianshun, LI Mingyan, SUO Nancuo, PU Bu. Distribution Pattern of Soil Protozoa Community along Altitude and Its Correlation with Environmental Factors in Rating National Forest Park in Tibet, China [J]. Ecology and Environment, 2024, 33(4): 499-508. |
[8] | WEI Xixi, CHAO Xinyan, ZHENG Jingming, TANG Kexin, WAN Long, ZHOU Jinxing. Study on Species Diversity of Typical Plant Communities and Their Influencing Factors in the Eastern and Western Helan Mountains [J]. Ecology and Environment, 2024, 33(4): 520-530. |
[9] | CHEN Hongjie, LIAO Hongkai, LONG JIAN, ZHAO Yuxin, ZHAN Kaixian, RAN Taishan, YANG Guomei. Effects of Reductive Soil Disinfestation on Soil Protist Community [J]. Ecology and Environment, 2024, 33(4): 539-547. |
[10] | TANG Guoqiang, CHEN Lixin, WANG Yafei, DUAN Wenbiao, WANG Zhizhen. The Population Structure and Dynamic Characteristics of Korean Pine at Different Succession Stages after Harvesting [J]. Ecology and Environment, 2024, 33(3): 368-378. |
[11] | DING Hao, LI Changxin, DING Jing, LAN Hao. Genetic and Functional Diversity of N-damo Bacteria in Different Environments [J]. Ecology and Environment, 2024, 33(2): 202-211. |
[12] | LI Qing, ZHANG Mengyue, YU Mingqiao, LI Xiaoxuan, CHANG Ming, CHEN Libin, DING Sen. Community Structure and Influencing Factors of Macroinvertebrate in Urban Rivers of Dongguan [J]. Ecology and Environment, 2024, 33(1): 101-110. |
[13] | SONG Simeng, LIN Dongmei, ZHOU Hengyu, LUO Zongzhi, ZHANG Lili, YI Chao, LIN Hui, LIN Xingsheng, LIU Bin, SU Dewei, ZHENG Dan, YU Shikui, LIN Zhanxi. Effects of Planting Cenchrus fungigraminus on Plant Species Diversity and Soil Physicochemical Properties in the Ulan Buh Desert [J]. Ecology and Environment, 2023, 32(9): 1595-1605. |
[14] | WANG Xinglai, MIAO Shujie, QIAO Yunfa. Evaluating the Carbon Footprint of the Rice-Wheat Rotation System Based on Localized Parameters in Jiangsu Province [J]. Ecology and Environment, 2023, 32(9): 1682-1691. |
[15] | JIANG Yishan, SUN Yingtao, ZHANG Gan, LUO Chunling. Pattern and Influencing Factors of Forest Soil Microbial Communities in Different Climate Types in China [J]. Ecology and Environment, 2023, 32(8): 1355-1364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn