Ecology and Environment ›› 2023, Vol. 32 ›› Issue (9): 1654-1662.DOI: 10.16258/j.cnki.1674-5906.2023.09.012
• Research Articles • Previous Articles Next Articles
WEN Lirong1,3(), LIN Boji2, LI Tingting2, ZHANG Ziyang2, ZHANG Zhengen2, JIANG Ming1, ZHOU Yan1, ZHANG Tao1, LI Jun2,*(
), ZHANG Gan2
Received:
2023-05-19
Online:
2023-09-18
Published:
2023-12-11
温丽容1,3(), 林勃机2, 李婷婷2, 张子洋2, 张正恩2, 江明1, 周炎1, 张涛1, 李军2,*(
), 张干2
通讯作者:
*李军。E-mail: 作者简介:
温丽容(1975年生),女,副高级工程师,硕士,主要研究方向环境空气质量监测与研究。E-mail: 105771055@qq.com
基金资助:
CLC Number:
WEN Lirong, LIN Boji, LI Tingting, ZHANG Ziyang, ZHANG Zhengen, JIANG Ming, ZHOU Yan, ZHANG Tao, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope[J]. Ecology and Environment, 2023, 32(9): 1654-1662.
温丽容, 林勃机, 李婷婷, 张子洋, 张正恩, 江明, 周炎, 张涛, 李军, 张干. 基于多同位素的珠三角PM2.5中二次无机气溶胶来源解析[J]. 生态环境学报, 2023, 32(9): 1654-1662.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.09.012
统计项目 | PM2.5 | NO3− | SO42− | NH4+ |
---|---|---|---|---|
平均值 | 39.8 | 4.45 | 4.96 | 2.85 |
标准差 | 22.6 | 4.97 | 2.88 | 2.22 |
最小值 | 11.6 | 0.34 | 0.86 | 0.07 |
最大值 | 109 | 28.1 | 13.0 | 10.9 |
Table 1 Concentration of SIA in PM2.5 during the sampling period μgm−3
统计项目 | PM2.5 | NO3− | SO42− | NH4+ |
---|---|---|---|---|
平均值 | 39.8 | 4.45 | 4.96 | 2.85 |
标准差 | 22.6 | 4.97 | 2.88 | 2.22 |
最小值 | 11.6 | 0.34 | 0.86 | 0.07 |
最大值 | 109 | 28.1 | 13.0 | 10.9 |
采样时段 | SIA/PM2.5 | NO3−/PM2.5 | SO42−/PM2.5 | NH4+/PM2.5 |
---|---|---|---|---|
全年 | 29.8 | 9.5 | 13.5 | 6.8 |
春季 | 36.9 | 12.9 | 14.8 | 9.1 |
夏季 | 26.6 | 6.2 | 15.5 | 5.0 |
秋季 | 26.3 | 7.1 | 12.8 | 6.5 |
冬季 | 30.1 | 12.7 | 10.8 | 6.7 |
Table 2 Relative contribution of SIA to PM2.5 mass concentration in Heshan during the sampling period %
采样时段 | SIA/PM2.5 | NO3−/PM2.5 | SO42−/PM2.5 | NH4+/PM2.5 |
---|---|---|---|---|
全年 | 29.8 | 9.5 | 13.5 | 6.8 |
春季 | 36.9 | 12.9 | 14.8 | 9.1 |
夏季 | 26.6 | 6.2 | 15.5 | 5.0 |
秋季 | 26.3 | 7.1 | 12.8 | 6.5 |
冬季 | 30.1 | 12.7 | 10.8 | 6.7 |
采样时段 | 燃煤 | 燃油 | 生物成因硫 |
---|---|---|---|
全年 | 41.8±5.76 | 32.9±9.3 | 25.3±4.2 |
春季 | 37.5±5.2 | 39.7±9.5 | 22.8±4.9 |
夏季 | 32.9±8.6 | 45.3±11.0 | 21.8±2.3 |
秋季 | 45.7±2.4 | 26.5±4.5 | 27. 8±3.0 |
冬季 | 44.5±3.2 | 29.1±4.5 | 26.4±2.6 |
Table 3 Source apportionments of sulfate aerosols in Heshan during the sampling period %
采样时段 | 燃煤 | 燃油 | 生物成因硫 |
---|---|---|---|
全年 | 41.8±5.76 | 32.9±9.3 | 25.3±4.2 |
春季 | 37.5±5.2 | 39.7±9.5 | 22.8±4.9 |
夏季 | 32.9±8.6 | 45.3±11.0 | 21.8±2.3 |
秋季 | 45.7±2.4 | 26.5±4.5 | 27. 8±3.0 |
冬季 | 44.5±3.2 | 29.1±4.5 | 26.4±2.6 |
采样时期 | 船舶 | 汽油车 | 生物质燃烧 | 燃煤 | 土壤微生物 |
---|---|---|---|---|---|
全年 | 13.9±3.0 | 15.6±2.7 | 20.9±1.5 | 41.6±9.4 | 8.0±2.4 |
春季 | 12.7±2.9 | 14.7±2.5 | 20.6±1.7 | 44.9±8.9 | 7.1±2.0 |
夏季 | 14.6±3.2 | 16.4±2.5 | 21.6±0.7 | 39.0±9.0 | 8.4±2.6 |
秋季 | 15.3±2.3 | 16.9±2 | 21.6±1.0 | 37.2±6.9 | 8.9±1.8 |
冬季 | 13.5±3.6 | 15.0±3.3 | 20.5±1.8 | 43.0±11.5 | 8.0±3.2 |
Table 4 Source apportionments of nitrate aerosols in Heshan during the sampling period %
采样时期 | 船舶 | 汽油车 | 生物质燃烧 | 燃煤 | 土壤微生物 |
---|---|---|---|---|---|
全年 | 13.9±3.0 | 15.6±2.7 | 20.9±1.5 | 41.6±9.4 | 8.0±2.4 |
春季 | 12.7±2.9 | 14.7±2.5 | 20.6±1.7 | 44.9±8.9 | 7.1±2.0 |
夏季 | 14.6±3.2 | 16.4±2.5 | 21.6±0.7 | 39.0±9.0 | 8.4±2.6 |
秋季 | 15.3±2.3 | 16.9±2 | 21.6±1.0 | 37.2±6.9 | 8.9±1.8 |
冬季 | 13.5±3.6 | 15.0±3.3 | 20.5±1.8 | 43.0±11.5 | 8.0±3.2 |
采样时段 | 燃煤 | 燃油 | 非化石源 |
---|---|---|---|
全年 | 35.6 | 27.2 | 37.2 |
春季 | 33.7 | 29.0 | 37.3 |
夏季 | 29.9 | 37.6 | 32.5 |
秋季 | 36.5 | 24.7 | 38.8 |
冬季 | 38.1 | 25.9 | 36.0 |
Table 5 Relative contribution of various pollution sources to SIA in Heshan during the sampling period %
采样时段 | 燃煤 | 燃油 | 非化石源 |
---|---|---|---|
全年 | 35.6 | 27.2 | 37.2 |
春季 | 33.7 | 29.0 | 37.3 |
夏季 | 29.9 | 37.6 | 32.5 |
秋季 | 36.5 | 24.7 | 38.8 |
冬季 | 38.1 | 25.9 | 36.0 |
[1] | AN J Y, HUANG Y W, HUANG C, et al., 2021. Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 21(3): 2003-2025. |
[2] |
AN Z S, HUANG R J, ZHANG R Y, et al., 2019. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 116: 8657-8666.
DOI PMID |
[3] |
BEHERA S N, SHARMA M, ANEJA V P, et al., 2013. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 20(11): 8092-8131.
DOI URL |
[4] |
CHENG C, YU R L, CHEN Y T, et al., 2022. Quantifying the source and formation of nitrate in PM2.5 using dual isotopes combined with Bayesian mixing model: A case study in an inland city of southeast China[J]. Chemosphere, 308(Part 1): 136097.
DOI URL |
[5] | CHENG Y, YU Q Q, LIU J M, et al., 2021. Formation of secondary inorganic aerosol in a frigid urban atmosphere[J]. Frontiers of Environmental Science & Engineering, 16(2): 18. |
[6] |
ELLIOTT E M, KENDALL C, WANKEL S D, et al., 2007. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States[J]. Environmental Science and Technology, 41(22): 7661-7667.
DOI URL |
[7] |
GUO S, HU M, ZAMORA M L, et al., 2014. Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(49): 17373-17378.
DOI PMID |
[8] |
GUO Z Y, GUO Q J, CHEN S L, et al., 2019. Study on pollution behavior and sulfate formation during the typical haze event in Nanjing with water soluble inorganic ions and sulfur isotopes[J]. Atmospheric Research, 217: 198-207.
DOI URL |
[9] |
HUANG R J, ZHANG Y L, BOZZETTI C, et al., 2014. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 514(7521): 218-222.
DOI |
[10] |
HUANG Z J, ZHONG Z M, SHA Q G, et al., 2021. An updated model-ready emission inventory for Guangdong Province by incorporating big data and mapping onto multiple chemical mechanisms[J]. Science of the Total Environment, 769: 144535.
DOI URL |
[11] | LI G H, BEI N F, CAO J J, et al., 2017. A possible pathway for rapid growth of sulfate during haze days in China[J]. Atmospheric Chemistry and Physics, 17(5): 3301-3316. |
[12] | LI Y E, ZHU B, LEI Y L, et al., 2022. Characteristics, formation, and sources of PM2.5 in 2020 in Suzhou, Yangtze River Delta, China[J]. Environmental Research, 212(Part D): 113545. |
[13] |
LIN Y C, YU M Y, XIE F, et al., 2022. Anthropogenic emission sources of sulfate aerosols in Hangzhou, east China: Insights from isotope techniques with consideration of fractionation effects between gas-to-particle transformations[J]. Environmental Science and Technology, 56(7): 3905-3914.
DOI URL |
[14] | MENG F L, ZHANG Y B, KANG J H, et al., 2022. Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime[J]. Atmospheric Chemistry and Physics, 22(9): 6291-6308. |
[15] | PEY J, PEREZ N, CORTES J, et al., 2013. Chemical fingerprint and impact of shipping emissions over a western Mediterranean metropolis: Primary and aged contributions[J]. Science of the Total Environment, 463-464: 497-507. |
[16] |
SMITH K R, JERRETT M, ANDERSON H R, et al., 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants[J]. The Lancet, 374(9707): 2091-2103.
DOI URL |
[17] | SU C X, KANG R H, ZHU W X, et al., 2020. Delta 15N of nitric oxide produced under aerobic or anaerobic conditions from seven soils and their associated n isotope fractionations[J]. Journal of Geophysical Research-Biogeosciences, 125(9): e2020JG005705. |
[18] |
SU T, LI J, TIAN C G, et al., 2020. Source and formation of fine particulate nitrate in South China: Constrained by isotopic modeling and online trace gas analysis[J]. Atmospheric Environment, 231: 117563.
DOI URL |
[19] |
SUN X Z, ZONG Z, WANG K, et al., 2020. The importance of coal combustion and heterogeneous reaction for atmospheric nitrate pollution in a cold metropolis in China: Insights from isotope fractionation and Bayesian mixing model[J]. Atmospheric Environment, 243: 117730.
DOI URL |
[20] |
WANG X, LI J, SUN R, et al., 2021. Regional characteristics of atmospheric delta34S-SO42- over three parts of Asia monitored by quartz wool-based passive samplers[J]. Science of the Total Environment, 778: 146107.
DOI URL |
[21] |
WEI L F, YUE S Y, ZHAO W Y, et al., 2018. Stable sulfur isotope ratios and chemical compositions of fine aerosols (PM2.5) in Beijing, China[J]. Science of the Total Environment, 633: 1156-1164.
DOI URL |
[22] |
YAN F H, CHEN W H, JIA S G, et al., 2020. Stabilization for the secondary species contribution to PM2.5 in the Pearl River Delta (PRD) over the past decade, China: A meta-analysis[J]. Atmospheric Environment, 242(1): 117817.
DOI URL |
[23] |
YANG H M, WANG J F, CHEN M D, et al., 2020. Chemical characteristics, sources and evolution processes of fine particles in Lin’an, Yangtze River Delta, China[J]. Chemosphere, 254: 126851.
DOI URL |
[24] |
YU G Y, ZHANG Y, YANG F, et al., 2021. Dynamic Ni/V ratio in the ship-emitted particles driven by multiphase fuel oil regulations in coastal China[J]. Environmental Science & Technology, 55: 15031-15039.
DOI URL |
[25] |
ZHANG M Y, WANG S J, MA G Q, et al., 2010. Sulfur isotopic composition and source identification of atmospheric environment in central Zhejiang, China[J]. Science China Earth Sciences, 53(11): 1717-1725.
DOI URL |
[26] |
ZHANG Y, HUANG W, CAI T Q, et al., 2016. Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing[J]. Atmospheric Research, 174-175: 62-69.
DOI URL |
[27] |
ZHAO Z Y, CAO F, FAN M Y, et al., 2020. Coal and biomass burning as major emissions of NOx in Northeast China: Implication from dual isotopes analysis of fine nitrate aerosols[J]. Atmospheric Environment, 242: 117762.
DOI URL |
[28] |
ZONG Z, SHI X L, SUN Z Y, et al., 2022. Nitrogen isotopic composition of NOx from residential biomass burning and coal combustion in North China[J]. Environmental Pollution, 304: 119238.
DOI URL |
[29] |
ZONG Z, SUN Z Y, XIAO L L, et al., 2020b. Insight into the variability of the nitrogen isotope composition of vehicular nox in China[J]. Environmental Science & Technology, 54(22): 14246-14253.
DOI URL |
[30] |
ZONG Z, TAN Y, WANG X, et al., 2020a. Dual-modelling-based source apportionment of NOx in five Chinese megacities: Providing the isotopic footprint from 2013 to 2014[J]. Environment International, 137: 105592.
DOI URL |
[31] |
ZONG Z, WANG X P, TIAN C G, et al., 2017. First assessment of nox sources at a regional background site in north China using isotopic analysis linked with modeling[J]. Environmental Science & Technology, 51(11): 5923-5931.
DOI URL |
[32] |
ZOU D L, SUN Q Q, LIU J S, et al., 2022. Seasonal source analysis of nitrogen and carbon aerosols of PM2.5 in typical cities of Zhejiang, China[J]. Chemosphere, 303(Part 3): 135026.
DOI URL |
[33] |
江明, 张子洋, 李婷婷, 等, 2022. 基于氮同位素的珠三角典型地区大气PM2.5中NH4+来源解析[J]. 生态环境学报, 31(9): 1840-1848.
DOI |
JIANG M, ZHANG Z Y, LI T T, et al., 2022. Source apportionment of ammonium in atmospheric PM2.5 in the Pearl River Delta based on nitrogen isotope[J]. Ecology and Environmental Sciences, 31(9): 1840-1848. | |
[34] | 孙泽宇, 2021. 典型源排放NOx的氮同位素组成及其在渤海PM2.5溯源中的应用[D]. 烟台: 中国科学院大学 (中国科学院烟台海岸带研究所):45. |
SUN Z Y, 2021. Nitrogen isotope characteristics of NOx from typical pollution sources and its application in PM2.5 apportionment in the Bohai Sea[D]. Yantai: University of Chinese Academy of Sciences,Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences: 45. | |
[35] | 岳玎利, 钟流举, 曾立民, 等, 2015. 珠三角地区冬季大气细颗粒物理化特性与成因[J]. 环境科学与技术, 38(2): 105-109, 138. |
YUE D L, ZHONG L J, ZENG L M, et al., 2015. Physical and chemical properties and causes of fine particulate matter in winter in the pearl river delta region[J]. Environmental Science & Technology, 38(2): 105-109, 138. | |
[36] | 张延君, 郑玫, 蔡靖, 等, 2015. PM2.5源解析方法的比较与评述[J]. 科学通报, 60(2): 109-121. |
ZHANG Y J, ZHENG M, CAI J, et al., 2015. Comparison and review of PM2.5 source apportionment methods[J]. Chinese Science Bulletin, 60(2): 109-121. | |
[37] | 中华人民共和国生态环境部, 国家质量监督检验检疫总局, 2012. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社. |
Ministry of Ecology and Environment of the People's Republic of China, General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China, 2012. Environmental Air Quality Standards: GB 3095—2012[S]. Beijing: China Environmental Science Press. |
[1] | WANG Wei, DAI Mengmeng. Spatial Morphology of Street Canyons Based on the Spatial and Temporal Distribution of Particulate Matter: Taking Tongan Street in Hefei City as an Example [J]. Ecology and Environment, 2023, 32(9): 1632-1643. |
[2] | ZHENG Qiuping, LI Fei, ZHAO Rui, JIANG Dongsheng, WANG Hong. Analysis of the Characteristics of PM2.5-O3 Compound Pollution and the Impact of Synoptic Weather Patterns in Fujian Province [J]. Ecology and Environment, 2023, 32(8): 1440-1448. |
[3] | DONG Jiefang, DENG Chun, ZHANG Zhongwu. Spatio-temporal Evolution and Population Exposure Risk to PM2.5 in the Weihe River Basin [J]. Ecology and Environment, 2023, 32(6): 1078-1088. |
[4] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[5] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[6] | XIAO Yihua, FU Zhigao, XU Han, SHI Xin, TANG Haiming, CHEN Bufeng. Effects of Urbanization on Leaf Functional Traits of Different Functional Groups in Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1783-1793. |
[7] | JIANG Ming, ZHANG Ziyang, LI Tingting, LIN Boji, ZHANG Zhengen, LIAO Tong, YUAN Luan, PAN Suhong, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope [J]. Ecology and Environment, 2022, 31(9): 1840-1848. |
[8] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1590-1598. |
[9] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[10] | LIANG Junfen, CAI Xun, FENG Shanshan, TAO Liang. Evaluation of the Development Degree and Restriction Factors of Agricultural and Rural Modernization in the Pearl River Delta Region [J]. Ecology and Environment, 2022, 31(8): 1680-1689. |
[11] | WEI Xiaofeng, HAN Hong, YAN Xuejun, WANG Zaifeng, LI Shengzeng, TIAN Yong, LIANG Di, MA Mingliang, ZHANG Guiqin. Source Apportionment of PM2.5 during Heavy Pollution Process in Ji'nan Based on Satellite Remote Sensing and CMB Model [J]. Ecology and Environment, 2022, 31(6): 1175-1183. |
[12] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[13] | WANG Wei, CHENG Xinyue. Analysis of Temporal and Spatial Distribution Characteristics and Influencing Factors of PM2.5 and PM10 in Different Functional Street Canyons in Hefei City [J]. Ecology and Environment, 2022, 31(3): 524-534. |
[14] | WEN Dian, ZHAO Peihua, CHEN Chuguo, LI Furong, DU Ruiying, HUANG Yongdong, LI Lei, WANG Fuhua. Study on Safety Threshold of Soil Cadmium in the Vegetable Producing Areas of the Pearl River Delta [J]. Ecology and Environment, 2022, 31(3): 603-609. |
[15] | ZHAO Rui, ZHAN Liping, ZHOU Liang, ZHANG Junke. Identification of Driving Factors of PM2.5 Based on Geographic Detector Combined with Geographically Weighted Ridge Regression [J]. Ecology and Environment, 2022, 31(2): 307-317. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn