Ecology and Environment ›› 2024, Vol. 33 ›› Issue (7): 1089-1095.DOI: 10.16258/j.cnki.1674-5906.2024.07.010
• Research Article [Environmental Science] • Previous Articles Next Articles
LI Xuan1,2,3(), WANG Luming2, YAN Chunni4, HUANG Juan2,*(
)
Received:
2024-04-08
Online:
2024-07-18
Published:
2024-09-04
Contact:
HUANG Juan
李璇1,2,3(), 王路茗2, 闫春妮4, 黄娟2,*(
)
通讯作者:
黄娟
作者简介:
李璇(1982年生),女,高级工程师,硕士,研究方向为水处理理论与技术。E-mail: liseu@qq.com
基金资助:
CLC Number:
LI Xuan, WANG Luming, YAN Chunni, HUANG Juan. Differences in Responses of Microbial Communities in Constructed Wetlands Exposed to Metal Oxide and Non-mental Oxide Nanoparticles[J]. Ecology and Environment, 2024, 33(7): 1089-1095.
李璇, 王路茗, 闫春妮, 黄娟. 金属氧化物与非金属氧化物纳米颗粒暴露下人工湿地微生物群落的响应差异[J]. 生态环境学报, 2024, 33(7): 1089-1095.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.07.010
处理组名称 | Chao1指数 | Shannon指数 | Faith-pd指数 |
---|---|---|---|
GO-CW组 | 120.25 | 115.22 | 117.98 |
CuO NPs-CW组 | 107.45 | 100.82 | 78.62 |
Table 1 Changes of microbial community diversity
处理组名称 | Chao1指数 | Shannon指数 | Faith-pd指数 |
---|---|---|---|
GO-CW组 | 120.25 | 115.22 | 117.98 |
CuO NPs-CW组 | 107.45 | 100.82 | 78.62 |
[1] | ADELEYE A S, CONWAY J R, PEREZ T, et al., 2014. Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles[J]. Environmental Science & Technology, 48(21): 12561-12568. |
[2] |
AHMED F, RODRIGUES D F, 2013. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study[J]. Journal of Hazardous Materials, 256-257: 33-39.
DOI PMID |
[3] | BERNARDES F S, HERRERA P G, CHIQUITO GM, et al., 2019. Relationship between microbial community and environmental conditions in a constructed wetland system treating greywater[J]. Ecological Engineering, 139: 105581. |
[4] | CERVANTES-AVILES P, DURAN VARGAS J B, AKIZUKI S, et al., 2021. Cumulative effects of titanium dioxide nanoparticles in UASB process during wastewater treatment[J]. Journal of Environmental Management, 277: 111428. |
[5] | COVARRUBIAS-Garcia I, QUIJANO G, AIZPURU A, et al., 2020. Reduced graphene oxide decorated with magnetite nanoparticles enhance biomethane enrichment[J]. Journal of Hazardous Materials, 397: 122760. |
[6] | CUI Y X, BISWAL B K, VAN-LOOSDRECHT M C M, et al., 2019. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor[J]. Water Research, 166: 115038. |
[7] | GAO Y, WU J C, REN X M, et al., 2017. Impact of graphene oxide on the antibacterial activity of antibiotics against bacteria[J]. Environmental Science: Nano, 4(5): 1016-1024. |
[8] | GOMES T, CHORA S, PEREIRA CG, et al., 2014. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu2+: An exploratory biomarker discovery[J]. Aquatic Toxicology, 155: 327-336. |
[9] | GREEN E R, MECSAS J, 2016. Bacterial secretion systems: An overview[J]. Microbiology Spectrum, 4(1): Bacterial/1-Bacterial/19. |
[10] | HU X B, LIU X B, YANG X Y, et al., 2018. Acute and chronic responses of macrophyte and microorganisms in constructed wetlands to cerium dioxide nanoparticles: Implications for wastewater treatment[J]. Chemical Engineering Journal, 348: 35-45. |
[11] |
HU Z T, LU X, SUN P, et al., 2017. Understanding the performance of microbial community induced by ZnO nanoparticles in enhanced biological phosphorus removal system and its recoverability[J]. Bioresource Technology, 225: 279-285.
DOI PMID |
[12] | HUANG H N, CHEN Y G, YANG S Y, et al., 2019. CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: Possible role of stimulated signal transduction[J]. Environmental Science: Nano, 6(2): 528-539. |
[13] | HUANG J, CAO M F, MA Y X, et al., 2022. Wastewater treatment effect and microbial community structure of constructed wetland under dual stress of low temperature and silver nanoparticles[J]. Journal of Southeast University (English Edition), 38(3): 291-299. |
[14] |
KEEGSTRA J M, CARRARA F, STOCKER R, 2022. The ecological roles of bacterial chemotaxis[J]. Nature Reviews Microbiology, 20(8): 491-504.
DOI PMID |
[15] | KELLER A A, LAZAREVA A, 2014. Predicted releases of engineered nanomaterials: from global to regional to local[J]. Environmental Science & Technology Letters, 1(1): 65-70. |
[16] | LIAN S Y, QU Y Y, LI S Z, et al., 2020. Interaction of graphene-family nanomaterials with microbial communities in sequential batch reactors revealed by high-throughput sequencing[J]. Environmental Research, 184: 109392. |
[17] | LU C H, YANG H H, ZHU C L, et al., 2009. A graphene platform for sensing biomolecules[J]. Angewandte Chemie International Edition, 48(26): 4785-4787. |
[18] | MAEDA T, WURGLER-MURPHY S M, SAITO H, 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast[J]. Nature, 369(6477): 242-245. |
[19] | MALHOTRA N, GER T-R, UAPIPATANAKUL B, et al., 2020. Review of copper and copper nanoparticle toxicity in fish[J]. Nanomaterials, 10(6): 1126. |
[20] |
NGUYEN H N, RODRIGUES DF, 2018. Chronic toxicity of graphene and graphene oxide in sequencing batch bioreactors: A comparative investigation[J]. Journal of Hazardous Materials, 343: 200-207.
DOI PMID |
[21] | QU H J, MA C X, XING W L, et al., 2022. Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm[J]. Journal of Hazardous Materials, 424(Part D): 127676. |
[22] | SAMARAJEEWA A D, VELICOGNA J R, SCHWERTFEGER D M, et al., 2021. Ecotoxicological effects of copper oxide nanoparticles (nCuO) on the soil microbial community in a biosolids-amended soil[J]. Science of The Total Environment, 763: 143037. |
[23] | SEZER TUNCSOY B, TUNCSOY M, GOMES T, et al., 2019. Effects of copper oxide nanoparticles on tissue accumulation and antioxidant enzymes of Galleria mellonella L.[J]. Bulletin Environmental Contamination Toxicology, 102(3): 341-346. |
[24] | SHIRDASHTZADEH M, CHUA L H C, BRAU L, 2022. Microbial communities and nitrogen transformation in constructed wetlands treating stormwater runoff[J]. Frontiers in Water, 256-257(3): 33-39. |
[25] | TUNÇSOY M, DURAN S, AY Ö, et al., 2017. Effects of copper oxide nanoparticles on antioxidant enzyme activities and on tissue accumulation of Oreochromis niloticus[J]. Bulletin Environmental Contamination Toxicology, 99(3): 360-364. |
[26] | WANG K, MAO H L, WANG Z, et al., 2018b. Succession of organics metabolic function of bacterial community in swine manure composting[J]. Journal of Hazardous Materials, 360: 471-480. |
[27] | WANG P F, YOU G X, HOU J, et al., 2018a. Responses of wastewater biofilms to chronic CeO2 nanoparticles exposure: Structural, physicochemical and microbial properties and potential mechanism[J]. Water Research, 133: 208-217. |
[28] |
WANG S, LI Z W, GAO M C, et al., 2017. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor[J]. Journal of Environmental Management, 187: 330-339.
DOI PMID |
[29] | WU B, WU J L, LIU S, et al., 2019. Combined effects of graphene oxide and zinc oxide nanoparticle on human A549 cells: bioavailability, toxicity and mechanisms[J]. Environmental Science: Nano, 6(2): 635-645. |
[30] | WU F, JIAO S, HU J, et al., 2021. Stronger impacts of long-term relative to short-term exposure to carbon nanomaterials on soil bacterial communities[J]. Journal of Hazardous Materials, 410: 124550. |
[31] |
YANG J L, PANG Y S, HUANG W X, et al., 2017. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano, 11(6): 5510-5518.
DOI PMID |
[32] | YANG S T, CHANG Y L, WANG H F, et al., 2010. Folding/aggregation of graphene oxide and its application in Cu2+ removal[J]. Journal of Colloid and Interface Science, 351(1): 122-127. |
[33] | YANG X Y, CHEN Y, LIU X B, et al., 2018. Influence of titanium dioxide nanoparticles on functionalities of constructed wetlands for wastewater treatment[J]. Chemical Engineering Journal, 352: 655-663. |
[34] |
ZHANG L M, XIA J G, ZHAO Q Q, et al., 2010. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs[J]. Small, 6(4): 537-544.
DOI PMID |
[35] | ZHANG Y, JI Z H, PEI Y S, 2021. Nutrient removal and microbial community structure in an artificial-natural coupled wetland system[J]. Process Safety and Environmental Protection, 147: 1160-1170. |
[36] | ZHAO Y, LI X G, ZHOU X, et al., 2016. Review on the graphene based optical fiber chemical and biological sensors[J]. Sensors and Actuators B: Chemical, 231: 324-340. |
[37] | 郭泓利, 李鑫玮, 任钦毅, 等, 2018. 全国典型城市污水处理厂进水水质特征分析[J]. 给水排水, 54(6): 12-15. |
GUO H L, LI X W, REN Q Y, et al., 2018. Analysis of influent water quality characteristics of typical municipal sewage treatment plants in China[J]. Water Supply and Drainage, 54(6): 12-15. | |
[38] | 李嘉, 施素杰, 周志明, 等, 2022. 间歇曝气-反冲洗人工湿地净化性能及微生物作用[J]. 中国给水排水, 38(19): 8-15. |
LI J, SHI S J, ZHOU Z M, et al., 2022. Purification performance and microbial effect of intermittent aeration and backwash constructed wetland[J]. Water Supply and Drainage in China, 38(19): 8-15. |
[1] | ZHANG Jinglei, WANG Guoliang, WU Bo, JIA Chunlin, ZHANG Jinhong, ZHOU Yuan, MA Bing. The Effects of Alfalfa-Triticale Rotation on Soil Bacterial and Fungal Community Diversity and Co-occurrence Network in Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2024, 33(7): 1048-1062. |
[2] | LI Caihong. Ethical Governance of Ecological Risk of Gene Technology [J]. Ecology and Environment, 2024, 33(5): 824-830. |
[3] | LI Duomei, KONG Tao, CHEN Xi, GAO Mingfu, GAO Xichen, ZENG Zeyu, BAO Jiahui. Effects of Residue after Evaporation Mixed Fertilizer and Grass Mat Mulching Measures on the Growth and Soil Nutrient Content of Pasture Grasses in the Dry Zone of Xinjiang [J]. Ecology and Environment, 2024, 33(4): 548-559. |
[4] | JIANG Xiaojing, XIE Jiahui, MA Kai, GAO Li. Phosphate Solubilizing Ability of Phosphate-Solubilizing Bacteria in Sediments and Its Effects on the Growth of Chaetomorpha sp. in Swan Lagoon [J]. Ecology and Environment, 2024, 33(4): 633-644. |
[5] | ZHAI Yongguang, WANG Xiaoni, HAO Lei, QI Wenchao, WANG Yasong, GENG Jiayu, LAN Qiongqiong, WANG Zhiguo. Multi-time Scale Analysis of Net Ecosystem Productivity Pattern in Inner Mongolia from 2001 to 2020 [J]. Ecology and Environment, 2024, 33(2): 167-179. |
[6] | SHI Run, LI Fayun, ZHOU Chunliang, WANG Wei, ZHOU Yanqiu. The Effect of Using Impatiens Balsam Seed Coat as a Carrier for Immobilized Microorganisms to Remediate Petroleum Hydrocarbon-contaminated Soil [J]. Ecology and Environment, 2023, 32(9): 1700-1708. |
[7] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(8): 1487-1495. |
[8] | YAO Linjie, ZHANG Jianing, ZHANG Hengrui, ZHAO Yanyun, ZHANG Qing, LI Yuanheng. Sustainable Utilization of Natural Resources in Inner Mongolia Based on Ecological Footprint [J]. Ecology and Environment, 2023, 32(8): 1525-1536. |
[9] | LIANG Yitong, LI Zemin, WU Yulun, QIU Guanglei, WU Haizhen, WEI Chaohai. Effects of Nitrite on Nitrogen Removal Efficiency and Microbial Community in Anammox-based Coupled System [J]. Ecology and Environment, 2023, 32(7): 1275-1284. |
[10] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[11] | HOU Hui, YAN Peixuan, XIE Qinmi, ZHAO Hongliang, PANG Danbo, CHEN Lin, LI Xuebin, HU Yang, LIANG Yongliang, NI Xilu. Characterization of Arbuscular Mycorrhizal Fungal Community Diversity in the Rhizosphere Soils of Prunus mongolica Scrub of Helan Mountain [J]. Ecology and Environment, 2023, 32(5): 857-865. |
[12] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[13] | ZHANG Pingjiang, DANG Guofeng. Construction of Ecological Security Pattern of Tao River Basin Based on MCR Model and ant Colony Algorithm [J]. Ecology and Environment, 2023, 32(3): 481-491. |
[14] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[15] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn