Ecology and Environment ›› 2022, Vol. 31 ›› Issue (9): 1840-1848.DOI: 10.16258/j.cnki.1674-5906.2022.09.014
• Research Articles • Previous Articles Next Articles
JIANG Ming1(), ZHANG Ziyang2, LI Tingting2, LIN Boji2, ZHANG Zhengen2, LIAO Tong1, YUAN Luan1, PAN Suhong3, LI Jun2,*(
), ZHANG Gan2
Received:
2022-08-18
Online:
2022-09-18
Published:
2022-11-07
Contact:
LI Jun
江明1(), 张子洋2, 李婷婷2, 林勃机2, 张正恩2, 廖彤1, 袁鸾1, 潘苏红3, 李军2,*(
), 张干2
通讯作者:
李军
作者简介:
江明(1977年生),男,高级工程师,硕士,主要研究方向环境空气质量监测与研究。E-mail: jm787@139.com
基金资助:
CLC Number:
JIANG Ming, ZHANG Ziyang, LI Tingting, LIN Boji, ZHANG Zhengen, LIAO Tong, YUAN Luan, PAN Suhong, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope[J]. Ecology and Environment, 2022, 31(9): 1840-1848.
江明, 张子洋, 李婷婷, 林勃机, 张正恩, 廖彤, 袁鸾, 潘苏红, 李军, 张干. 基于氮同位素的珠三角典型地区大气PM2.5中NH4+来源解析[J]. 生态环境学报, 2022, 31(9): 1840-1848.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.09.014
Figure 1 Temperature, humidity, wind speed and direction, NH4+ concentration and its proportion to PM2.5, δ15N-NH4+and δ15N-NH3 values during sampling periods
采样时段 Period | NH4+与NO3-的相关性 Correlation between NH4+ and NO3- | NH4+与NO3-的相关性SO42- Correlation between NH4+ and SO42- |
---|---|---|
秋天 Autumn | r2=0.64; P<0.001 | r2=0.39; P=0.031 |
冬天 Winter | r2=0.85; P<0.001 | r2=0.52; P<0.001 |
春天 Spring | r2=0.76; P<0.001 | r2=0.55; P<0.001 |
夏天 Summer | r2=0.34; P=0.076 | r2=0.36; P=0.065 |
年均 Annual | r2=0.77; P<0.001 | r2=0.44; P<0.001 |
Table 1 Correlation between NH4+ and NO3-, SO42-
采样时段 Period | NH4+与NO3-的相关性 Correlation between NH4+ and NO3- | NH4+与NO3-的相关性SO42- Correlation between NH4+ and SO42- |
---|---|---|
秋天 Autumn | r2=0.64; P<0.001 | r2=0.39; P=0.031 |
冬天 Winter | r2=0.85; P<0.001 | r2=0.52; P<0.001 |
春天 Spring | r2=0.76; P<0.001 | r2=0.55; P<0.001 |
夏天 Summer | r2=0.34; P=0.076 | r2=0.36; P=0.065 |
年均 Annual | r2=0.77; P<0.001 | r2=0.44; P<0.001 |
[1] | BERNER A H, DAVID FELIX J, 2020. Investigating ammonia emissions in a coastal urban airshed using stable isotope techniques[J]. Science of the Total Environment, 707: 134952. |
[2] | BHATTARAI N, WANG S X, PAN Y P, et al., 2021. δ15N-stable isotope analysis of NHx: An overview on analytical measurements, source sampling and its source apportionment[J]. Frontiers of Environmental Science & Engineering, 15(6): 49-59. |
[3] | BHATTARAI N, WANG S X, XU Q C, et al., 2020. Sources of gaseous NH3 in urban Beijing from parallel sampling of NH3 and NH4+ their nitrogen isotope measurement and modeling[J]. Science of the Total Environment, 747: 141361. |
[4] |
BREIMAN L, 2001. Random forests[J]. Machine Learning, 45(1): 5-32.
DOI URL |
[5] |
CHANG D, WANG Z, GUO J, et al., 2019. Characterization of organic aerosols and their precursors in southern China during a severe haze episode in January 2017[J]. Science of the Total Environment, 691: 101-111.
DOI URL |
[6] |
CHANG Y H, ZOU Z, ZHANG Y L, et al., 2019. Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity[J]. Environmental Science & Technology, 53(4): 1822-1833.
DOI URL |
[7] | CHEN Z X, PEI C L, LIU J W, et al., 2022. Non-agricultural source dominates the ammonium aerosol in the largest city of South China based on the vertical δ15N measurements[J]. Science of the Total Environment, 848: 157750. |
[8] |
ELLIOTT E M, YU Z J, COLE A S, et al., 2019. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing[J]. Science of the Total Environment, 662: 393-403.
DOI URL |
[9] |
FARREN N J, DAVISON J, ROSE R A, et al., 2020. Underestimated ammonia emissions from road vehicles[J]. Environmental Science & Technology, 54(24): 15689-15697.
DOI URL |
[10] |
FELIX J D, ELLIOTT E M, GAY D A., 2017. Spatial and temporal patterns of nitrogen isotopic composition of ammonia at U.S. ammonia monitoring network sites[J]. Atmospheric Environment, 150: 434-442.
DOI URL |
[11] |
FELIX J D, ELLIOTT E M, GISH T J, et al., 2013. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach[J]. Rapid Commun Mass Spectrom, 27(20): 2239-46.
DOI URL |
[12] |
FELIX J D, ELLIOTT E M, GISH T, et al., 2014. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios[J]. Atmospheric Environment, 95: 563-570.
DOI URL |
[13] |
GE B Z, XU X B, MA Z Q, et al., 2019. Role of ammonia on the feedback between AWC and inorganic aerosol formation during heavy pollution in the North China Plain[J]. Earth and Space Science, 6(9): 1675-1693.
DOI URL |
[14] |
GU B J, ZHANG L, VAN DINGENEN R, et al., 2021. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution[J]. Science, 374(6568): 758-762.
DOI URL |
[15] |
HODAS N, SULLIVAN A P, SKOG K, et al., 2014. Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation[J]. Environmental Science & Technology, 48(19): 11127-36.
DOI URL |
[16] |
HOU L L, DAI Q L, SONG C B, et al., 2022. Revealing drivers of haze pollution by explainable machine learning[J]. Environmental Science & Technology, 9(2): 112-119.
DOI URL |
[17] |
HUANG C, HU Q Y, LOU S R, et al., 2018a. Ammonia emission measurements for light-duty gasoline vehicles in China and implications for emission modeling[J]. Environmental Science & Technology, 52(19): 11223-11231.
DOI URL |
[18] |
HUANG R J, ZHANG Y L, BOZZETTI C, et al., 2014. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 514(7521): 218-22.
DOI URL |
[19] | HUANG X F, ZOU B B, HE L Y, et al., 2018b. Exploration of PM2.5sources on the regional scale in the Pearl River Delta based on ME-2 modeling[J]. Atmospheric Chemistry and Physics, 18(16): 11563-11580. |
[20] | HUANG X, SONG Y, LI M M, et al., 2012. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 26(1): GB1030-1-GB1030. |
[21] |
KAWASHIMA H, KURAHASHI T, 2011. Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at Yurihonjo, Japan: Implications for nitrogen sources[J]. Atmospheric Environment, 45(35): 6309-6316.
DOI URL |
[22] |
KIRKBY J, CURTIUS J, ALMEIDA J, et al., 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation[J]. Nature, 476(7361): 429-33.
DOI URL |
[23] |
LIU D W, FANG Y T, TU Y, et al., 2014. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance[J]. Analytical Chemistry, 86(8): 3787-92.
DOI PMID |
[24] |
LIU J W, DING P, ZONG Z, et al., 2018. Evidence of Rural and Suburban Sources of Urban Haze Formation in China: A case study from the Pearl River Delta Region[J]. Journal of Geophysical Research: Atmospheres, 123(9): 4712-4726.
DOI URL |
[25] |
LÜ S J, WANG F L, WU C, et al., 2022. Gas-to-Aerosol Phase Partitioning of Atmospheric Water-Soluble Organic Compounds at a Rural Site in China: An Enhancing Effect of NH3 on SOA Formation[J]. Environmental Science & Technology, 56(7): 3915-3924.
DOI URL |
[26] |
MENG W J, ZHONG Q R, YUN X, et al., 2017. Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with new data from the residential and transportation sectors[J]. Environmental Science & Technology, 51(5): 2821-2829.
DOI URL |
[27] |
PAN Y P, TIAN S L, LIU D W, et al., 2016. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from 15N-Stable Isotope in size-resolved aerosol ammonium[J]. Environmental Science & Technology, 50(15): 8049-56.
DOI URL |
[28] |
PAN Y P, TIAN S L, LIU D W, et al., 2018a. Source apportionment of aerosol ammonium in an ammonia-rich atmosphere: an isotopic study of summer clean and hazy days in urban Beijing[J]. Journal of Geophysical Research: Atmospheres, 123(10): 5681-5689.
DOI URL |
[29] |
PAN Y P, TIAN S L, LIU D W, et al., 2018b. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere[J]. Environment Pollution, 238: 942-947.
DOI URL |
[30] |
RENNER E, WOLKE R, 2010. Modelling the formation and atmospheric transport of secondary inorganic aerosols with special attention to regions with high ammonia emissions[J]. Atmospheric Environment, 44(15): 1904-1912.
DOI URL |
[31] |
WU C, LÜ S J, WANG F L, et al., 2022. Ammonia in urban atmosphere can be substantially reduced by vehicle emission control: A case study in Shanghai, China[J]. Journal of Environmental Sciences, 126: 754-760.
DOI URL |
[32] | XIAO H W, WU J F, LUO L, et al., 2020. Enhanced biomass burning as a source of aerosol ammonium over cities in central China in autumn[J]. Environment Pollution, 266(Part 3): 115278. |
[33] | YAN F H, CHEN W H, JIA S G, et al., 2020. Stabilization for the secondary species contribution to PM2.5in the Pearl River Delta (PRD) over the past decade, China: A meta-analysis[J]. Atmospheric Environment, 242: 117817. |
[34] |
ZHANG Y, BENEDICT K B, TANG A, et al., 2020. Persistent nonagricultural and periodic agricultural emissions dominate sources of ammonia in urban Beijing: Evidence from 15N Stable Isotope in vertical profiles[J]. Environmental Science & Technology, 54(1): 102-109.
DOI URL |
[35] |
ZHOU Y, CHENG S Y, LANG J L, et al., 2015. A comprehensive ammonia emission inventory with high-resolution and its evaluation in the Beijing-Tianjin-Hebei (BTH) region, China[J]. Atmospheric Environment, 106: 305-317.
DOI URL |
[36] | 丁萌萌, 周健楠, 刘保献, 等, 2017. 2015年北京城区大气PM2.5中NH4+、NO3-、SO42-及前体气体的污染特征[J]. 环境科学, 38(4): 1307-1316. |
DING M M, ZHOU J N, LIU B X, et al., 2017. Pollution characteristics of NH4+, NO3-, SO42- in PM2.5 and Their Precursor Gases During 2015 in an Urban Area of Beijing[J]. Environmental Science, 38(4): 1307-1316. | |
[37] | 廖碧婷, 吴兑, 常越, 等, 2014. 广州地区SO42-, NO3-, NH4+与相关气体污染特征研究[J]. 环境科学学报, 34(6): 1551-1559. |
LIAO B T, WU D, CHANG Y, et al., 2014. Characteristics of particulate SO42-, NO3-, NH4+ and related gaseous pollutants in Guangzhou[J]. Acta Scientiae Circumstantiae, 34(6): 1551-1559. | |
[38] | 沈兴玲, 尹沙沙, 郑君瑜, 等, 2014. 广东省人为源氨排放清单及减排潜力研究[J]. 环境科学学报, 34(1): 43-53. |
SHEN X L, YIN S S, ZHENG J Y, et al., 2014. Anthropogenic ammonia emission inventory and its mitigation potential in Guangdong Province[J]. Acta Scientiae Circumstantiae, 34(1): 43-53. | |
[39] | 王琛, 尹沙沙, 于世杰, 等. 2018. 河南省2013年大气氨排放清单建立及分布特征[J]. 环境科学, 39(3): 1023-1030. |
WANG C, YIN S S, YU S J, et al., 2018. A 2013-based atmospheric ammonia emission inventory and its characteristic of spatial distribution in Henan Province[J]. Environmental Science, 39(3): 1023-1030. | |
[40] | 尹沙沙, 郑君瑜, 张礼俊, 等, 2010. 珠江三角洲人为氨源排放清单及特征[J]. 环境科学, 31(5): 1146-1151. |
YIN S S, ZHENG J Y, ZHANG L J, et al., 2010. Anthropogenic ammonia emission inventory and characteristics in the Pearl River Delta Region[J]. Environmental Science, 31(5): 1146-1151. | |
[41] |
赵艳艳, 张晓平, 陈明星, 等, 2021. 中国城市空气质量的区域差异及归因分析[J]. 地理学报, 76(11): 2814-2829
DOI |
ZHAO Y Y, ZHANG X P, CHEN M X, et al., 2021. Regional differences and attribution analysis of urban air quality in China[J]. Acta Geographica Sinica, 76(11): 2814-2829. | |
[42] | 庄志, 胡婧, 罗笠, 等, 2022. 利用NH4+浓度及其同位素值分析西安污染物来源[J]. 应用化工, 51(5): 1351-1355, 1359. |
ZHUANG Z, HU Q, LUO L, et al., 2022. Using NH4+ concentration and its isotope value to analyze the source of pollutants in Xi’an[J]. Applied Chemical Industry, 51(5): 1351-1355, 1359. |
[1] | DONG Jiefang, DENG Chun, ZHANG Zhongwu. Spatio-temporal Evolution and Population Exposure Risk to PM2.5 in the Weihe River Basin [J]. Ecology and Environment, 2023, 32(6): 1078-1088. |
[2] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environment, 2023, 32(5): 956-968. |
[3] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[4] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[5] | XIAO Yihua, FU Zhigao, XU Han, SHI Xin, TANG Haiming, CHEN Bufeng. Effects of Urbanization on Leaf Functional Traits of Different Functional Groups in Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1783-1793. |
[6] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1590-1598. |
[7] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[8] | LIANG Junfen, CAI Xun, FENG Shanshan, TAO Liang. Evaluation of the Development Degree and Restriction Factors of Agricultural and Rural Modernization in the Pearl River Delta Region [J]. Ecology and Environment, 2022, 31(8): 1680-1689. |
[9] | WEI Xiaofeng, HAN Hong, YAN Xuejun, WANG Zaifeng, LI Shengzeng, TIAN Yong, LIANG Di, MA Mingliang, ZHANG Guiqin. Source Apportionment of PM2.5 during Heavy Pollution Process in Ji'nan Based on Satellite Remote Sensing and CMB Model [J]. Ecology and Environment, 2022, 31(6): 1175-1183. |
[10] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[11] | WANG Wei, CHENG Xinyue. Analysis of Temporal and Spatial Distribution Characteristics and Influencing Factors of PM2.5 and PM10 in Different Functional Street Canyons in Hefei City [J]. Ecology and Environment, 2022, 31(3): 524-534. |
[12] | WEN Dian, ZHAO Peihua, CHEN Chuguo, LI Furong, DU Ruiying, HUANG Yongdong, LI Lei, WANG Fuhua. Study on Safety Threshold of Soil Cadmium in the Vegetable Producing Areas of the Pearl River Delta [J]. Ecology and Environment, 2022, 31(3): 603-609. |
[13] | ZHAO Rui, ZHAN Liping, ZHOU Liang, ZHANG Junke. Identification of Driving Factors of PM2.5 Based on Geographic Detector Combined with Geographically Weighted Ridge Regression [J]. Ecology and Environment, 2022, 31(2): 307-317. |
[14] | JIANG Bin, CHEN Duohong, ZHANG Tao, YUAN Luan, ZHOU Yan, SHEN Jing, ZHANG Chunlin, WANG Boguang. Characteristics and Sources of Carbonaceous Aerosols during the Crop Straw Burning Seasons in Southern China [J]. Ecology and Environment, 2022, 31(12): 2358-2366. |
[15] | XING Ran, SHEN Guofeng, CHENG Hefa, TAO Shu. Changes of Residential Energy Structure and Regional Pollutant Emissions in Rural Areas of Northeast China [J]. Ecology and Environment, 2022, 31(12): 2367-2373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn