Ecology and Environment ›› 2022, Vol. 31 ›› Issue (3): 603-609.DOI: 10.16258/j.cnki.1674-5906.2022.03.019
• Research Articles • Previous Articles Next Articles
WEN Dian1,2(), ZHAO Peihua1, CHEN Chuguo1, LI Furong1,2, DU Ruiying1,2,*(
), HUANG Yongdong1,2, LI Lei3, WANG Fuhua1,2
Received:
2021-09-22
Online:
2022-03-18
Published:
2022-05-25
Contact:
DU Ruiying
文典1,2(), 赵沛华1, 陈楚国1, 李富荣1,2, 杜瑞英1,2,*(
), 黄永东1,2, 李蕾3, 王富华1,2
通讯作者:
杜瑞英
作者简介:
文典(1988年生),男,助理研究员,硕士,主要从事产地环境与农产品质量安全研究。E-mail: wendian126@126.com
基金资助:
CLC Number:
WEN Dian, ZHAO Peihua, CHEN Chuguo, LI Furong, DU Ruiying, HUANG Yongdong, LI Lei, WANG Fuhua. Study on Safety Threshold of Soil Cadmium in the Vegetable Producing Areas of the Pearl River Delta[J]. Ecology and Environment, 2022, 31(3): 603-609.
文典, 赵沛华, 陈楚国, 李富荣, 杜瑞英, 黄永东, 李蕾, 王富华. 珠三角典型区域蔬菜产地土壤Cd安全阈值研究[J]. 生态环境学报, 2022, 31(3): 603-609.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.03.019
蔬菜品种 Varieties | 样品数量 Sample numbers | 蔬菜品种 Varieties | 样品数量 Sample numbers |
---|---|---|---|
菜心 Brassica Parachinensis | 26 | 番茄 Solanum lycopersicum | 23 |
韭菜 Allium tuberosum | 27 | 辣椒 Capsicum annuum | 24 |
生菜 Lactuca sativa | 24 | 茄子 Solanum melongena | 20 |
小白菜 Brassica chinensi | 27 | 冬瓜 Benincasa hispida | 23 |
小葱 Allium schoenoprasum | 20 | 黄瓜 Cucumis sativus | 20 |
白萝卜 Raphanus sativus | 26 | 节瓜 Benincasa hispida var. Chiehqua | 20 |
胡萝卜 Daucus carota | 20 | 苦瓜 Momordica charantia | 20 |
芋头 Colocasia esculenta | 20 | 丝瓜 Luffa cylindrica | 20 |
Table 1 Varieties and quantities of vegetable samples
蔬菜品种 Varieties | 样品数量 Sample numbers | 蔬菜品种 Varieties | 样品数量 Sample numbers |
---|---|---|---|
菜心 Brassica Parachinensis | 26 | 番茄 Solanum lycopersicum | 23 |
韭菜 Allium tuberosum | 27 | 辣椒 Capsicum annuum | 24 |
生菜 Lactuca sativa | 24 | 茄子 Solanum melongena | 20 |
小白菜 Brassica chinensi | 27 | 冬瓜 Benincasa hispida | 23 |
小葱 Allium schoenoprasum | 20 | 黄瓜 Cucumis sativus | 20 |
白萝卜 Raphanus sativus | 26 | 节瓜 Benincasa hispida var. Chiehqua | 20 |
胡萝卜 Daucus carota | 20 | 苦瓜 Momordica charantia | 20 |
芋头 Colocasia esculenta | 20 | 丝瓜 Luffa cylindrica | 20 |
土壤pH Soil pH | 样品数量 Sample number | w(Cd)/ (mg∙kg-1) | 变异系数 Coefficient of variation/% | 超标率 Over standard rate/% |
---|---|---|---|---|
pH≤5.5 | 123 | 0.172±0.096 | 56.1 | 5.7 |
5.5<pH≤6.5 | 156 | 0.259±0.271 | 105.0 | 13.5 |
6.5<pH≤7.5 | 81 | 0.384±0.419 | 109.3 | 24.7 |
总计 Total | 360 | 0.257±0.283 | 110.2 | 13.3 |
Table 2 Cd mass fraction in the soil
土壤pH Soil pH | 样品数量 Sample number | w(Cd)/ (mg∙kg-1) | 变异系数 Coefficient of variation/% | 超标率 Over standard rate/% |
---|---|---|---|---|
pH≤5.5 | 123 | 0.172±0.096 | 56.1 | 5.7 |
5.5<pH≤6.5 | 156 | 0.259±0.271 | 105.0 | 13.5 |
6.5<pH≤7.5 | 81 | 0.384±0.419 | 109.3 | 24.7 |
总计 Total | 360 | 0.257±0.283 | 110.2 | 13.3 |
蔬菜品种 Variety | w(Cd)/ (mg∙kg-1) | 变异系数 Coefficient of variation/% | 超标率 Over standard rate/% |
---|---|---|---|
芋头 C. esculenta | 0.069±0.023 | 33.8 | 5.0 |
生菜 L. sativa | 0.057±0.037 | 64.8 | — |
韭菜 A. tuberosum | 0.051±0.064 | 125.4 | 33.3 |
小白菜 A. schoenoprasum | 0.049±0.049 | 100.9 | 3.7 |
胡萝卜 D. carota | 0.045±0.020 | 44.7 | — |
茄子 S. melongena | 0.040±0.019 | 48.3 | 25.0 |
菜心 B. Parachinensis | 0.034±0.028 | 82.1 | 11.5 |
小葱 A. schoenoprasum | 0.030±0.019 | 62.2 | 15.0 |
辣椒 C. annuum | 0.022±0.017 | 75.8 | 4.2 |
番茄 S. lycopersicum | 0.021±0.013 | 61.3 | 4.3 |
白萝卜 R. sativus | 0.019±0.013 | 68.6 | — |
丝瓜 L. cylindrica | 0.008±0.004 | 55.6 | — |
黄瓜 C. sativus | 0.007±0.004 | 65.2 | — |
苦瓜 M. charantia | 0.005±0.004 | 74.5 | — |
节瓜 B. hispida var. Chiehqua | 0.004±0.003 | 72.8 | — |
冬瓜 B. hispida | 0.002±0.001 | 49.5 | — |
Table 3 Cd mass fraction in the vegetable
蔬菜品种 Variety | w(Cd)/ (mg∙kg-1) | 变异系数 Coefficient of variation/% | 超标率 Over standard rate/% |
---|---|---|---|
芋头 C. esculenta | 0.069±0.023 | 33.8 | 5.0 |
生菜 L. sativa | 0.057±0.037 | 64.8 | — |
韭菜 A. tuberosum | 0.051±0.064 | 125.4 | 33.3 |
小白菜 A. schoenoprasum | 0.049±0.049 | 100.9 | 3.7 |
胡萝卜 D. carota | 0.045±0.020 | 44.7 | — |
茄子 S. melongena | 0.040±0.019 | 48.3 | 25.0 |
菜心 B. Parachinensis | 0.034±0.028 | 82.1 | 11.5 |
小葱 A. schoenoprasum | 0.030±0.019 | 62.2 | 15.0 |
辣椒 C. annuum | 0.022±0.017 | 75.8 | 4.2 |
番茄 S. lycopersicum | 0.021±0.013 | 61.3 | 4.3 |
白萝卜 R. sativus | 0.019±0.013 | 68.6 | — |
丝瓜 L. cylindrica | 0.008±0.004 | 55.6 | — |
黄瓜 C. sativus | 0.007±0.004 | 65.2 | — |
苦瓜 M. charantia | 0.005±0.004 | 74.5 | — |
节瓜 B. hispida var. Chiehqua | 0.004±0.003 | 72.8 | — |
冬瓜 B. hispida | 0.002±0.001 | 49.5 | — |
蔬菜名称 Varieties | 富集系数 Bioconcentration factors/% | 变异系数 Coefficient of variation/ % | 蔬菜名称 Varieties | 富集系数Bioconcentration factors/% | 变异系数 Coefficient of variation/ % |
---|---|---|---|---|---|
芋头 C. esculenta | 32.2±13.4 | 41.7 | 番茄 S. lycopersicum | 13.6±9.7 | 71.8 |
胡萝卜 D. carota | 31.8±13.5 | 42.3 | 辣椒 C. annuum | 9.9±5.3 | 53.8 |
生菜 L. sativa | 25.7±17.0 | 66.2 | 白萝卜 R. sativus | 6.8±3.9 | 56.5 |
茄子 S. melongena | 21.8±13.4 | 61.6 | 丝瓜 L. cylindrica | 4.0±2.5 | 60.8 |
小白菜 A. schoenoprasum | 21.0±10.2 | 48.3 | 黄瓜 C. sativus | 3.3±1.6 | 47.6 |
小葱 A. schoenoprasum | 18.2±17.5 | 96.1 | 苦瓜 M. charantia | 2.3±1.3 | 58.8 |
菜心 B. Parachinensis | 16.8±9.8 | 58.1 | 节瓜 B. hispida var. Chiehqua | 1.7±0.9 | 54.2 |
韭菜 A. tuberosum | 14.4±10.8 | 74.7 | 冬瓜 B. hispida | 1.1±0.4 | 36.6 |
Table 4 Bioconcentration factors of soil Cd for the different vegetable varieties
蔬菜名称 Varieties | 富集系数 Bioconcentration factors/% | 变异系数 Coefficient of variation/ % | 蔬菜名称 Varieties | 富集系数Bioconcentration factors/% | 变异系数 Coefficient of variation/ % |
---|---|---|---|---|---|
芋头 C. esculenta | 32.2±13.4 | 41.7 | 番茄 S. lycopersicum | 13.6±9.7 | 71.8 |
胡萝卜 D. carota | 31.8±13.5 | 42.3 | 辣椒 C. annuum | 9.9±5.3 | 53.8 |
生菜 L. sativa | 25.7±17.0 | 66.2 | 白萝卜 R. sativus | 6.8±3.9 | 56.5 |
茄子 S. melongena | 21.8±13.4 | 61.6 | 丝瓜 L. cylindrica | 4.0±2.5 | 60.8 |
小白菜 A. schoenoprasum | 21.0±10.2 | 48.3 | 黄瓜 C. sativus | 3.3±1.6 | 47.6 |
小葱 A. schoenoprasum | 18.2±17.5 | 96.1 | 苦瓜 M. charantia | 2.3±1.3 | 58.8 |
菜心 B. Parachinensis | 16.8±9.8 | 58.1 | 节瓜 B. hispida var. Chiehqua | 1.7±0.9 | 54.2 |
韭菜 A. tuberosum | 14.4±10.8 | 74.7 | 冬瓜 B. hispida | 1.1±0.4 | 36.6 |
蔬菜品种 Varieties | 回归方程 Regression equation | r2 | 土壤Cd 安全阈值 Calculated soil Cd threshold/(mg∙kg-1) |
---|---|---|---|
韭菜 A. tuberosum | y=0.00027+ 0.15x | 0.808** | 0.33 |
胡萝卜 D. carota | y=0.008+ 0.25x | 0.387** | 0.37 |
小葱 A. schoenoprasum | y=0.011+ 0.089x | 0.388** | 0.44 |
辣椒 C. annuum | y=0.0076+ 0.054x | 0.738** | 0.78 |
番茄 S. lycopersicum | y=0.012+ 0.039x | 0.582** | 0.98 |
丝瓜 L. cylindrica | y= -0.00093+ 0.045x | 0.231* | 1.13 |
黄瓜 C. sativus | y= -0.0017+ 0.043x | 0.473** | 1.20 |
苦瓜 M. charantia | y= -0.0037+ 0.042x | 0.451** | 1.28 |
小白菜 A. schoenoprasum | y=0.016+ 0.107x | 0.843** | 1.73 |
节瓜 B. hispida var. Chiehqua | y= -0.0018+ 0.027x | 0.447** | 1.92 |
生菜 L. sativa | y=0.036+ 0.061x | 0.507** | 2.69 |
菜心 B. Parachinensis | y=0.014+ 0.065x | 0.890** | 2.87 |
冬瓜 B. hispida | y= -0.00045+ 0.014x | 0.497** | 3.60 |
白萝卜 R. sativus | y=0.01+ 0.021x | 0.692** | 4.21 |
Table 5 Regression analysis of Cd content in vegetable-soil and calculation of soil Cd threshold for safe producing of vegetables
蔬菜品种 Varieties | 回归方程 Regression equation | r2 | 土壤Cd 安全阈值 Calculated soil Cd threshold/(mg∙kg-1) |
---|---|---|---|
韭菜 A. tuberosum | y=0.00027+ 0.15x | 0.808** | 0.33 |
胡萝卜 D. carota | y=0.008+ 0.25x | 0.387** | 0.37 |
小葱 A. schoenoprasum | y=0.011+ 0.089x | 0.388** | 0.44 |
辣椒 C. annuum | y=0.0076+ 0.054x | 0.738** | 0.78 |
番茄 S. lycopersicum | y=0.012+ 0.039x | 0.582** | 0.98 |
丝瓜 L. cylindrica | y= -0.00093+ 0.045x | 0.231* | 1.13 |
黄瓜 C. sativus | y= -0.0017+ 0.043x | 0.473** | 1.20 |
苦瓜 M. charantia | y= -0.0037+ 0.042x | 0.451** | 1.28 |
小白菜 A. schoenoprasum | y=0.016+ 0.107x | 0.843** | 1.73 |
节瓜 B. hispida var. Chiehqua | y= -0.0018+ 0.027x | 0.447** | 1.92 |
生菜 L. sativa | y=0.036+ 0.061x | 0.507** | 2.69 |
菜心 B. Parachinensis | y=0.014+ 0.065x | 0.890** | 2.87 |
冬瓜 B. hispida | y= -0.00045+ 0.014x | 0.497** | 3.60 |
白萝卜 R. sativus | y=0.01+ 0.021x | 0.692** | 4.21 |
[1] |
FONTANNAZ-AUJOULAT F, FROST M, SCHLUNDT J, 2019. WHO Five Keys to Safer Food communication campaign-Evidence-based simple messages with a global impact[J]. Food Control, 101: 53-57.
DOI URL |
[2] |
HU W Y, HUANG B, BORGGAARD O, et al., 2018. Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: Implications for safe food production[J]. Environmental Pollution, 241: 922-929.
DOI URL |
[3] |
LI F R, WANG X, WANG F H, et al., 2021. A risk-based approach for the safety analysis of eight trace elements in Chinese flowering cabbage (Brassica parachinensis L.) in China[J]. Journal of the Science of Food and Agriculture, 4(5): 1-8
DOI URL |
[4] |
LI F R, WEN D, WANG F H, et al., 2017. Derivation of soil Pb/Cd/As thresholds for safety of vegetable planting: A case study for pakchoi in Guangdong Province, China[J]. Journal of Integrative Agriculture, 18(1): 179-189
DOI URL |
[5] |
LIANG H, WU W L, ZHANG Y H, et al., 2018. Levels, temporal trend and health risk assessment of five heavy metals in fresh vegetables marketed in Guangdong Province of China during 2014-2017 [J]. Food Control, 92: 107-120.
DOI URL |
[6] |
MUHAMMAD R, SHAFAQAT A, MUHAMMAD A, et al., 2017. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 182: 90-105.
DOI URL |
[7] |
QIN G W, NIU Z D, YU J D, et al., 2021. Soil heavy metal pollution and food safety in China: Effect, sources and removing technology[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2020.129205.
DOI |
[8] |
RAI P K, LEE S S, ZHANG M, et al., 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management[J]. Environment International, 125: 365-385.
DOI URL |
[9] |
SMOLDERS E, OORTS K, SPRANG P V, et al., 2009. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards[J]. Environmental Toxicology and Chemistry, 28(8): 1633-1642.
DOI URL |
[10] |
SUN F F, WANG F H, WANG X, et al., 2013. Soil threshold values of total and available cadmium for vegetable growing based on field data in Guangdong province, South China[J]. Journal of the Science of Food and Agriculture, 93(8): 1967-1973.
DOI URL |
[11] |
WANG P, CHEN H, KOPITTKE P M, et al., 2019. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 249: 1038-1048.
DOI URL |
[12] |
WANG Y, SHEN H, XU L, et al., 2015. Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, DOI: 10.3389/fpls.2015.00293.
DOI |
[13] |
WU J H, SONG Q M, ZHOU J Y, et al., 2021. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa L. Cadmium accumulation: Influential factors and prediction model[J]. Ecotoxicology and Environmental Safety, DOI: 10.1016/j.ecoenv.2020.111420.
DOI |
[14] |
XIAO W D, YE X Z, ZHANG Q, et al., 2018. Evaluation of cadmium transfer from soil to leafy vegetables: Influencing factors, transfer models, and indication of soil threshold contents[J]. Ecotoxicology and Environmental Safety, 164: 355-362.
DOI URL |
[15] |
ZHOU H, YANG W T, ZHOU X, et al., 2016. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment[J]. International Journal of Environmental Research and Public Health, DOI: 10.3390/ijerph13030289.
DOI |
[16] | 董明明, 2021. 叶菜类蔬菜产地土壤镉生态安全阈值的研究[D]. 北京: 中国农业科学院. |
DONG M M, 2021. Study on ecological safety threshold of cadmium in soil of leafy vegetables producing area[D]. Beijing: Chinese Academy of Agricultural Sciences. | |
[17] | 高鑫, 颜蒙蒙, 曾希柏, 等, 2018. 京津冀地区设施土壤中不同蔬菜对镉的累积特征[J]. 农业环境科学学报, 37(11): 2541-2548. |
GAO X, YAN M M, ZENG X B, et al., 2018. Cadmium accumulation characteristics of different vegetables in greenhouse soils in the Beijing, Tianjin, and Hebei (BTH) area, China[J]. Journal of Agro-Environment Science, 37(11): 2541-2548. | |
[18] | 国家环境保护局, 1993. 环境背景值和环境容量研究[M]. 北京: 科学出版社. |
State Environmental Protection Administration, 1993. Study on environmental background value and environmental capacity[M]. Beijing: Science Press. | |
[19] | 国家市场监督管理总局, 2018. 水稻生产的土壤镉、铅、铬、汞、砷安全阈值: GB/T 36869-2018[S]. |
State Administration of Market Regulation, 2018. Safety threshold values of cadmium, lead, chromium, mercury, and arsenic in soils for rice production: GB/T 36869-2018[S]. | |
[20] | 国家市场监督管理总局, 2018. 种植根茎类蔬菜的旱地土壤镉、铅、铬、汞、砷安全阈值: GB/T 36783-2018[S]. |
State Administration of Market Regulation, 2018. Safety threshold values of cadmium, lead, chromium, mercury, and arsenic in upland soils for planting rootstalk vegetables: GB/T 36783-2018[S]. | |
[21] | 韩志轩, 王学求, 迟清华, 等, 2018. 珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 38(9): 3455-3463. |
HAN Z X, WANG X Q, CHI Q H, et al., 2018. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, south China[J]. China Environmental Science, 38(9): 3455-3463. | |
[22] | 胡霓红, 文典, 王富华, 等, 2012. 珠三角主要工业区周边蔬菜产地土壤重金属污染调查分析[J]. 热带农业科学, 32(4): 67-71. |
HU N H, WEN D, WANG F H, et al., 2012. Investigation and analysis of heavy metals in vegetable producing soils around main industrial areas in the Pearl River Delta[J]. Chinese Journal of Tropical Agriculture, 32(4): 67-71. | |
[23] | 李富荣, 李敏, 杜应琼, 等, 2018. 茄果类蔬菜对其产地土壤重金属的吸收富集与安全阈值研究[J]. 农产品质量与安全, 4(1): 52-58. |
LI F R, LI M, DU Y Q, et al., 2018. Solanaceous vegetable's absorption and accumulation of heavy metal in soil of producing area and its safety threshold[J]. Quality and Safety of Agro-products, 4(1): 52-58. | |
[24] | 李富荣, 李敏, 杜应琼, 等, 2017. 土壤重金属含量对3种常见菊科叶菜重金属累积的影响[J]. 安全与环境学报, 17(5): 2001-2007. |
LI F R, LI M, DU Y Q, et al., 2017. Effect of heavy metal contents in the soil on their pollution accumulation of the 3 kinds of composite leafy vegetables[J]. Journal of Safety and Environment, 17(5): 2001-2007. | |
[25] | 李富荣, 文典, 王富华, 等, 2016. 广东地区芸薹类叶菜-土壤镉污染相关性分析及土壤镉限量值研究[J]. 生态环境学报, 25(4): 705-710. |
LI F R, WEN D, WANG F H, et al., 2016. Correlation analysis of Cd pollution between soil and brassica leaf vegetables and the soil Cd safety threshold in Guangdong region[J]. Ecology and Environmental Sciences, 25(4): 705-710. | |
[26] | 李富荣, 徐爱平, 吴志超, 等, 2020. 大湾区根茎类蔬菜-农田土壤系统中10种重金属吸收特性及其种植安全性研究[J]. 生态环境学报, 29(6): 1251-1259. |
LI F R, XU A J, WU Z C, et al., 2020. Study on the absorption characteristics of 10 heavy metal elements and planting safety in the rootstock vegetable-farmland soil system in the Greater Bay area[J]. Ecology and Environmental Sciences, 29(6): 1251-1259. | |
[27] | 李想, 龙振华, 朱彦谚, 等, 2020. 东北设施叶菜类蔬菜镉铅污染安全生产分区研究[J]. 农业环境科学学报, 39(10): 2239-2248. |
LI X, LONG Z H, ZHU Y Y, et al., 2020. Zoning of cadmium and lead pollution for the safe production of facility leafy vegetables in northeast China[J]. Journal of Agro-Environment Science, 39(10): 2239-2248. | |
[28] | 刘阳泽, 刘毅, 李天魁, 等, 2021. 部分国家农用地土壤环境质量标准体系研究[J]. 生态毒理学报, 16(01): 66-73. |
LIU Y Z, LIU Y, LI T K, et al., 2021. Study on soil environmental quality standards systems of agricultural land in several countries[J]. Asian Journal of Eco-toxicology, 16(1): 66-73. | |
[29] | 刘香香, 文典, 王其枫, 等, 2012. 广东省不同种类蔬菜与土壤镉污染相关性及阈值研究[J]. 中国农学通报, 28(10): 109-115. |
LIU X X, WEN D, WANG Q F, et al., 2012. Study on the relationship between soil Cd pollution and Cd contents in different kinds of vegetables and pollution threshold of soil in Guangdong Province[J]. Chinese Agricultural Science Bulletin, 28(10): 109-115. | |
[30] | 牛计伟, 杜艳君, 张建鹏, 等, 2018. 广东省农田土壤铅、镉、铬等重金属风险评估研究[J]. 环境卫生学杂志, 8(3): 184-190. |
NIU J W, DU Y J, ZHANG J P, et al., 2018. Health risk assessment on exposure to heavy metals from farmland in Guangdong Province[J]. Journal of Environmental Hygiene, 8(3): 184-190. | |
[31] | 欧阳喜辉, 赵玉杰, 刘凤枝, 等, 2008. 不同种类蔬菜对土壤镉吸收能力的研究[J]. 农业环境科学学报, 8(1): 67-70. |
OUYANG X H, ZHAO Y J, LIU F Z, et al., 2008. Absorption ability of different types of vegetables for soil Cd in Beijing[J]. Journal of Agro-Environment Science, 8(1): 67-70. | |
[32] | 生态环境部, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618-2018 [S]. |
Ministry of Ecology and Environment of the People's Republic of China, 2018. Soil environmental quality risk control standard for soil contamination of agricultural land: GB 15618-2018 [S]. | |
[33] | 孙芳芳, 文典, 王富华, 等, 2012. 典型菜地土壤汞在小白菜和胡萝卜可食部位的富集规律[J]. 生态环境学报, 21(9): 1630-1634. |
SUN F F, WEN D, WANG F H, et al., 2012. Accumulation of mercury in edible parts of pakchoi and carrot at typical vegetable plots[J]. Ecology and Environmental Sciences, 21(9): 1630-1634. | |
[34] | 魏复盛, 杨国治, 蒋德珍, 等, 1991. 中国土壤元素背景值基本统计量及其特征[J]. 中国环境监测 (1): 1-6. |
WEI F S, YANG G Z, JIANG D Z, et al., 1991. Basic statistics and characteristics of soil element background values in China[J]. Environmental Monitoring in China (1): 1-6. | |
[35] | 文典, 胡霓红, 赵凯, 等, 2012a. 小白菜对土壤中5种重金属的富集特征及土壤安全临界值的研究[J]. 热带作物学报, 33(11): 1942-1948. |
WEN D, HU N H, ZHAO K, et al., 2012. Five kinds of heavy mentals enrichment characteristics in Pakchoi (Brassica chinensis L.) and the critical values in the soil for pakchoi production[J]. Chinese Journal of Tropical Crops, 33(11): 1942-1948. | |
[36] | 文典, 刘香香, 王其枫, 等, 2012b. 菜薹 (菜心) 对土壤中重金属的富集特征及产地土壤安全临界值[J]. 中国蔬菜, 4(12): 83-90. |
WEN D, LIU X X, WANG Q F, et al., 2012. Heavy metal accumulation characteristics and environmental critical values in flowering cabbage (Brassica campestris L.) Production Area for Food Security[J]. China Vegetables, 4(12): 83-90. | |
[37] | 文典, 严冬, 赵沛华, 等, 2018. 快速高通量全消解ICP-MS法测定《全国土壤污染状况详查》项目中14种元素[J]. 环境化学, 37(6): 1432-1435. |
WEN D, YAN D, ZHAO P H, et al., 2018. Fast determination of 14 elements in China soil pollution survey with high throughput full digestion method by ICPMS[J]. Environmental Chemistry, 37(6): 1432-14350. | |
[38] | 许芮, 曹石, 刘猛, 等, 2020. 设施黄瓜菜田土壤镉污染预测模型及阈值研究[J]. 中国生态农业学报 (中英文), 28(10): 1630-1636. |
XU R, CAO S, LIU M, et al., 2020. Prediction model and threshold of soil cadmium contamination in cucumber greenhouses[J]. Chinese Journal of Eco-Agriculture, 28(10): 1630-1636. | |
[39] | 薛永, 王苑螈, 姚泉洪, 等, 2014. 植物对土壤重金属镉抗性的研究进展[J]. 生态环境学报, 23(3): 528-534. |
XUE Y, WANG Y Y, YAO Q H, et al., 2014. Research progress of plants resistance to heavy metal Cd in soil[J]. Ecology and Environmental Sciences, 23(3): 528-534. | |
[40] | 岳建华, 2012. 长株潭城市群土壤pH与重金属污染的研究[J]. 中国农学通报, 28(2): 267-272. |
YUE J H, 2012. The correlation of heavy metal with ph in soils from Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Chinese Agricultural Science Bulletin, 28(2): 267-272. | |
[41] | 章海波, 骆永明, 李远, 等, 2014. 中国土壤环境质量标准中重金属指标的筛选研究[J]. 土壤学报, 51(3): 429-438. |
ZHANG H B, LUO Y M, LI Y, et al., 2014. Screening of criteria for heavy metals for revision of the national standard for soil envir onmental quality of China[J]. Acta Pedologica Sinica, 51(3): 429-438. | |
[42] | 中华人民共和国国家卫生和计划生育委员会, 2017. 食品安全国家标准食品中污染物限量: GB 2762-2017 [S]. |
National Health and Family Planning Commission of China, 2017. National standard for food safety-Limits of contaminants in foods: GB 2762-2017 [S]. |
[1] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[2] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[3] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[4] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[5] | XIAO Yihua, FU Zhigao, XU Han, SHI Xin, TANG Haiming, CHEN Bufeng. Effects of Urbanization on Leaf Functional Traits of Different Functional Groups in Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1783-1793. |
[6] | JIANG Ming, ZHANG Ziyang, LI Tingting, LIN Boji, ZHANG Zhengen, LIAO Tong, YUAN Luan, PAN Suhong, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope [J]. Ecology and Environment, 2022, 31(9): 1840-1848. |
[7] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[8] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1590-1598. |
[9] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[10] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[11] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[12] | LIANG Junfen, CAI Xun, FENG Shanshan, TAO Liang. Evaluation of the Development Degree and Restriction Factors of Agricultural and Rural Modernization in the Pearl River Delta Region [J]. Ecology and Environment, 2022, 31(8): 1680-1689. |
[13] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[14] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[15] | SHI Hanzhi, JIANG Qi, LIU Fan, WEN Dian, HUANG Yongdong, DENG Tenghaobo, WANG Xu, XU Aiping, LI Furong, WU Zhichao, LI Meixia, PENG Jinfen, DU Ruiying. Effects of Returning Rice Stubble to Field on Cadmium Accumulation in Soil and Rice [J]. Ecology and Environment, 2022, 31(2): 363-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn