Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 670-678.DOI: 10.16258/j.cnki.1674-5906.2022.04.004
• Research Articles • Previous Articles Next Articles
FENG Ling1,2(), YU Lifei1,2,*(
), WANG Yang1,2, ZHANG Limin1,3, ZHAO Qing1,2, LI Fangbing1,2
Received:
2021-09-26
Online:
2022-04-18
Published:
2022-06-22
Contact:
YU Lifei
冯凌1,2(), 喻理飞1,2,*(
), 王阳1,2, 张丽敏1,3, 赵庆1,2, 李方兵1,2
通讯作者:
喻理飞
作者简介:
冯凌(1993年生),女,硕士研究生,研究方向为植物生态学。E-mail: 1047600511@qq.com
基金资助:
CLC Number:
FENG Ling, YU Lifei, WANG Yang, ZHANG Limin, ZHAO Qing, LI Fangbing. The Effects of the Functional Redundancy and Functional Diversity on the Community Stability in Different Stages of the Plant Communities Restoration in Karst Vegetation[J]. Ecology and Environment, 2022, 31(4): 670-678.
冯凌, 喻理飞, 王阳, 张丽敏, 赵庆, 李方兵. 喀斯特地区植被不同恢复阶段功能冗余和功能多样性对群落稳定性的影响[J]. 生态环境学报, 2022, 31(4): 670-678.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.004
样地号 Sample number | 经度 Longitude/(°) | 纬度 Latitude/(°) | 海拔 Altitude/m | 坡向 Aspect | 坡度 Slope/(°) | 样地面积 Area/m2 |
---|---|---|---|---|---|---|
Ⅰ-1 | 105.831440 | 26.121520 | 1299 | 西南 | 8 | 30×30 |
Ⅰ-2 | 105.831390 | 26.121816 | 1295 | 西南 | 10 | 30×30 |
Ⅰ-3 | 105.831403 | 26.121454 | 1294 | 西南 | 10 | 30×30 |
Ⅱ-1 | 105.830819 | 26.122143 | 1326 | 东南 | 39 | 30×30 |
Ⅱ-2 | 105.830733 | 26.122364 | 1332 | 东南 | 30 | 30×30 |
Ⅱ-3 | 105.835735 | 26.118240 | 1338 | 西 | 35 | 30×30 |
Ⅲ-1 | 105.831537 | 26.122391 | 1240 | 西南 | 30 | 30×30 |
Ⅲ-2 | 105.831661 | 26.122272 | 1346 | 西南 | 30 | 30×30 |
Ⅲ-3 | 105.832622 | 26.121553 | 1345 | 西北 | 33 | 30×30 |
Ⅳ-1 | 105.830527 | 26.116990 | 1298 | 西北 | 40 | 30×30 |
Ⅳ-2 | 105.762302 | 26.117216 | 1323 | 西北 | 41 | 30×30 |
Ⅳ-3 | 105.830356 | 26.116761 | 1343 | 西北 | 42 | 30×30 |
Ⅴ-1 | 105.828362 | 26.128199 | 1239 | 东南 | 45 | 30×30 |
Ⅴ-2 | 105.828721 | 26.128599 | 1286 | 东南 | 48 | 30×30 |
Ⅴ-3 | 105.829093 | 26.128678 | 1296 | 东南 | 50 | 30×30 |
Table1 General situation of the sample sites
样地号 Sample number | 经度 Longitude/(°) | 纬度 Latitude/(°) | 海拔 Altitude/m | 坡向 Aspect | 坡度 Slope/(°) | 样地面积 Area/m2 |
---|---|---|---|---|---|---|
Ⅰ-1 | 105.831440 | 26.121520 | 1299 | 西南 | 8 | 30×30 |
Ⅰ-2 | 105.831390 | 26.121816 | 1295 | 西南 | 10 | 30×30 |
Ⅰ-3 | 105.831403 | 26.121454 | 1294 | 西南 | 10 | 30×30 |
Ⅱ-1 | 105.830819 | 26.122143 | 1326 | 东南 | 39 | 30×30 |
Ⅱ-2 | 105.830733 | 26.122364 | 1332 | 东南 | 30 | 30×30 |
Ⅱ-3 | 105.835735 | 26.118240 | 1338 | 西 | 35 | 30×30 |
Ⅲ-1 | 105.831537 | 26.122391 | 1240 | 西南 | 30 | 30×30 |
Ⅲ-2 | 105.831661 | 26.122272 | 1346 | 西南 | 30 | 30×30 |
Ⅲ-3 | 105.832622 | 26.121553 | 1345 | 西北 | 33 | 30×30 |
Ⅳ-1 | 105.830527 | 26.116990 | 1298 | 西北 | 40 | 30×30 |
Ⅳ-2 | 105.762302 | 26.117216 | 1323 | 西北 | 41 | 30×30 |
Ⅳ-3 | 105.830356 | 26.116761 | 1343 | 西北 | 42 | 30×30 |
Ⅴ-1 | 105.828362 | 26.128199 | 1239 | 东南 | 45 | 30×30 |
Ⅴ-2 | 105.828721 | 26.128599 | 1286 | 东南 | 48 | 30×30 |
Ⅴ-3 | 105.829093 | 26.128678 | 1296 | 东南 | 50 | 30×30 |
功能性状 Functional traits | 数据类型 Data type | 特征类型 Feature type | 生态学意义 Ecology significant |
---|---|---|---|
光合途径 Photosynthetic pathway | 名称 | C3、C4 | 代表不同的净光合速率和光呼吸速率(罗红艺, |
生活型 Life form | 名称 | 多年生、一年或两年生 | 反映植物对环境的适应能力 |
生长型 Growth form | 名称 | 乔木、灌木、草本 | 反映植物对光的适应 |
叶表面特征 Leaf surface feature | 名称 | 光滑、具毛、具刺 | 反映植物对光的利用 |
株高 Plant height/m | 数值 | 反映植物对光、空间等资源的竞争能力(Westoby et al., | |
盖度 Coverage/% | 数值 | 反映植物对环境的适应能力 | |
叶厚 Leaf thickness/mm | 数值 | 反映植物保水能力的强弱 | |
叶面积 Leaf area/ cm2 | 数值 | 对叶的能量与水分平衡起着重要的作用(Ackerly et al., | |
叶长宽比 Leaf aspect ratio | 数值 | 代表叶片中的水分向叶片表面扩散的阻力大小或者距离长短 | |
比叶面积 Specific leaf area/(cm2∙g-1) | 数值 | 决定植物对光和CO2的获取能力(Li et al., | |
叶绿素 Chlorophyll/% | 数值 | 反映植物光合作用能力、环境胁迫、营养状态 |
Table 2 Plant functional types and classification
功能性状 Functional traits | 数据类型 Data type | 特征类型 Feature type | 生态学意义 Ecology significant |
---|---|---|---|
光合途径 Photosynthetic pathway | 名称 | C3、C4 | 代表不同的净光合速率和光呼吸速率(罗红艺, |
生活型 Life form | 名称 | 多年生、一年或两年生 | 反映植物对环境的适应能力 |
生长型 Growth form | 名称 | 乔木、灌木、草本 | 反映植物对光的适应 |
叶表面特征 Leaf surface feature | 名称 | 光滑、具毛、具刺 | 反映植物对光的利用 |
株高 Plant height/m | 数值 | 反映植物对光、空间等资源的竞争能力(Westoby et al., | |
盖度 Coverage/% | 数值 | 反映植物对环境的适应能力 | |
叶厚 Leaf thickness/mm | 数值 | 反映植物保水能力的强弱 | |
叶面积 Leaf area/ cm2 | 数值 | 对叶的能量与水分平衡起着重要的作用(Ackerly et al., | |
叶长宽比 Leaf aspect ratio | 数值 | 代表叶片中的水分向叶片表面扩散的阻力大小或者距离长短 | |
比叶面积 Specific leaf area/(cm2∙g-1) | 数值 | 决定植物对光和CO2的获取能力(Li et al., | |
叶绿素 Chlorophyll/% | 数值 | 反映植物光合作用能力、环境胁迫、营养状态 |
恢复阶段 Restoration gradient | 曲线 Curve | r2 | 交点坐标 Intersection coordinate | 交点与稳定点距离 Distance between intersection and stable point |
---|---|---|---|---|
Ⅰ | y= -0.0011x2+0.2631x+84.286 | 0.926 | (12.58, 87.42) | 10.49 |
Ⅱ | y= -0.0065x2+1.1293x+49.663 | 0.882 | (26.65, 74.35) | 7.99 |
Ⅲ | y= -0.0071x2+1.2041x+48.465 | 0.970 | (25.47, 74.53) | 7.74 |
Ⅳ | y= -0.0054x2+0.9398x+58.070 | 0.956 | (17.29, 82.71) | 3.83 |
Ⅴ | y= -0.0101x2+1.4176x+52.418 | 0.722 | (21.64, 78.36) | 2.32 |
Table 3 Changes of community stability at different restoration stages
恢复阶段 Restoration gradient | 曲线 Curve | r2 | 交点坐标 Intersection coordinate | 交点与稳定点距离 Distance between intersection and stable point |
---|---|---|---|---|
Ⅰ | y= -0.0011x2+0.2631x+84.286 | 0.926 | (12.58, 87.42) | 10.49 |
Ⅱ | y= -0.0065x2+1.1293x+49.663 | 0.882 | (26.65, 74.35) | 7.99 |
Ⅲ | y= -0.0071x2+1.2041x+48.465 | 0.970 | (25.47, 74.53) | 7.74 |
Ⅳ | y= -0.0054x2+0.9398x+58.070 | 0.956 | (17.29, 82.71) | 3.83 |
Ⅴ | y= -0.0101x2+1.4176x+52.418 | 0.722 | (21.64, 78.36) | 2.32 |
恢复阶段 Restoration gradient | 物种多样性(Simpson) Species diversity (Simpson) | 功能多样性 Functional diversity | 功能冗余 Functional redundancy | 群落稳定性 Community stability |
---|---|---|---|---|
Ⅰ | 0.336±0.013e | 0.171±0.011d | 0.165±0.008e | 0.393±0.015e |
Ⅱ | 0.483±0.082d | 0.274±0.013c | 0.209±0.004d | 0.478±0.09d |
Ⅲ | 0.648±0.009c | 0.331±0.005b | 0.317±0.005c | 0.548±0.008c |
Ⅳ | 0.811±0.009b | 0.443±0.005a | 0.368±0.005b | 0.693±0.008b |
Ⅴ | 0.892±0.053a | 0.336±0.024b | 0.556±0.029a | 1.206±0.018a |
Table 4 Changes of species diversity, functional diversity, functional redundancy and community stability at different restoration stages
恢复阶段 Restoration gradient | 物种多样性(Simpson) Species diversity (Simpson) | 功能多样性 Functional diversity | 功能冗余 Functional redundancy | 群落稳定性 Community stability |
---|---|---|---|---|
Ⅰ | 0.336±0.013e | 0.171±0.011d | 0.165±0.008e | 0.393±0.015e |
Ⅱ | 0.483±0.082d | 0.274±0.013c | 0.209±0.004d | 0.478±0.09d |
Ⅲ | 0.648±0.009c | 0.331±0.005b | 0.317±0.005c | 0.548±0.008c |
Ⅳ | 0.811±0.009b | 0.443±0.005a | 0.368±0.005b | 0.693±0.008b |
Ⅴ | 0.892±0.053a | 0.336±0.024b | 0.556±0.029a | 1.206±0.018a |
Figure 1 Linear relations between species diversity,functional diversity,functional redundancy and community stability at different restoration stages n=9; Ⅰ—Herbaceous stage, Ⅱ—Shrub-grass transition stage, Ⅲ—Scrub-shrub stage, Ⅳ—Shrub-Tree transition stage, Ⅴ—Tree stage
恢复阶段 Restoration gradient | 回归方程 Regression equations | r2 | P | 容忍度 Tolerance |
---|---|---|---|---|
Ⅰ | y=0.068+0.911x1+0.907x2 | 0.745 | 0.017 | 0.995 |
Ⅱ | y=0.081+0.918x1+0.696x2 | 0.928 | 0.000 | 0.807 |
Ⅲ | y=0.014+0.981x1+0.757x2 | 0.969 | 0.000 | 0.983 |
Ⅳ | y=0.003+0.870x1+0.825x2 | 0.869 | 0.002 | 0.999 |
Ⅴ | y=0.871+0.378x1+0.392x2 | 0.912 | 0.001 | 0.516 |
Table 5 Stepwise regressive analysis of the effects of functional diversity (x1) and fuctional redundancy (x2) on community stability (y) at different restoration stages
恢复阶段 Restoration gradient | 回归方程 Regression equations | r2 | P | 容忍度 Tolerance |
---|---|---|---|---|
Ⅰ | y=0.068+0.911x1+0.907x2 | 0.745 | 0.017 | 0.995 |
Ⅱ | y=0.081+0.918x1+0.696x2 | 0.928 | 0.000 | 0.807 |
Ⅲ | y=0.014+0.981x1+0.757x2 | 0.969 | 0.000 | 0.983 |
Ⅳ | y=0.003+0.870x1+0.825x2 | 0.869 | 0.002 | 0.999 |
Ⅴ | y=0.871+0.378x1+0.392x2 | 0.912 | 0.001 | 0.516 |
[1] |
ACKERLY D, KNIGHT C, WEISS S, et al., 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses[J]. Oecologia, 130(3): 449-457.
DOI URL |
[2] |
BELLO F D, LEP J, LAVOREL S, et al., 2007. Importance of species abundance for assessment of trait composition:an example based on pollinator communities[J]. Community Ecology, 8(2): 163-170.
DOI URL |
[3] | DIAZ S, LAVOREL S, BELLO F D, et al., 2007. Incorporating plant functional diversity effects in ecosystem service assessments[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(52): 20684-20689. |
[4] | FONS V D P, 2019. Biodiversity and ecosystem functioning in naturally assembled communities[J]. Biological Reviews, 94(4): 1220-1245. |
[5] |
FRANKS P J, BEERLING D J, 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time[J]. Proceedings of the National Academy of Sciences, 106(25): 10343-10347.
DOI URL |
[6] |
GARDNER M R, ASHBY W R, 1970. Connectance of Large Dynamic (Cybernetic) Systems: Critical Values for Stability[J]. Nature, 228(5273): 784-784.
DOI URL |
[7] | GODRON M, 1972. Some aspects of heterogeneity in grasslands of Cantal[J]. Statistical Ecology, 3(3): 397-415. |
[8] |
HECTOR A, HAUTIER Y, SANER P, et al., 2010. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding[J]. Ecology, 91(8): 2213-2220.
DOI URL |
[9] | HETHERINGTON A M, WOODWARD F I, 2003. The role of stomata in sensing and driving environmental change[J]. Nature, 42(6591): 901-908. |
[10] |
LI L, MCCORMACK M L, MA C, et al., 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecology Letters, 18(9): 899-906.
DOI PMID |
[11] |
LOREAU M, MAZANCOURT C D, 2013. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms[J]. Ecology Letters, 16(S1):106-115.
DOI URL |
[12] |
LOREAU M, NAEEM S, INCHAUSTI P, et al., 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges[J]. Science, 294(5543): 804-808.
DOI URL |
[13] |
MÁJEKOVÁ M, BELLO F D, DOLEŽAL J, et al., 2016. Plant functional traits as determinants of population stability[J]. Ecology, 95(9): 2369-2374.
DOI URL |
[14] |
MAZANCOURT C D, ISBELL F. LAROCQUE A, et al., 2013. Predicting ecosystem stability from community composition and biodiversity[J]. Ecology Letters, 16(5): 617-625.
DOI URL |
[15] |
MCCANN K S, 2000. The diversity-stability debate[J]. Nature, 405(6783): 228-33.
DOI URL |
[16] |
PETCHEY O L, EVANS K L, FISHBURN I S, et al., 2007. Low functional diversity and no redundancy in British avian assemblages[J]. Journal of Animal Ecology, 76(5): 977-985.
DOI URL |
[17] |
PILLAR V D, BLANCO C C, MÜLLER S C, et al., 2013. Functional redundancy and stability in plant communities[J]. Journal of Vegetation Science, 24(5): 963-974.
DOI URL |
[18] |
PONTES L D S, SOUSSANA J F, LOUAULT F, et al., 2010. Leaf traits affect the above-ground productivity and quality of pasture grasses[J]. Functional Ecology, 21(5): 844-853.
DOI URL |
[19] |
SASAKI T, OKUBO S, OKAYASU T, et al., 2009. Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands[J]. Ecology, 90(9): 2598-2608.
DOI URL |
[20] |
WESTOBY M, FALSTER D S, MOLES A T, et al., 2002. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 33(1): 125-159.
DOI URL |
[21] | YACHI S, LOREAU M, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 96(4): 1463-1468. |
[22] | 陈超, 朱志红, 李英年, 等, 2016. 高寒草甸种间性状差异和物种均匀度对物种多样性与功能多样性关系的影响[J]. 生态学报, 36(3): 661-674. |
CHEN C, ZHU Z H, LI Y N, et al., 2016. Effects of interspecific trait dissimilarity and species evenness on the relationship between species diversity and functional diversity in an alpine meadow[J]. Acta Ecologica Sinica, 36(3): 661-674. | |
[23] |
陈惠君, 杜虎, 宋同清, 等, 2019. 木论喀斯特常绿落叶阔叶混交林群丛数量分类及稳定性[J]. 生物多样性, 27(10): 1056-1068.
DOI |
CHEN H J, DU H, SONG T Q, et al., 2019. Numerical classification of associations and their stabilities of karst evergreen deciduous broad-leaved mixed forests in Mulun National Nature Reserve[J]. Biodiversity Science, 27(10): 1056-1068.
DOI URL |
|
[24] | 党承林, 王崇云, 王宝荣, 等, 2002. 植物群落的演替与稳定性[J]. 生态学杂志, 21(2): 30-35. |
DANG C L, WANG C Y, WANG B R, et al., 2002. Succession and stability in plant community[J]. Chinese Journal of Ecology, 21(2): 30-35. | |
[25] | 李霞, 朱万泽, 舒树淼, 等, 2021. 大渡河中游干暖河谷植被种间关系与稳定性[J]. 应用与环境生物学报, 27(2): 325-333. |
LI X, ZHU W Z, SHU S M, et al., 2021. Interspecific association and stability of vegetation in the dry-warm valley of the middle reaches of Dadu River[J]. Chinese Journal of Applied Environmental Biology, 27 (2): 325-333. | |
[26] | 罗红艺, 2001. C3植物、C4植物和CAM植物的比较[J]. 高等函授学报 (自然科学版), 14(5): 35-38. |
LUO H Y, 2001. Comparison of C3 plants, C 4 plants and CAM plants[J]. Journal of Higher Correspondence Education (Natural Sciences), 14(5): 35-38. | |
[27] | 彭晚霞, 宋同清, 曾馥平, 等, 2010. 喀斯特常绿落叶阔叶混交林植物与土壤地形因子的耦合关系[J]. 生态学报, 30(13): 3472-3481. |
PENG W X, SONG T Q, ZENG F P, et al., 2010. The coupling relationships between vegetation soil and topography factors in karst mixed evergreen and deciduous broad leaf forest[J]. Acta Ecologica Sinica, 30(13): 3472-3481. | |
[28] | 涂洪润, 农娟丽, 朱军, 等, 2021. 桂林岩溶石山密花树群落主要物种的种间关联及群落稳定性[J]. 生态学报, 42(9): 1-18. |
TU H R, NONG J L, ZHU J, et al., 2021. Interspecific associations of main species and community stability of Myrsine seguinii community in Karst hills of Guilin, Southwestern China[J]. Acta Ecologica Sinica, 42(9): 1-18. | |
[29] | 巫翠华, 蔡建军, 李华, 等, 2021. 紫柏山壳斗科植物群落物种多样性和稳定性研究[J]. 中南林业科技大学学报, 41(8): 108-115. |
WU C H, CAI J J, LI H, et al., 2021. Studies on species diversity and stability of the fagaceae community in the Zibai mountain[J]. Journal of Central South University of Forestry & Technology, 41(8): 108-115. | |
[30] | 王德炉, 朱守谦, 黄宝龙, 2005. 喀斯特石漠化的形成过程及阶段划分[J]. 南京林业大学学报 (自然科学版), 29(3): 103-106. |
WANG D L, ZHU S Q, HUANG B L, 2005. A study on forming process and stages of karst rocky desertification[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 29(3): 103-106. | |
[31] |
王国宏, 2002. 再论生物多样性与生态系统的稳定性[J]. 生物多样性, 10(1): 126-134.
DOI |
WANG G H, 2002. Further thoughts on diversity and stability in ecosystems[J]. Biodiversity Science, 10(1): 126-134.
DOI URL |
|
[32] | 王恒方, 吕光辉, 周耀治, 等, 2017. 不同水盐梯度下功能多样性和功能冗余对荒漠植物群落稳定性的影响[J]. 生态学报, 37(23): 7928-7937. |
WANG H F, LÜ G H, ZHOU Y Z, et al., 2017. Effects of functional diversity and functional redundancy on the stability of desert plant communities under different water and salt gradients[J]. Acta Ecologica Sinica, 37(23): 7928-7937. | |
[33] | 王世杰, 李阳兵, 李瑞玲, 2003. 喀斯特石漠化的形成背景、演化与治理[J]. 第四纪研究, 23(6): 657-666. |
WANG S J, LI Y B, LI R L, 2003. Formation background, evolution and control of karst rocky desertification[J]. Quaternary Sciences, 23(6): 657-666. | |
[34] | 徐靖, 耿宜佳, 银森录, 等, 2018. 基于可持续发展目标的“2020年后全球生物多样性框架”要素研究[J]. 环境保护, 46(23): 17-22. |
XU J, GENG Y J, YIN S L, et al., 2018. A study on elements of Post-2020 Global Biodiversity Framework Based on Sustainable Development Goals[J]. Environmental Protection, 46(23): 17-22. | |
[35] | 薛达元, 2017. 《生物多样性公约》履约新进展[J]. 生物多样性, 25(11): 1145-1146. |
XUE D Y, 2017. The latest development for implementation of the Convention on Biological Diversity[J]. Biodiversity Science, 25(11): 1145-1146.
DOI URL |
|
[36] | 姚天华, 朱志红, 李英年, 等, 2016. 功能多样性和功能冗余对高寒草甸群落稳定性的影响[J]. 生态学报, 36(6): 1547-1558. |
YAO T H, ZHU Z H, LI Y N, et al., 2016. Effects of functional diversity and functional redundancy on the community stability of an alpine meadow[J]. Acta Ecologica Sinica, 36(6): 1547-1558. | |
[37] | 喻理飞, 朱守谦, 叶镜中, 等, 2002. 退化喀斯特森林自然恢复过程中群落动态研究[J]. 林业科学, 38(1): 1-7. |
YU L F, ZHU S Q, YE J Z, et al., 2002. Dynamics of a degraded karst forest in the process of natural restoration[J]. Scientia Silvae Sinicae, 38(1): 1-7. | |
[38] | 张景慧, 黄永梅, 2016. 生物多样性与稳定性机制研究进展[J]. 生态学报, 36(13): 3859-3870. |
ZHANG J H, HUANG Y M, 2016. Biodiversity and stability mechanisms: understanding and future research[J]. Acta Ecologica Sinica, 36(13): 3859-3870. |
[1] | HOU Hui, YAN Peixuan, XIE Qinmi, ZHAO Hongliang, PANG Danbo, CHEN Lin, LI Xuebin, HU Yang, LIANG Yongliang, NI Xilu. Characterization of Arbuscular Mycorrhizal Fungal Community Diversity in the Rhizosphere Soils of Prunus mongolica Scrub of Helan Mountain [J]. Ecology and Environment, 2023, 32(5): 857-865. |
[2] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[3] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[4] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[5] | HU Fang, LIU Jutao, WEN Chunyun, HAN Liu, WEN Hui. Phytoplankton Community Structure and Evaluation of Aquatic Ecological Conditions in Fu River Basin [J]. Ecology and Environment, 2023, 32(4): 744-755. |
[6] | YU Fei, ZENG Hailong, FANG Huaiyang, FU Lingfang, LIN Shu, DONG Jiahao. Spatio-temporal Variation Characteristics of Phytoplankton Functional Groups and Water Quality Evaluation in the Typical Tidal River Network [J]. Ecology and Environment, 2023, 32(4): 756-765. |
[7] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[8] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
[9] | ZHOU Shiqiang, Vanessa HULL, ZHANG Jindong, LIU Dian, XIE Hao, HUANG Jinyan, ZHANG Hemin. Comparison of Habitat Use Patterns between Wild Giant Pandas and Grazing Livestock [J]. Ecology and Environment, 2023, 32(2): 309-319. |
[10] | ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression [J]. Ecology and Environment, 2023, 32(1): 26-35. |
[11] | LI Ping, BAI Xiaoming, CHEN Xin, LI Juanxia, RAN Fu, CHEN Hui, YANG Xiaoni, KANG Ruiqing. Effects of Trifolium repens Invasion on Soil Properties and Plant Communities of Gramineous Turfgrass [J]. Ecology and Environment, 2023, 32(1): 70-79. |
[12] | WANG Zhe, TIAN Shengni, ZHANG Yongmei, ZHANG Heyu, ZHOU Zhongze. Study on the Plant Community Characteristics of the Estuary of Pai River in Chaohu Lake [J]. Ecology and Environment, 2022, 31(9): 1823-1831. |
[13] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[14] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[15] | ZHU Jinfu, HUANG Ruiling, DONG Zhiqiang, MAO Xiaoning, ZHOU Huakun. Response of the Soil Bacterial Community to Nitrogen Addition in Alpine Wetland of Qinghai Lake [J]. Ecology and Environment, 2022, 31(6): 1101-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn