Ecology and Environment ›› 2024, Vol. 33 ›› Issue (11): 1803-1815.DOI: 10.16258/j.cnki.1674-5906.2024.11.014
• Research Article [Environmental Science] • Previous Articles Next Articles
LI Huiqiang1(), LIANG Xiaoying1,2,*(
), WEI Zheng1, ZHU Yongfei1, SHI Jinxin1
Received:
2024-07-01
Online:
2024-11-18
Published:
2024-12-06
Contact:
LIANG Xiaoying
李辉蔷1(), 梁小英1,2,*(
), 魏峥1, 朱泳霏1, 石金鑫1
通讯作者:
梁小英
作者简介:
李辉蔷(1999年生),男,硕士研究生,研究方向为生态系统服务簇与驱动因素。E-mail: hq_lea@163.com
基金资助:
CLC Number:
LI Huiqiang, LIANG Xiaoying, WEI Zheng, ZHU Yongfei, SHI Jinxin. Driving Force Analysis of Ecosystem Service Bundle Change Based on Logistic Regression Model: A Case Study of Guantian Economic Zone[J]. Ecology and Environment, 2024, 33(11): 1803-1815.
李辉蔷, 梁小英, 魏峥, 朱泳霏, 石金鑫. 基于logistic回归模型的生态系统服务簇变化驱动力分析——以关天经济区为例[J]. 生态环境学报, 2024, 33(11): 1803-1815.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.11.014
数据类型 | 时间 (年份) | 分辨率 | 数据来源 |
---|---|---|---|
土地利用数据 | 2000、2010、2020 | 30 m | 中科院资源环境科学与数据中心 ( |
GDP | 2000、2010、2020 | 1 km | |
人口密度 | 2000、2010、2020 | 1 km | WorldPop ( |
DEM | 2000 | 30 m | 地理空间数据云 ( |
潜在蒸散发 | 2000、2010、2020 | 1 km | 国家地球系统科学数据中心 ( |
NDVI | 2000、2010、2020 | 1 km | |
气温 | 2000、2010、2020 | 1 km | 国家青藏高原科学数据中心 ( |
降水 | 2000、2010、2020 | 1 km | |
太阳辐射 | 2000、2010、2020 | 1 km | ERA5数据集 ( |
土壤数据 | 2000 | 1 km | 世界土壤数据库 ( |
粮食产量 | 2000、2010、2020 | ‒ | 各相关市、区 (县) 2000-2020年统计年鉴 |
Table 1 Data sources
数据类型 | 时间 (年份) | 分辨率 | 数据来源 |
---|---|---|---|
土地利用数据 | 2000、2010、2020 | 30 m | 中科院资源环境科学与数据中心 ( |
GDP | 2000、2010、2020 | 1 km | |
人口密度 | 2000、2010、2020 | 1 km | WorldPop ( |
DEM | 2000 | 30 m | 地理空间数据云 ( |
潜在蒸散发 | 2000、2010、2020 | 1 km | 国家地球系统科学数据中心 ( |
NDVI | 2000、2010、2020 | 1 km | |
气温 | 2000、2010、2020 | 1 km | 国家青藏高原科学数据中心 ( |
降水 | 2000、2010、2020 | 1 km | |
太阳辐射 | 2000、2010、2020 | 1 km | ERA5数据集 ( |
土壤数据 | 2000 | 1 km | 世界土壤数据库 ( |
粮食产量 | 2000、2010、2020 | ‒ | 各相关市、区 (县) 2000-2020年统计年鉴 |
用地类型 | 自然度 | 用地类型 | 自然度 |
---|---|---|---|
水田 | 2 | 湖泊 | 5 |
旱地 | 2 | 水库坑塘 | 3 |
有林地 | 4 | 滩地 | 5 |
灌木林 | 3 | 城镇用地 | 1 |
疏林地 | 3 | 农村居民点 | 2 |
高覆盖草地 | 4 | 其他建设用地 | 1 |
中覆盖草地 | 3 | 沼泽地 | 5 |
低覆盖草地 | 2 | 裸岩石质地 | 5 |
河渠 | 4 |
Table 2 Score table for different land use
用地类型 | 自然度 | 用地类型 | 自然度 |
---|---|---|---|
水田 | 2 | 湖泊 | 5 |
旱地 | 2 | 水库坑塘 | 3 |
有林地 | 4 | 滩地 | 5 |
灌木林 | 3 | 城镇用地 | 1 |
疏林地 | 3 | 农村居民点 | 2 |
高覆盖草地 | 4 | 其他建设用地 | 1 |
中覆盖草地 | 3 | 沼泽地 | 5 |
低覆盖草地 | 2 | 裸岩石质地 | 5 |
河渠 | 4 |
ESB类型 | 2000年 | 2010年 | 2020年 |
---|---|---|---|
ESB1 | 6.87 | 8.49 | 8.91 |
ESB2 | 36.40 | 39.29 | 40.53 |
ESB3 | 40.83 | 35.62 | 32.92 |
ESB4 | 15.90 | 16.60 | 17.64 |
Table 3 Proportion of ESB area from 2000 to 2020 %
ESB类型 | 2000年 | 2010年 | 2020年 |
---|---|---|---|
ESB1 | 6.87 | 8.49 | 8.91 |
ESB2 | 36.40 | 39.29 | 40.53 |
ESB3 | 40.83 | 35.62 | 32.92 |
ESB4 | 15.90 | 16.60 | 17.64 |
ESB转化 类型 | 2000‒2010 | 2010‒2020 | ||||
---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | |||
ESB1 | ESB1 | 4511.61 | 81.95 | 5707.22 | 82.17 | |
ESB2 | 973.78 | 17.69 | 1132.58 | 16.31 | ||
ESB3 | 16.52 | 0.30 | 88.63 | 1.28 | ||
ESB4 | 3.10 | 0.06 | 17.52 | 0.25 | ||
ESB2 | ESB1 | 2005.39 | 6.88 | 1429.38 | 4.55 | |
ESB2 | 26385.04 | 90.50 | 28646.38 | 91.20 | ||
ESB3 | 715.62 | 2.45 | 1191.32 | 3.79 | ||
ESB4 | 47.50 | 0.16 | 143.25 | 0.46 | ||
ESB3 | ESB1 | 180.71 | 0.55 | 122.64 | 0.43 | |
ESB2 | 3952.96 | 12.09 | 2410.47 | 8.46 | ||
ESB3 | 26544.07 | 81.17 | 23194.73 | 81.45 | ||
ESB4 | 2026.04 | 6.20 | 2748.49 | 9.65 | ||
ESB4 | ESB1 | 100.17 | 0.79 | 22.67 | 0.17 | |
ESB2 | 162.12 | 1.27 | 206.11 | 1.55 | ||
ESB3 | 1257.76 | 9.87 | 1843.67 | 13.90 | ||
ESB4 | 11217.59 | 88.07 | 11194.94 | 84.38 |
Table 4 Number of transformations between ESBs from 2000 to 2010 and 2010 to 2020
ESB转化 类型 | 2000‒2010 | 2010‒2020 | ||||
---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | |||
ESB1 | ESB1 | 4511.61 | 81.95 | 5707.22 | 82.17 | |
ESB2 | 973.78 | 17.69 | 1132.58 | 16.31 | ||
ESB3 | 16.52 | 0.30 | 88.63 | 1.28 | ||
ESB4 | 3.10 | 0.06 | 17.52 | 0.25 | ||
ESB2 | ESB1 | 2005.39 | 6.88 | 1429.38 | 4.55 | |
ESB2 | 26385.04 | 90.50 | 28646.38 | 91.20 | ||
ESB3 | 715.62 | 2.45 | 1191.32 | 3.79 | ||
ESB4 | 47.50 | 0.16 | 143.25 | 0.46 | ||
ESB3 | ESB1 | 180.71 | 0.55 | 122.64 | 0.43 | |
ESB2 | 3952.96 | 12.09 | 2410.47 | 8.46 | ||
ESB3 | 26544.07 | 81.17 | 23194.73 | 81.45 | ||
ESB4 | 2026.04 | 6.20 | 2748.49 | 9.65 | ||
ESB4 | ESB1 | 100.17 | 0.79 | 22.67 | 0.17 | |
ESB2 | 162.12 | 1.27 | 206.11 | 1.55 | ||
ESB3 | 1257.76 | 9.87 | 1843.67 | 13.90 | ||
ESB4 | 11217.59 | 88.07 | 11194.94 | 84.38 |
ESB类型 | 生态系统服务 | 游憩服务 | 土壤保持 | 净初级生产力 | 粮食生产 | 生境质量 |
---|---|---|---|---|---|---|
ESB1 | 游憩服务 | 1.000 | -0.023 | 0.004 | -0.108** | 0.379** |
土壤保持 | 1.000 | -0.122** | 0.017 | -0.008 | ||
NPP | 1.000 | -0.016 | 0.117** | |||
粮食生产 | 1.000 | -0.232** | ||||
生境质量 | 1.000 | |||||
ESB2 | 游憩服务 | 1.000 | 0.069**1) | 0.167** | -0.026** | 0.483** |
土壤保持 | 1.000 | 0.194** | -0.074** | 0.169** | ||
NPP | 1.000 | -0.117** | 0.372** | |||
粮食生产 | 1.000 | -0.153** | ||||
生境质量 | 1.000 | |||||
ESB3 | 游憩服务 | 1.000 | 0.168** | 0.075** | -0.086** | 0.316** |
土壤保持 | 1.000 | 0.250** | 0.112** | 0.286** | ||
NPP | 1.000 | 0.044** | 0.304** | |||
粮食生产 | 1.000 | 0.007 | ||||
生境质量 | 1.000 | |||||
ESB4 | 游憩服务 | 1.000 | 0.231** | 0.084** | 0.041** | 0.012 |
土壤保持 | 1.000 | 0.131** | -0.060** | 0.228** | ||
NPP | 1.000 | 0.400** | 0.240** | |||
粮食生产 | 1.000 | -0.102** | ||||
生境质量 | 1.000 |
Table 5 Trade-offs of synergies between ES within ESB in 2020
ESB类型 | 生态系统服务 | 游憩服务 | 土壤保持 | 净初级生产力 | 粮食生产 | 生境质量 |
---|---|---|---|---|---|---|
ESB1 | 游憩服务 | 1.000 | -0.023 | 0.004 | -0.108** | 0.379** |
土壤保持 | 1.000 | -0.122** | 0.017 | -0.008 | ||
NPP | 1.000 | -0.016 | 0.117** | |||
粮食生产 | 1.000 | -0.232** | ||||
生境质量 | 1.000 | |||||
ESB2 | 游憩服务 | 1.000 | 0.069**1) | 0.167** | -0.026** | 0.483** |
土壤保持 | 1.000 | 0.194** | -0.074** | 0.169** | ||
NPP | 1.000 | -0.117** | 0.372** | |||
粮食生产 | 1.000 | -0.153** | ||||
生境质量 | 1.000 | |||||
ESB3 | 游憩服务 | 1.000 | 0.168** | 0.075** | -0.086** | 0.316** |
土壤保持 | 1.000 | 0.250** | 0.112** | 0.286** | ||
NPP | 1.000 | 0.044** | 0.304** | |||
粮食生产 | 1.000 | 0.007 | ||||
生境质量 | 1.000 | |||||
ESB4 | 游憩服务 | 1.000 | 0.231** | 0.084** | 0.041** | 0.012 |
土壤保持 | 1.000 | 0.131** | -0.060** | 0.228** | ||
NPP | 1.000 | 0.400** | 0.240** | |||
粮食生产 | 1.000 | -0.102** | ||||
生境质量 | 1.000 |
[1] |
BENNETT E M, PETERSON G D, GORDON L J, 2009. Understanding relationships among multiple ecosystem services[J]. Ecology Letters, 12(12): 1394-404.
DOI PMID |
[2] | CHEN S, CHEN H, YANG R J, et al., 2023. Linking social-ecological management and ecosystem service bundles: Lessons from a peri-urban agriculture landscape[J]. Land Use Policy, 131: 106697. |
[3] | CORTINOVIS C, GENELETTI D, 2018. Ecosystem services in urban plans: What is there, and what is still needed for better decisions[J]. Land Use Policy, 70: 298-312. |
[4] | COSTANZA R, GROOT D R, BRAAT L, et al., 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go?[J]. Ecosystem Services, 28(Part A): 1-16. |
[5] |
DAGMAR H, NEELE L, ERIK A, et al., 2014. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation[J]. Ambio, 43(4): 413-33.
DOI PMID |
[6] |
DELPHINE R, JEANINE R, ELENA B, 2015. Historical dynamics in ecosystem service bundles[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(43): 13411-13416.
DOI PMID |
[7] | GROTEN S M E, 1993. NDVI-crop monitoring and early yield assessment of Burkina Faso[J]. International Journal of Remote Sensing, 14(8): 1495-1515. |
[8] | LI S C, ZHAO Y L, XIAO W, et al., 2021. Identifying ecosystem service bundles and the spatiotemporal characteristics of trade-offs and synergies in coal mining areas with a high groundwater table[J]. Science of the Total Environment, 807(Part 3): 151036. |
[9] | ZHAO H Z, HE J H, LIU D F, et al., 2023. Incorporating ecological connectivity into ecological functional zoning: A case study in the middle reaches of Yangtze River urban agglomeration[J]. Ecological Informatics, 75: 102098. |
[10] | ZINIA J N, MCSHANE P, 2018. Ecosystem services management: An evaluation of green adaptations for urban development in Dhaka, Bangladesh[J]. Landscape and Urban Planning, 173: 23-32. |
[11] |
邓元杰, 侯孟阳, 张晓, 等, 2022. 基于Logistic回归模型的陕西秦巴山区林地变化驱动力分析[J]. 南京林业大学学报(自然科学版), 46(1): 106-114.
DOI |
DENG Y J, HOU M Y, ZHANG X, et al., 2022. Drivers of forestland change in the Qinba Mountain region of Shaanxi based on the Logistic regression model[J]. Journal of Nanjing Forestry University (Natural Science Edition), 46(1): 106-114. | |
[12] |
方露露, 许德华, 王伦澈, 等, 2021. 长江、黄河流域生态系统服务变化及权衡协同关系研究[J]. 地理研究, 40(3): 821-838.
DOI |
FANG L L, XU D H, WANG L C, et al., 2021. The study of ecosystem services and the comparison of trade-off and synergy in Yangtze River Basin and Yellow River Basin[J]. Geographical Research, 40(3): 821-838. | |
[13] | 冯兆, 彭建, 吴健生, 2020. 基于生态系统服务簇的深圳市生态系统服务时空演变轨迹研究[J]. 生态学报, 40(8): 2545-2554. |
FENG Z, PENG J, WU J S, 2020. Ecosystem service bundles based approach to exploring the trajectories of ecosystem service spatiotemporal change: A case study of Shenzhen City[J]. Acta Ecologica Sinica, 40(8): 2545-2554. | |
[14] | 古圳威, 刘京, 陈怡, 等, 2023. 陕西渭北旱塬区生境质量及碳储量时空演变分析与模拟[J]. 环境科学, 44(8): 4666-4678. |
GU Z W, LIU J, CHEN Y, et al., 2023. Analysis and simulation of the spatiotemporal evolution of habitat quality and carbon storage in the Weibei Dry Plateau Region of Shaanxi[J]. Environmental Science, 44(8): 4666-4678. | |
[15] | 郭洋, 杨飞龄, 王军军, 等, 2020. “三江并流” 区游憩文化生态系统服务评价研究[J]. 生态学报, 40(13): 4351-4361. |
GUO Y, YANG F L, WANG J J, et al., 2020. Assessment of the tourism and recreation cultural ecosystem services in Three Parallel Rivers Region[J]. Acta Ecologica Sinica, 40(13): 4351-4361. | |
[16] |
郝梦雅, 任志远, 孙艺杰, 等, 2017. 关中盆地生态系统服务的权衡与协同关系动态分析[J]. 地理研究, 36(3): 592-602.
DOI |
HAO M Y, REN Z Y, SUN Y J, et al., 2017. The dynamic analysis of trade-off and synergy of ecosystem services in the Guanzhong Basin[J]. Geographical Research, 36(3): 592-602. | |
[17] |
刘迪, 陈海, 荔童, 等, 2022. 黄土丘陵沟壑区村域生态系统服务簇的时空分异及其地形梯度分析[J]. 地理科学进展, 41(4): 670-681.
DOI |
LIU D, CHEN H, LI T, et al., 2022. Spatiotemporal differentiation of village ecosystem service bundles in the loess hilly and gully region and terrain gradient analysis[J]. Progress in Geography, 41(4): 670-681.
DOI |
|
[18] | 李军保, 俞靓, 谢治国, 等, 2023. 陕西省秦岭自然保护区建设现状分析[J]. 陕西林业科技, 51(6): 83-86. |
LI J B, YU L, XIE Z G, et al., 2023. Analysis on the construction status of Qinling Nature Reserve in Shaanxi Province[J]. Shaanxi Forest Science and Technology, 51(6): 83-86. | |
[19] | 廖俊, 焦菊英, 严增, 等, 2024. RUSLE模型对黄土高原退耕植被恢复坡面土壤侵蚀的模拟效果分析[J]. 水土保持学报, 38(2): 97-108. |
LIAO J, JIAO J Y, YAN Z, et al., 2024. Simulation effect analysis of RUSLE model on slope soil erosion restored by reclaimed vegetation in Loess Plateau[J]. Journal of Soil and Water Conservation, 38(2): 97-108. | |
[20] |
李倩茹, 贾彦龙, 王慧军, 等, 2023. 基于生态功能区的河北省生态系统服务权衡与协同分析[J]. 地理学报, 78(11): 2833-2849.
DOI |
LI Q R, JIA Y L, WANG H J, et al., 2023. Analysis of trade-off and synergy effects of ecosystem services in Hebei Province from the perspective of ecological function area[J]. Acta Geographica Sinica, 78(11): 2833-2849.
DOI |
|
[21] | 荔琢, 侯鹏, 蒋卫国, 等, 2023. 土地利用变化对生态系统服务功能的驱动效应研究——以秦岭地区自然保护区为例[J]. 北京师范大学学报(自然科学版), 59(2): 196-205. |
LI Z, HOU P, JIANG W G, et al., 2023. The driving effect of land use changes on ecosystem services: A case study at the Qinling Natural Reserves[J]. Journal of Beijing Normal University (Natural Science), 59(2): 196-205. | |
[22] | 潘莹, 郑华, 易齐涛, 等, 2021. 流域生态系统服务簇变化及影响因素——以大清河流域为例[J]. 生态学报, 41(13): 5204-5213. |
PAN Y, ZHENG H, YI Q T, et al., 2021. The change and driving factors of ecosystem service bundles: A case study of Daqing River Basin[J]. Acta Ecologica Sinica, 41(13): 5204-5213. | |
[23] |
宋家鹏, 陈松林, 2021. 基于生态系统服务簇的福州市生态系统服务格局[J]. 应用生态学报, 32(3): 1045-1053.
DOI |
SONG J P, CHEN S L, 2021. Ecosystem service pattern of Fuzhou City based on ecosystem service bundles[J]. Chinese Journal of Applied Ecology, 32(3): 1045-1053. | |
[24] | 孙艺杰, 任志远, 郝梦雅, 等, 2019. 黄土高原生态系统服务权衡与协同时空变化及影响因素——以延安市为例[J]. 生态学报, 39(10): 3443-3454. |
SUN Y J, REN Z Y, HAO M Y, et al., 2019. Spatial and temporal changes in the synergy and trade-off between ecosystem services, and its influencing factors in Yanan, Loess Plateau[J]. Acta Ecologica Sinica, 39(10): 3443-3454. | |
[25] |
王彬宇, 王玲, 陈俊辰, 等, 2023. 四湖流域生态功能分区及其影响因素识别[J]. 应用生态学报, 34(10): 2757-2766.
DOI |
WANG B Y, WANG L, CHEN J C, et al., 2023. Identification of ecological functional zoning and its influencing factors in the Sihu Lake Basin, China[J]. Chinese Journal of Applied Ecology, 34(10): 2757-2766.
DOI |
|
[26] |
王琦琨, 武玮, 杨雪琪, 等, 2022. 陕西省生境质量时空演变及驱动机制分析[J]. 干旱区研究, 39(5): 1684-1694.
DOI |
WANG Q K, WU W, YANG X Q, et al., 2022. Spatial-temporal changes and driving factors of habitat quality in Shaanxi Province during the past 20 years[J]. Arid Zone Research, 39(5): 1684-1694.
DOI |
|
[27] | 王胤懿, 2023. 基于生态系统服务水平提升的乡村景观优化研究——以杭州市富阳区场口镇为例[D]. 杭州: 浙江农林大学:59-72. |
WANY Y Y, 2023. Study on rural landscape optimization based on ecosystem services enhancement: A case study of Changkou Town, Fuyang District[D]. Hangzhou: Zhejiang A & F University: 59-72. | |
[28] | 韦钧培, 杨云川, 谢鑫昌, 等, 2022. 基于服务簇的南宁市生态系统服务权衡与协同关系研究[J]. 生态与农村环境学报, 38(1): 21-31. |
WEI J P, YANG Y C, XIE X C, et al., 2022. Quantifying ecosystem service trade-offs and synergies in Nanning City based on ecosystem service bundle[J]. Journal of Ecology and Rural Environment, 38(1): 21-31. | |
[29] | 魏健美, 李常斌, 武磊, 等, 2021. 基于USLE的甘南川西北土壤侵蚀研究[J]. 水土保持学报, 35(2): 31-37. |
WEI J M, LI C B, WU L, et al., 2021. Study on soil erosion in northwestern Sichuan and southern Gansu (NSSG) based on USLE[J]. Journal of Soil and Water Conservation, 35(2): 31-37. | |
[30] | 王诗媛, 向洋, 高翻翻, 等, 2024. 自然和人为因素影响下的生态系统服务时空演变特征——以关中平原城市群为例[J/OL]. 西安理工大学学报, 1-12[2024-09-20]. http://kns.cnki.net/kcms/detail/61.1294.n.20240708.1207.002.html. |
WANG S Y, XIANG Y, GAO F F, et al., 2024. Spatiotemporal evolution characteristics of ecosystem services under the influence of natural and human factors: A case study of the urban agglomeration in the Guanzhong Plain[J/OL]. Journal of Xi’an University of Technology, 1-12 [2024-09-20]. http://kns.cnki.net/kcms/detail/61.1294.n.20240708.1207.002.html. | |
[31] |
王治国, 白永平, 车磊, 等, 2020. 关中平原城市群植被覆盖的时空特征与影响因素[J]. 干旱区地理, 43(4): 1041-1050.
DOI |
WANG Z G, BAI Y P, CHE L, et al., 2020. Spatiotemporal characteristics and influencing factors of vegetation coverage in urban agglomeration of Guanzhong Plain[J]. Arid Land Geography, 43(4): 1041-1050. | |
[32] | 肖杰, 郑国璋, 赵培, 等, 2020. 基于GIS的关中-天水经济区人口分布特征及影响因素研究[J]. 中国农业资源与区划, 41(5): 167-175. |
XIAO J, ZHENG G Z, ZHAO P, et al., 2020. Study on population distribution and influencing factors of Guanzhong-Tianshui Economic Zone base on GIS[J]. Chinese Journal of Agricultural Resources and Regional Planning, 41(5): 167-175. | |
[33] | 闫晓露, 李欣媛, 刘澄浩, 等, 2022. 生态系统服务簇空间演变轨迹及其社会-生态驱动的地理探测——以大连市为例[J]. 生态学报, 42(14): 5734-5747. |
YAN X L, LI X Y, LIU C H, et al., 2022. Spatial evolution trajectory of ecosystem service bundles and its social-ecological driven by geographical exploration: A case study of Dalian[J]. Acta Ecologica Sinica, 42(14): 5734-5747. | |
[34] | 杨慧, 2022. 陕西省粮食产量及其影响因素分析[D]. 西安: 长安大学: 56-61. |
YANG H, 2022. Analysis on the grain yield and its influencing factors in Shaanxi Province[D]. Xi’an: Chang’an University: 56-61. | |
[35] |
杨晓楠, 李晶, 秦克玉, 等, 2015. 关中-天水经济区生态系统服务的权衡关系[J]. 地理学报, 70(11): 1762-1773.
DOI |
YANG X N, LI J, QIN K Y, et al., 2015. Trade-offs between ecosystem services in Guanzhong-Tianshui Economic Region[J]. Acta Geographica Sinica, 70(11): 1762-1773.
DOI |
|
[36] | 袁碧霞, 2021. 绿色基础设施空间格局对生态系统服务权衡与协同关系的影响研究——以武汉都市圈为例[D]. 武汉: 华中农业大学: 26-27. |
YUAN B X, 2021. Research on the impact of spatial pattern of green infrastructure on the trade-off and synergy of ecosystem service: A case study of Wuhan Metropolitan[D]. Wuhan: Huazhong Agricultural University: 26-27. | |
[37] | 岳萌, 耿广坡, 王涛, 等, 2023. 2000-2019年黄河流域陕西段植被NDVI时空变化及其驱动因素分析[J]. 水土保持研究, 30(2): 238-246. |
YUE M, GENG G P, WANG T, et al., 2023. Spatiotemporal variation of vegetation NDVI and its driving factors in the Shaanxi section of the Yellow River Basin from 2000 to 2019[J]. Research of Soil and Water Conservation, 30(2): 238-246. | |
[38] | 曾莉, 2020. 关中-天水经济区生态系统服务权衡协同关系及空间格局优化研究[D]. 西安: 陕西师范大学: 1-6. |
ZENG L, 2020. Study on the synergistic relationship and spatial pattern optimization of ecosystem service trade-offs in Guanzhong-Tianshui Economic Zone[D]. Xi’an: Shaanxi Normal University: 1-6. | |
[39] |
张鑫, 张丹, 张广森, 等, 2024. 关中平原城市群生态系统服务时空特征及生态功能区划分[J]. 干旱区地理, 47(9): 1587-1595.
DOI |
ZHANG X, ZHANG D, ZHANG G S, et al., 2024. Spatiotemporal characteristics of ecosystem services and ecological function areas in Guanzhong Plain urban agglomeration[J]. Arid Land Geography, 47(9): 1587-1595.
DOI |
|
[40] |
朱文泉, 潘耀忠, 张锦水, 2007. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 31(3): 413-424.
DOI |
ZHU W Q, PAN Y Z, ZHANG J S, 2007. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology, 31(3): 413-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn