Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 663-669.DOI: 10.16258/j.cnki.1674-5906.2022.04.003
• Research Articles • Previous Articles Next Articles
DU Xue(), WANG Haiyan*(
), ZOU Jiahe, MENG Hai, ZHAO Han, CUI Xue, DONG Qiqi
Received:
2021-09-02
Online:
2022-04-18
Published:
2022-06-22
Contact:
WANG Haiyan
杜雪(), 王海燕*(
), 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪
通讯作者:
王海燕
作者简介:
杜雪(1996年生),女,硕士研究生,研究方向为土壤学。E-mail: duxue_my@126.com
基金资助:
CLC Number:
DU Xue, WANG Haiyan, ZOU Jiahe, MENG Hai, ZHAO Han, CUI Xue, DONG Qiqi. Distribution Characteristics and Influencing Factors of Soil Organic Carbon in Spruce-fir broad-leaved Mixed Forest on North Slope of Changbai Mountains[J]. Ecology and Environment, 2022, 31(4): 663-669.
杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.003
样地 Plot | 海拔Elevation/ m | 坡度 Slope/ (°) | 坡向Slope aspect | 采伐强度 Thinning intensity/ % | 蓄积量 Volume/ (m3∙hm-2) | 林分密度 Stand density/ (plant∙hm-2) | 郁闭度 Canopy density | 平均树高 Average tree height/ m | 平均胸径 Mean DBH/ cm |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | 732 | 5 | 东北 | 6.29 | 201.0 | 1167 | 0.75 | 11.4 | 12.3 |
Ⅱ | 769 | 5 | 东北 | 11.22 | 218.1 | 1301 | 0.65 | 13.6 | 13.7 |
Table 1 Characteristics of experimental plots
样地 Plot | 海拔Elevation/ m | 坡度 Slope/ (°) | 坡向Slope aspect | 采伐强度 Thinning intensity/ % | 蓄积量 Volume/ (m3∙hm-2) | 林分密度 Stand density/ (plant∙hm-2) | 郁闭度 Canopy density | 平均树高 Average tree height/ m | 平均胸径 Mean DBH/ cm |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | 732 | 5 | 东北 | 6.29 | 201.0 | 1167 | 0.75 | 11.4 | 12.3 |
Ⅱ | 769 | 5 | 东北 | 11.22 | 218.1 | 1301 | 0.65 | 13.6 | 13.7 |
样地 Plot | 土层深度 Soil depth/ cm | 最小值 Min/ (g∙kg-1) | 最大值 Max/ (g∙kg-1) | 均值 Mean/ (g∙kg-1) | 标准差 Standard deviation/ (g∙kg-1) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0‒20 | 37.28 | 134.99 | 70.53 | 21.00 | 0.82 | 0.16 | 29.78 |
20‒40 | 19.78 | 92.29 | 35.26 | 13.84 | 1.95 | 4.43 | 39.26 | |
Ⅱ | 0‒20 | 44.92 | 136.30 | 83.98 | 23.65 | 0.50 | -0.69 | 28.16 |
20‒40 | 18.76 | 75.96 | 45.06 | 13.27 | 0.60 | -0.43 | 29.46 |
Table 2 Statistical characteristics of soil organic carbon content in different soil layers
样地 Plot | 土层深度 Soil depth/ cm | 最小值 Min/ (g∙kg-1) | 最大值 Max/ (g∙kg-1) | 均值 Mean/ (g∙kg-1) | 标准差 Standard deviation/ (g∙kg-1) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0‒20 | 37.28 | 134.99 | 70.53 | 21.00 | 0.82 | 0.16 | 29.78 |
20‒40 | 19.78 | 92.29 | 35.26 | 13.84 | 1.95 | 4.43 | 39.26 | |
Ⅱ | 0‒20 | 44.92 | 136.30 | 83.98 | 23.65 | 0.50 | -0.69 | 28.16 |
20‒40 | 18.76 | 75.96 | 45.06 | 13.27 | 0.60 | -0.43 | 29.46 |
样地 Plot | 土层深度 Soil depth/cm | 最小值 Min/(t∙hm-2) | 最大值 Max/(t∙hm-2) | 均值 Mean/(t∙hm-2) | 标准差 Standard deviation/(t∙hm-2) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0‒20 | 48.28 | 226.78 | 117.46 | 33.12 | 0.34 | 0.42 | 28.20 |
20‒40 | 37.47 | 236.53 | 75.76 | 29.25 | 2.58 | 10.04 | 38.61 | |
0‒40 | 103.99 | 345.73 | 193.21 | 47.92 | 0.75 | 0.91 | 24.80 | |
Ⅱ | 0‒20 | 71.84 | 291.85 | 136.97 | 46.28 | 0.90 | 0.86 | 33.79 |
20‒40 | 37.99 | 198.49 | 92.29 | 25.38 | 1.23 | 2.77 | 27.50 | |
0‒40 | 139.87 | 490.33 | 229.26 | 62.06 | 1.32 | 2.79 | 27.07 |
Table 3 Statistical characteristics of soil organic carbon stock in different soil layers
样地 Plot | 土层深度 Soil depth/cm | 最小值 Min/(t∙hm-2) | 最大值 Max/(t∙hm-2) | 均值 Mean/(t∙hm-2) | 标准差 Standard deviation/(t∙hm-2) | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV/% |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0‒20 | 48.28 | 226.78 | 117.46 | 33.12 | 0.34 | 0.42 | 28.20 |
20‒40 | 37.47 | 236.53 | 75.76 | 29.25 | 2.58 | 10.04 | 38.61 | |
0‒40 | 103.99 | 345.73 | 193.21 | 47.92 | 0.75 | 0.91 | 24.80 | |
Ⅱ | 0‒20 | 71.84 | 291.85 | 136.97 | 46.28 | 0.90 | 0.86 | 33.79 |
20‒40 | 37.99 | 198.49 | 92.29 | 25.38 | 1.23 | 2.77 | 27.50 | |
0‒40 | 139.87 | 490.33 | 229.26 | 62.06 | 1.32 | 2.79 | 27.07 |
样地 Plot | 土层深度 Soil depth/cm | 全氮 Total nitrogen | 碳氮比 C/N | |||||
---|---|---|---|---|---|---|---|---|
均值 Mean/(g∙kg-1) | 标准差 Standard deviation/(g∙kg-1) | 变异系数 CV/% | 均值 Mean | 标准差 Standard deviation | 变异系数 CV/% | |||
Ⅰ | 0‒20 | 4.39 | 2.07 | 47.13 | 17.44 | 4.58 | 26.25 | |
20‒40 | 1.70 | 0.92 | 54.01 | 24.74 | 12.76 | 51.59 | ||
Ⅱ | 0‒20 | 4.51 | 1.41 | 31.27 | 19.23 | 4.28 | 22.24 | |
20‒40 | 2.33 | 0.99 | 42.60 | 22.58 | 18.86 | 83.50 |
Table 4 Statistical characteristics of soil total nitrogen and C/N in different soil layers
样地 Plot | 土层深度 Soil depth/cm | 全氮 Total nitrogen | 碳氮比 C/N | |||||
---|---|---|---|---|---|---|---|---|
均值 Mean/(g∙kg-1) | 标准差 Standard deviation/(g∙kg-1) | 变异系数 CV/% | 均值 Mean | 标准差 Standard deviation | 变异系数 CV/% | |||
Ⅰ | 0‒20 | 4.39 | 2.07 | 47.13 | 17.44 | 4.58 | 26.25 | |
20‒40 | 1.70 | 0.92 | 54.01 | 24.74 | 12.76 | 51.59 | ||
Ⅱ | 0‒20 | 4.51 | 1.41 | 31.27 | 19.23 | 4.28 | 22.24 | |
20‒40 | 2.33 | 0.99 | 42.60 | 22.58 | 18.86 | 83.50 |
配对组 Paired group | 指标 Indicator | 均值±标准差 Mean±Standard deviation | 配对差值 均值±标准差 Paired difference mean±standard deviation | t | P | |
---|---|---|---|---|---|---|
配对1 Group 1 | 配对2 Group 2 | |||||
样地Ⅰ与样地Ⅱ Plot I and Plot II | SOC含量 SOC content | 52.89±25.04 | 64.52±27.32 | -11.62±25.31 | -6.494 | 0.000** |
SOC储量 SOC stock | 96.61±37.53 | 114.63±43.45 | -18.03±48.17 | -5.292 | 0.000** | |
碳氮比 C/N | 21.09±10.24 | 20.90±13.74 | 0.19±16.67 | 0.160 | 0.873 | |
0—20 cm与20—40 cm 0-20 cm and 20-40 cm | SOC含量 SOC content | 77.25±23.30 | 40.16±14.39 | 37.10±17.85 | 29.396 | 0.000** |
SOC储量 SOC stock | 127.22±41.32 | 84.02±28.54 | 43.19±40.73 | 14.998 | 0.000** | |
碳氮比 C/N | 18.34±4.51 | 23.66±16.10 | -5.32±17.02 | -4.423 | 0.000** |
Table 5 Soil organic carbon (SOC) content, stock and C/N ratio paired samples t test
配对组 Paired group | 指标 Indicator | 均值±标准差 Mean±Standard deviation | 配对差值 均值±标准差 Paired difference mean±standard deviation | t | P | |
---|---|---|---|---|---|---|
配对1 Group 1 | 配对2 Group 2 | |||||
样地Ⅰ与样地Ⅱ Plot I and Plot II | SOC含量 SOC content | 52.89±25.04 | 64.52±27.32 | -11.62±25.31 | -6.494 | 0.000** |
SOC储量 SOC stock | 96.61±37.53 | 114.63±43.45 | -18.03±48.17 | -5.292 | 0.000** | |
碳氮比 C/N | 21.09±10.24 | 20.90±13.74 | 0.19±16.67 | 0.160 | 0.873 | |
0—20 cm与20—40 cm 0-20 cm and 20-40 cm | SOC含量 SOC content | 77.25±23.30 | 40.16±14.39 | 37.10±17.85 | 29.396 | 0.000** |
SOC储量 SOC stock | 127.22±41.32 | 84.02±28.54 | 43.19±40.73 | 14.998 | 0.000** | |
碳氮比 C/N | 18.34±4.51 | 23.66±16.10 | -5.32±17.02 | -4.423 | 0.000** |
样地 Plot | 土层深度 Soil depth/ cm | 土壤理化性质 Soil physico-chemical property | |||||
---|---|---|---|---|---|---|---|
pH值 | TN | TP | AP | AK | 土壤密度 Soil bulk density | ||
Ⅰ | 0-20 | 0.151 | 0.702** | 0.600** | 0.256* | 0.108 | -0.504** |
20-40 | -0.042 | 0.757** | 0.559** | 0.310** | 0.171 | -0.291** | |
Ⅱ | 0-20 | 0.174 | 0.880** | 0.522** | 0.388** | 0.065 | -0.249* |
20-40 | 0.085 | 0.728** | 0.630** | 0.452** | 0.013 | -0.500** |
Table 6 Correlation analysis between soil organic carbon and soil physico-chemical properties in different soil layers
样地 Plot | 土层深度 Soil depth/ cm | 土壤理化性质 Soil physico-chemical property | |||||
---|---|---|---|---|---|---|---|
pH值 | TN | TP | AP | AK | 土壤密度 Soil bulk density | ||
Ⅰ | 0-20 | 0.151 | 0.702** | 0.600** | 0.256* | 0.108 | -0.504** |
20-40 | -0.042 | 0.757** | 0.559** | 0.310** | 0.171 | -0.291** | |
Ⅱ | 0-20 | 0.174 | 0.880** | 0.522** | 0.388** | 0.065 | -0.249* |
20-40 | 0.085 | 0.728** | 0.630** | 0.452** | 0.013 | -0.500** |
样地 Plot | 土层深度 Soil depth/cm | pH值 | TN | TP | AP | AK | 土壤密度 Soil bulk density | |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0-20 | 关联度 Correlation degree | 0.7400 | 0.7238 | 0.7401 | 0.7600 | 0.6192 | 0.6950 |
排序 Rank | 3 | 4 | 2 | 1 | 6 | 5 | ||
20-40 | 关联度 Correlation degree | 0.8142 | 0.7973 | 0.8239 | 0.8113 | 0.7644 | 0.7352 | |
排序 Rank | 2 | 4 | 1 | 3 | 5 | 6 | ||
Ⅱ | 0-20 | 关联度 Correlation degree | 0.7741 | 0.8046 | 0.6423 | 0.7698 | 0.7676 | 0.7690 |
排序 Rank | 2 | 1 | 6 | 3 | 5 | 4 | ||
20-40 | 关联度 Correlation degree | 0.7618 | 0.7771 | 0.6710 | 0.7209 | 0.7191 | 0.7487 | |
排序 Rank | 2 | 1 | 6 | 4 | 5 | 3 |
Table 7 Correlation between soil physico-chemical properties and soil organic carbon in different soil layers
样地 Plot | 土层深度 Soil depth/cm | pH值 | TN | TP | AP | AK | 土壤密度 Soil bulk density | |
---|---|---|---|---|---|---|---|---|
Ⅰ | 0-20 | 关联度 Correlation degree | 0.7400 | 0.7238 | 0.7401 | 0.7600 | 0.6192 | 0.6950 |
排序 Rank | 3 | 4 | 2 | 1 | 6 | 5 | ||
20-40 | 关联度 Correlation degree | 0.8142 | 0.7973 | 0.8239 | 0.8113 | 0.7644 | 0.7352 | |
排序 Rank | 2 | 4 | 1 | 3 | 5 | 6 | ||
Ⅱ | 0-20 | 关联度 Correlation degree | 0.7741 | 0.8046 | 0.6423 | 0.7698 | 0.7676 | 0.7690 |
排序 Rank | 2 | 1 | 6 | 3 | 5 | 4 | ||
20-40 | 关联度 Correlation degree | 0.7618 | 0.7771 | 0.6710 | 0.7209 | 0.7191 | 0.7487 | |
排序 Rank | 2 | 1 | 6 | 4 | 5 | 3 |
[1] |
BAI Y X, ZHOU Y C, 2020. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China[J]. Geoderma, DOI: 10.1016/j.geoderma.2019.113938.
DOI |
[2] |
DONG J Q, ZHOU K N, JIANG P K, et al., 2021. Revealing horizontal and vertical variation of soil organic carbon, soil total nitrogen and C꞉N ratio in subtropical forests of southeastern China[J]. Journal of Environmental Management, DOI: 10.1016/j.jenvman.2021.112483.
DOI |
[3] |
ESWARAN H, VEN DEN B, REICH P, 1993. Organic carbon in soils of the World[J]. Soil Science Society of America Journal, 57(1): 192-194.
DOI URL |
[4] |
GHEBLEH G M, RUHOLLAH T, ASGHAR J A, et al., 2021. Using environmental variables and Fourier Transform Infrared Spectroscopy to predict soil organic carbon[J]. Catena, DOI: 10.1016/J.CATENA. 2021.105280.
DOI |
[5] |
HOU G L, DELANG C O, LU X X, et al., 2020. A meta-analysis of changes in soil organic carbon stocks after afforestation with deciduous broadleaved, sempervirent broadleaved, and conifer tree species[J]. Annals of Forest Science, 77(4): 92.
DOI URL |
[6] |
LU X K, MAO Q G, WANG Z H, et al., 2021. Long-term nitrogen addition decreases soil carbon mineralization in an N-rich primary tropical forest[J]. Forests, 12(6): 734.
DOI URL |
[7] |
QIN YY, FENG Q, HOLDEN NM, et al., 2016. Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China[J]. Catena, 147: 308-314.
DOI URL |
[8] |
YU H Y, ZHA T G, ZHANG X X, et al., 2020. Spatial distribution of soil organic carbon may be predominantly regulated by topography in a small revegetated watershed[J]. Catena, DOI: 10.1016/j.cnki.2020.104459.
DOI |
[9] |
ZHANG X, LI X, JI X D, et al., 2021. Elevation and total nitrogen are the critical factors that control the spatial distribution of soil organic carbon content in the shrubland on the Bashang Plateau, China[J]. Catena, DOI: 10.1016/j.cnki.2021.105415.
DOI |
[10] |
ZHOU W X, HAN G L, LIU M, et al., 2020. Determining the distribution and interaction of soil organic carbon, nitrogen, pH and texture in soil profiles: A case study in the Lancangjiang River Basin, Southwest China[J]. Forests, DOI: 10.3390/f11050532.
DOI |
[11] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 14-111. |
BAO S D, 2000. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press: 14-111. | |
[12] |
陈良帅, 黄新亚, 薛丹, 等, 2021. 川西高原泥炭沼泽土壤有机碳分布特征及其影响因素[EB/OL]. 应用与环境生物学报, DOI: 10.19675/j.cnki.2021.01035.
DOI |
CHEN L S, HUANG X Y, XUE D, et al., 2021. Distribution characteristics and influencing factors of soil organic carbon in peat swamp of Western Sichuan Plateau[EB/OL]. Chinese Journal of Applied & Environmental Biology, DOI: 10.19675/j.cnki.2021.01035.
DOI |
|
[13] | 陈子豪, 焦泽彬, 刘谣, 等, 2021. 凋落物季节性输入对川西亚高山森林土壤活性有机碳的影响[J]. 应用与环境生物学报, 27(3): 594-600. |
CHEN Z H, JIAO Z B, LIU Y, et al., 2021. Effects of seasonal litter input on soil active organic carbon in Subalpine Forests in Western Sichuan[J]. Chinese Journal of Applied & Environmental Biology, 27(3): 594-600. | |
[14] | 杜雪, 王海燕, 耿琦, 等, 2021. 云冷杉针阔混交林枯落物持水性能[J]. 水土保持学报, 35(2): 361-368. |
DU X, WANG H Y, GENG Q, et al., 2021. Water holding capacity of litter in spruce-fir coniferous and broad-leaved mixed forest[J]. Journal of Soil and Water Conservation, 35(2): 361-368. | |
[15] | 方华军, 耿静, 程淑兰, 等, 2019. 氮磷富集对森林土壤碳截存的影响研究进展[J]. 土壤学报, 56(1): 1-11. |
FANG H J, GENG J, CHENG S L, et al., 2019. Research progress on the effect of nitrogen and phosphorus enrichment on forest soil carbon sequestration[J]. Acta Pedologica Sinica, 56(1): 1-11. | |
[16] | 何姗, 刘娟, 姜培坤, 等, 2019. 经营管理对森林土壤有机碳库影响的研究进展[J]. 浙江农林大学学报, 36(4): 818-827. |
HE S, LIU J, JIANG P K, et al., 2019. Research progress on the impact of management on forest soil organic carbon pool[J]. Journal of Zhejiang Agriculture and Forestry University, 36(4): 818-827. | |
[17] | 黄麟, 2021. 森林管理的生态效应研究进展[J]. 生态学报, 41(10): 4226-4239. |
HUANG L, 2021. Research progress on ecological effects of forest management[J]. Acta Ecologica Sinica, 41(10): 4226-4239. | |
[18] | 刘波, 陈林, 庞丹波, 等, 2021. 六盘山华北落叶松土壤有机碳沿海拔梯度的分布规律及其影响因素[J]. 生态学报, 41(17): 6773-6785. |
LIU B, CHEN L, PANG D B, et al., 2021. Distribution law and influencing factors of soil organic carbon along altitude gradient of North China larch in Liupanshan[J]. Acta Ecologica Sinica, 41(17): 6773-6785. | |
[19] | 彭晓, 方晰, 喻林华, 等, 2016. 中亚热带4种森林土壤碳、氮、磷化学计量特征[J]. 中南林业科技大学学报, 36(11): 65-72. |
PENG X, FANG X, YU L H, et al., 2016. Stoichiometric characteristics of carbon, nitrogen and phosphorus in four forest soils in the middle subtropical zone[J]. Journal of Central South University of Forestry & Technology, 36(11): 65-72. | |
[20] | 秦倩倩, 王海燕, 李翔, 等, 2019. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素[J]. 生态学报, 39(12): 4519-4529. |
QIN Q Q, WANG H Y, LI X, et al., 2019. Spatial heterogeneity of phosphorus in litter of natural coniferous and broad-leaved mixed forest in Northeast China and its influencing factors[J]. Acta Ecologica Sinica, 39(12): 4519-4529. | |
[21] | 宋彦彦, 张言, 管清成, 等, 2019. 长白山云冷杉针阔混交林土壤有机碳与土壤理化性质的相关性[J]. 东北林业大学学报, 47(10): 70-74. |
SONG Y Y, ZHANG Y, GUAN Q C, et al., 2019. Soil organic carbon content and its relations with soil physicochemical properties of spruce-fir mixed stands in Changbai Mountains[J]. Journal of Northeast Forestry University, 47(10): 70-74. | |
[22] | 孙志虎, 王秀琴, 陈祥伟, 2016. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 38(12): 1-13. |
SUN Z H, WANG X Q, CHEN X W, 2016. Effects of different tending thinning intensities on carbon storage in larch plantation ecosystem[J]. Journal of Beijing Forestry University, 38(12): 1-13. | |
[23] | 唐敏, 2019. 中国土壤有机碳时空分布及影响因素研究进展[J]. 河南工程学院学报 (自然科学版), 31(4): 42-49, 82. |
TANG M, 2019. Research progress on temporal and spatial distribution and influencing factors of soil organic carbon in China[J]. Journal of Henan Institute of Engineering (Natural Science Edition), 31(4): 42-49, 82. | |
[24] | 陶晓, 俞元春, 张云彬, 等, 2020. 城市森林土壤碳氮磷含量及其生态化学计量特征[J]. 生态环境学报, 29(1): 88-96. |
TAO X, YU Y C, ZHANG Y B, et al., 2020. Carbon, nitrogen and phosphorus contents and their ecological stoichiometry in urban forest soil[J]. Ecology and Environmental Sciences, 29(1): 88-96. | |
[25] | 田耀武, 贺春玲, 田华禹, 等, 2017. 森林土壤有机碳的空间累积机制与计量[M]. 北京: 中国林业出版社: 4-5. |
TIAN Y W, HE C L, TIAN H Y, et al., 2017. Spatial accumulation mechanism and measurement of forest soil organic carbon[M]. Beijing: China Forestry Press: 4-5. | |
[26] | 王冰, 周扬, 张秋良, 2020. 兴安落叶松林土壤有机碳特征及与其他土壤理化性质关系研究[J]. 生态与农村环境学报, 37(9): 1200-1208. |
WANG B, ZHOU Y, ZHANG Q L, 2020. Characteristics of soil organic carbon and its relationship with other soil physical and chemical properties in Xing’an larch forest[J]. Journal of Ecology and Rural Environment, 37(9): 1200-1208. | |
[27] | 王会利, 王绍能, 宋贤冲, 等, 2018. 广西猫儿山水青冈林土壤剖面有机碳垂直分布特征及影响因素[J]. 中南林业科技大学学报, 38(11): 89-94, 122. |
WANG H L, WANG S N, SONG X C, et al., 2018. Vertical distribution characteristics and influencing factors of organic carbon in soil profile of Cyclobalanopsis glauca forest in Maoershan, Guangxi[J]. Journal of Central South University of Forestry & Technology, 38(11): 89-94, 122. | |
[28] | 王亚东, 魏江生, 周梅, 等, 2020. 大兴安岭南段杨桦次生林土壤化学计量特征[J]. 土壤通报, 51(5): 1056-1064. |
WANG Y D, WEI J S, ZHOU M, et al., 2020. Soil stoichiometric characteristics of poplar-birch secondary forest in the southern section of Daxing’anling[J]. Chinese Journal of Soil Science, 51(5): 1056-1064. | |
[29] | 吴丽芳, 王妍, 刘云根, 等, 2021. 岩溶石漠化区人工植被类型对土壤团聚体生态化学计量特征的影响[J]. 东北林业大学学报, 49(6): 63-69. |
WU L F, WANG Y, LIU Y G, et al., 2021. Effects of artificial vegetation types on eco-stoichiometric characteristics of soil aggregates in Karst Rocky Desertification Area[J]. Journal of Northeast Forestry University, 49(6): 63-69. | |
[30] | 张厚喜, 林丛, 程浩, 等, 2019. 武夷山不同海拔梯度毛竹林土壤有机碳特征及影响因素[J]. 土壤, 51(4): 821-828. |
ZHANG H X, LIN C, CHENG H, et al., 2019. Characteristics and influencing factors of soil organic carbon in Phyllostachys pubescens forests with different altitude gradients in Wuyi Mountain[J]. Soil, 51(4): 821-828. | |
[31] | 张玲, 张东来, 毛子军, 2017. 中国温带阔叶红松林不同演替系列土壤有机碳矿化特征[J]. 生态学报, 37(19): 6370-6378. |
ZHANG L, ZHANG D L, MAO Z J, 2017. Mineralization characteristics of soil organic carbon in different succession series of temperate broad-leaved Korean pine forest in China[J]. Acta Ecologica Sinica, 37(19): 6370-6378. | |
[32] | 张莎莎, 李爱琴, 王会荣, 等, 2020. 不同海拔杉木人工林土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 29(1): 97-104. |
ZHANG S S, LI A Q, WANG H R, et al., 2020. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in Cunninghamia lanceolata plantation across an elevation gradient[J]. Ecology and Environmental Sciences, 29(1): 97-104. | |
[33] | 张智勇, 王瑜, 艾宁, 等, 2020. 陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素[J]. 北京林业大学学报, 42(11): 56-63. |
ZHANG Z Y, WANG Y, AI N, et al., 2020. Distribution characteristics and influencing factors of soil organic carbon of different vegetation types in loess area of Northern Shaanxi[J]. Journal of Beijing Forestry University, 42(11): 56-63. | |
[34] | 祖元刚, 李冉, 王文杰, 等, 2011. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J]. 生态学报, 31(18): 5207-5216. |
ZU Y G, LI R, WANG W J, et al., 2011. Correlation between soil organic carbon, inorganic carbon content and soil physical and chemical properties in Northeast China[J]. Acta Ecologica Sinica, 31(18): 5207-5216. |
[1] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[2] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[3] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[4] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[5] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[6] | WANG Chengwu, LUO Junjie, TANG Honghu. Analysis on the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in the Taihang Mountains Based on InVEST Model [J]. Ecology and Environment, 2023, 32(2): 215-225. |
[7] | CHEN Zhizhong, ZAN Mei, YANG Xuefeng, DONG Yu. Prediction of Forest Vegetation Carbon Storage in Xinjiang [J]. Ecology and Environment, 2023, 32(2): 226-234. |
[8] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[9] | ZHENG Xiaohao, CHEN Yingbiao, ZHENG Zihao, GUO Cheng, HUANG Zhounan, ZHOU Yongshi. Dynamic Changes of Ecosystem Service Value and Evolution of Its Influencing Factors in Hubei Province [J]. Ecology and Environment, 2023, 32(1): 195-206. |
[10] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[11] | CHEN Keyi, WANG Jianjun, HE Youjun, ZHANG Liwen. Estimations of Forest Carbon Storage and Carbon Sequestration Potential of Key State-Owned Forest Region in Daxing’anling, Heilongjiang Province [J]. Ecology and Environment, 2022, 31(9): 1725-1734. |
[12] | WU Shengyi, WANG Fei, XU Ganjun, MA Hao, DANG Yujie, WU Fei. Study on Forest Carbon Storage and Spatial Distribution in the Alpine Gorge Region of Northwest Sichuan: Take Sichuan Luoxu Nature Reserve as An Example [J]. Ecology and Environment, 2022, 31(9): 1735-1744. |
[13] | QIN Yanpei, XU Shaojun, TIAN Yaowu. The Spatial Differentiation of Vegetation and Soil Carbon Density in Henan Section of the Yellow River Basin [J]. Ecology and Environment, 2022, 31(9): 1745-1753. |
[14] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[15] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn