Ecology and Environment ›› 2023, Vol. 32 ›› Issue (5): 980-988.DOI: 10.16258/j.cnki.1674-5906.2023.05.015
• Research Articles • Previous Articles Next Articles
WANG Yun1(), ZHENG Xilai1,2,3,*(
), CAO Min4, LI Lei4, SONG Xiaoran4, LIN Xiaolei4, GUO Kai5
Received:
2023-03-03
Online:
2023-05-18
Published:
2023-08-09
Contact:
ZHENG Xilai
王云1(), 郑西来1,2,3,*(
), 曹敏4, 李磊4, 宋晓冉4, 林晓宇4, 郭凯5
通讯作者:
郑西来
作者简介:
王云(1997年生),女,硕士研究生,研究方向为地下水污染控制。Email:YunW97@hotmail.com
基金资助:
CLC Number:
WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer[J]. Ecology and Environment, 2023, 32(5): 980-988.
王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.05.015
试验 设计 | 影响因素 | 响应值 | |||
---|---|---|---|---|---|
C/N | EC/(mS·cm-1) | ρ(DO)/(mg·L-1) | 硝态氮去除率/% | ||
1 | 26.0 | 30.0 | 2.0 | 67.19 | |
2 | 26.0 | 17.5 | 5.0 | 70.14 | |
3 | 26.0 | 17.5 | 5.0 | 71.25 | |
4 | 2.0 | 5.0 | 5.0 | 39.95 | |
5 | 2.0 | 30.0 | 5.0 | 27.64 | |
6 | 2.0 | 17.5 | 2.0 | 32.83 | |
7 | 26.0 | 5.0 | 2.0 | 75.29 | |
8 | 50.0 | 17.5 | 8.0 | 68.40 | |
9 | 26.0 | 30.0 | 8.0 | 65.34 | |
10 | 26.0 | 5.0 | 8.0 | 74.74 | |
11 | 50.0 | 17.5 | 2.0 | 72.71 | |
12 | 50.0 | 30.0 | 5.0 | 67.31 | |
13 | 2.0 | 17.5 | 8.0 | 28.70 | |
14 | 26.0 | 17.5 | 5.0 | 70.62 | |
15 | 50.0 | 5.0 | 5.0 | 73.14 | |
16 | 26.0 | 17.5 | 5.0 | 69.46 | |
17 | 26.0 | 17.5 | 5.0 | 72.24 |
Table 1 BBD experimental design
试验 设计 | 影响因素 | 响应值 | |||
---|---|---|---|---|---|
C/N | EC/(mS·cm-1) | ρ(DO)/(mg·L-1) | 硝态氮去除率/% | ||
1 | 26.0 | 30.0 | 2.0 | 67.19 | |
2 | 26.0 | 17.5 | 5.0 | 70.14 | |
3 | 26.0 | 17.5 | 5.0 | 71.25 | |
4 | 2.0 | 5.0 | 5.0 | 39.95 | |
5 | 2.0 | 30.0 | 5.0 | 27.64 | |
6 | 2.0 | 17.5 | 2.0 | 32.83 | |
7 | 26.0 | 5.0 | 2.0 | 75.29 | |
8 | 50.0 | 17.5 | 8.0 | 68.40 | |
9 | 26.0 | 30.0 | 8.0 | 65.34 | |
10 | 26.0 | 5.0 | 8.0 | 74.74 | |
11 | 50.0 | 17.5 | 2.0 | 72.71 | |
12 | 50.0 | 30.0 | 5.0 | 67.31 | |
13 | 2.0 | 17.5 | 8.0 | 28.70 | |
14 | 26.0 | 17.5 | 5.0 | 70.62 | |
15 | 50.0 | 5.0 | 5.0 | 73.14 | |
16 | 26.0 | 17.5 | 5.0 | 69.46 | |
17 | 26.0 | 17.5 | 5.0 | 72.24 |
组分 | 盐度/ ‰ | ρ(DO)/ (mg·L-1) | pH/ (-) | ρ(NO3--N)/ (mg·L-1) | ρ(DOC)/ (mg·L-1) | ρ(Cl-)/ (mg·L-1) | ρ(SO42-)/ (mg·L-1) | ρ(Na+)/ (mg·L-1) | ρ(K+)/ (mg·L-1) | ρ(Mg2+)/ (mg·L-1) | ρ(Ca2+)/ (mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 19.00 | 7.92 | 7.45 | 47.37 | 126.62 | 9671.07 | 1674.41 | 4581.62 | 117.99 | 562.91 | 244.79 |
最小值 | 6.46 | 7.26 | 6.84 | 32.14 | 98.86 | 3276.59 | 701.97 | 1755.59 | 47.05 | 157.39 | 52.09 |
平均值 | 14.61 | 7.65 | 7.09 | 41.55 | 113.38 | 7414.81 | 1287.94 | 2985.13 | 77.90 | 417.16 | 178.55 |
标准偏差 | 5.77 | 0.28 | 0.26 | 6.71 | 11.37 | 2930.15 | 421.32 | 1182.54 | 29.69 | 184.14 | 89.46 |
变异系数 | 0.39 | 0.04 | 0.04 | 0.16 | 0.10 | 0.40 | 0.33 | 0.40 | 0.38 | 0.44 | 0.50 |
Table 2 Statistics of groundwater water chemistry results in the study area
组分 | 盐度/ ‰ | ρ(DO)/ (mg·L-1) | pH/ (-) | ρ(NO3--N)/ (mg·L-1) | ρ(DOC)/ (mg·L-1) | ρ(Cl-)/ (mg·L-1) | ρ(SO42-)/ (mg·L-1) | ρ(Na+)/ (mg·L-1) | ρ(K+)/ (mg·L-1) | ρ(Mg2+)/ (mg·L-1) | ρ(Ca2+)/ (mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 19.00 | 7.92 | 7.45 | 47.37 | 126.62 | 9671.07 | 1674.41 | 4581.62 | 117.99 | 562.91 | 244.79 |
最小值 | 6.46 | 7.26 | 6.84 | 32.14 | 98.86 | 3276.59 | 701.97 | 1755.59 | 47.05 | 157.39 | 52.09 |
平均值 | 14.61 | 7.65 | 7.09 | 41.55 | 113.38 | 7414.81 | 1287.94 | 2985.13 | 77.90 | 417.16 | 178.55 |
标准偏差 | 5.77 | 0.28 | 0.26 | 6.71 | 11.37 | 2930.15 | 421.32 | 1182.54 | 29.69 | 184.14 | 89.46 |
变异系数 | 0.39 | 0.04 | 0.04 | 0.16 | 0.10 | 0.40 | 0.33 | 0.40 | 0.38 | 0.44 | 0.50 |
样品名称 | Sobs | Ace | Chao1 | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
W1D0 | 2552 | 2910.98 | 2738.59 | 5.46 | 0.03 | 0.99 |
W2D0 | 2719 | 2956.50 | 2813.86 | 6.19 | 0.01 | 0.99 |
W3D0 | 2882 | 3118.48 | 2993.84 | 6.43 | 0.01 | 0.99 |
W1D2 | 803 | 1156.07 | 1046.70 | 2.89 | 0.13 | 0.99 |
W2D2 | 621 | 892.05 | 827.32 | 2.58 | 0.18 | 0.99 |
W3D2 | 840 | 1362.15 | 1198.06 | 2.27 | 0.26 | 0.99 |
W1D14 | 918 | 1227.47 | 1122.36 | 2.50 | 0.27 | 0.99 |
W2D14 | 680 | 934.50 | 876.44 | 2.40 | 0.28 | 0.99 |
W3D14 | 380 | 910.29 | 607.28 | 0.70 | 0.82 | 1.00 |
Table 3 Table of microbial community diversity analysis results
样品名称 | Sobs | Ace | Chao1 | Shannon | Simpson | Coverage |
---|---|---|---|---|---|---|
W1D0 | 2552 | 2910.98 | 2738.59 | 5.46 | 0.03 | 0.99 |
W2D0 | 2719 | 2956.50 | 2813.86 | 6.19 | 0.01 | 0.99 |
W3D0 | 2882 | 3118.48 | 2993.84 | 6.43 | 0.01 | 0.99 |
W1D2 | 803 | 1156.07 | 1046.70 | 2.89 | 0.13 | 0.99 |
W2D2 | 621 | 892.05 | 827.32 | 2.58 | 0.18 | 0.99 |
W3D2 | 840 | 1362.15 | 1198.06 | 2.27 | 0.26 | 0.99 |
W1D14 | 918 | 1227.47 | 1122.36 | 2.50 | 0.27 | 0.99 |
W2D14 | 680 | 934.50 | 876.44 | 2.40 | 0.28 | 0.99 |
W3D14 | 380 | 910.29 | 607.28 | 0.70 | 0.82 | 1.00 |
系数 | 平方和 | 自由度 | 平均方差 | F值 | P值 |
---|---|---|---|---|---|
模型 | 4680.51 | 9 | 520.06 | 246.32 | <0.0001 |
A(C/N) | 2904.74 | 1 | 2904.74 | 1375.81 | <0.0001 |
B(EC) | 158.78 | 1 | 158.78 | 75.20 | <0.0001 |
C(DO) | 14.69 | 1 | 14.69 | 6.96 | 0.034 |
DAB | 10.50 | 1 | 10.50 | 4.97 | 0.061 |
EAC | 0.01 | 1 | 0.01 | - | 0.952 |
FBC | 0.42 | 1 | 0.42 | 0.20 | 0.668 |
A2 | 1577.49 | 1 | 1577.49 | 747.17 | <0.0001 |
B2 | 1.64 | 1 | 1.64 | 0.78 | 0.407 |
C2 | 2.22 | 1 | 2.22 | 1.05 | 0.339 |
残差 | 14.78 | 7 | 2.11 | - | - |
失拟误差 | 10.26 | 3 | 3.42 | 3.02 | 0.157 |
纯误差 | 4.52 | 4 | 1.13 | - | - |
总和 | 4695.29 | 16 | - | - | - |
Table 4 Analysis of regression results
系数 | 平方和 | 自由度 | 平均方差 | F值 | P值 |
---|---|---|---|---|---|
模型 | 4680.51 | 9 | 520.06 | 246.32 | <0.0001 |
A(C/N) | 2904.74 | 1 | 2904.74 | 1375.81 | <0.0001 |
B(EC) | 158.78 | 1 | 158.78 | 75.20 | <0.0001 |
C(DO) | 14.69 | 1 | 14.69 | 6.96 | 0.034 |
DAB | 10.50 | 1 | 10.50 | 4.97 | 0.061 |
EAC | 0.01 | 1 | 0.01 | - | 0.952 |
FBC | 0.42 | 1 | 0.42 | 0.20 | 0.668 |
A2 | 1577.49 | 1 | 1577.49 | 747.17 | <0.0001 |
B2 | 1.64 | 1 | 1.64 | 0.78 | 0.407 |
C2 | 2.22 | 1 | 2.22 | 1.05 | 0.339 |
残差 | 14.78 | 7 | 2.11 | - | - |
失拟误差 | 10.26 | 3 | 3.42 | 3.02 | 0.157 |
纯误差 | 4.52 | 4 | 1.13 | - | - |
总和 | 4695.29 | 16 | - | - | - |
[1] |
ANSCHUTZ P, SMITH T, MOURET A, et al., 2009. Tidal sands as biogeochemical reactors[J]. Estuarine, Coastal and Shelf Science, 84(1): 84-90.
DOI URL |
[2] |
BECK M, RECKHARDT A, AMELSBERG J, et al., 2017. The drivers of biogeochemistry in beach ecosystems: a cross-shore transect from the dunes to the low water line[J]. Marine Chemistry, 190: 35-50.
DOI URL |
[3] | BOUDREAU B P, HUETTEL M, FORSTER S, et al., 2001. Permeable marine sediments: overturning an old paradigm[J]. EOS Transaction, American Geophysical Union, 82(11): 133-136. |
[4] |
BOYNTON W R, KEMP W M, 1985. Nutrient regeneration and oxygen consumption along an estuarine salinity gradient[J]. Marine Ecology Progress Series, 23(1): 45-55.
DOI URL |
[5] | CLAUDETTE S, CAROLINE P S, KAGAN T, et al., 2008. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients[J]. Water Resources Research, 44(2): 282-288. |
[6] | GOPINATH S, SRINIVASAMOORTHY K, SARAVANAN K, et al., 2019. Tracing groundwater salinization using geochemical and isotopic signature in southeastern coastal Tamilnadu, India[J]. Chemosphere, 236: 124305. |
[7] | GAO H, MATYKA M, LIU B, et al., 2012. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea[J]. Limnology & Oceanography, 57(1): 185-198. |
[8] |
HEISS J W, MICHAEL H A, 2014. Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles[J]. Water Resources Research, 50(8): 6747-6766.
DOI URL |
[9] |
HUETTEL M, BERG P, KOSTKA J E, 2014. Benthic exchange and biogeochemical cycling in permeable sediments[J]. Annual Review of Marine Science, 6: 23-51.
DOI PMID |
[10] |
KIM K, HESSI J M, MICHAEL H A, et al., 2017. Spatial patterns of groundwater biogeochemical reactivity in an intertidal beach aquifer[J]. Journal of Geophysical Research: Biogeosciences, 122(15): 2548-2562.
DOI URL |
[11] |
KANA T M, CORNWELL J C, ZHONG L, 2006. Determination of denitrification in the Chesapeake Bay from measurements of N2 accumulation in bottom water[J]. Estuaries and Coasts, 29(2): 222-231.
DOI URL |
[12] | MARCHANT H K, LAVIK G, HOLTAPPELS M, et al., 2014. The fate of nitrate in intertidal permeable sediments[J]. PloS One, 9(8): 104517. |
[13] |
RIUETT M O, BUSS S R, MORGAN P, et al., 2008. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 42(16): 4215-4232.
DOI PMID |
[14] | SUN Q G, ZHENG T Y, ZHENG X L, et al., 2021. Effectiveness and comparison of physical barriers on seawater intrusion and nitrate accumulation in upstream aquifers[J]. Journal of Contaminant Hydrology, 243: 103913. |
[15] | TOKACHANOV G, RAMAZANOVA E, HAMID S, et al., 2020. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: A review[J]. Chemical Engineering Journal, 384: 123252. |
[16] |
TESORIERO A J, LIEBACHER H, COX S H, 2000. Mechanism and rate of denitrification in an agricultural watershed: electron and mass balance along groundwater flow paths[J]. Water Resources Research, 36(6): 1545-1559.
DOI URL |
[17] |
WILLIAM C B, HENRY B, MARKUS H, et al., 2003. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 66(1-2): 3-33.
DOI URL |
[18] |
XU D, XIAO E R, XU P, et al., 2017. Performance and microbial communities of completely autotrophic denitrification in a bioelectrochemically-assisted constructed wetland system for nitrate removal[J]. Bioresource Technology, 228: 39-46.
DOI PMID |
[19] | 常永凯, 2021. 滨海潮滩湿地脱氮过程与影响机制研究[D]. 上海: 华东师范大学. |
CHANG Y K, 2021. Study on denitrification process and influence mechanism of coastal tidal wetland[D]. Shanghai: East China Normal University. | |
[20] | 杜华超, 2015. 大连地区主要入海河流河口潮间带沉积物及邻近土壤碳、氮特性[D]. 大连: 大连交通大学. |
DU H C, 2015. Intertidal sediments and adjacent soil carbon and nitrogen characteristics in the estuaries of major rivers flowing into the sea in Dalian[D]. Dalian: Dalian Jiaotong University. | |
[21] | 胡玲珍, 陈振楼, 2003. 河口沉积物反硝化反应影响因子综述[J]. 环境科学动态, 48(4): 41-43. |
HU L Z, CHEN Z L, 2003. Review of influencing factors of denitrification reaction in estuarine sediments[J]. Environmental Science Trends, 48(4): 41-43. | |
[22] | 蒋征, 王红, 吴启南, 2015. PB试验结合BBD响应面法优化浮萍多糖的提取工艺研究[J]. 中药材, 38(6): 1283-1286. |
JIANG Z, WANG H, WU Q N, 2015. Optimization of duckweed polysaccharide extraction process by PB experiment combined with BBD response surface method[J]. Chinese Materia Medica, 38(6): 1283-1286. | |
[23] | 李济源, 曹文平, 陈国浩, 等, 2022. 响应曲面法优化生物炭去除水中氨氮性能及机理研究[J]. 环境科技, 35(3): 7-12. |
LI J Y, CAO W P, CHEN G H, et al., 2022. Study on the performance and mechanism of ammonia nitrogen removal in water by response surface method[J]. Environmental Technology, 35(3): 7-12. | |
[24] | 林贤彪, 2018. 长江口邻近海域脱氮过程、影响因素及环境意义[D]. 上海: 华东师范大学. |
LIN X B, 2018. Nitrogen removal process, influencing factors and environmental significance in the sea adjacent to the Yangtze River Estuary[D]. Shanghai: East China Normal University. | |
[25] | 李平, 张山, 刘德立, 2005. 细菌好氧反硝化研究进展[J]. 微生物学杂志, 25(1): 60-64. |
LI P, ZHANG S, LIU D L, 2005. Research progress on bacterial aerobic denitrification[J]. Chinese Journal of Microbiology, 25(1): 60-64. | |
[26] | 聂家琴, 2018. 中国东部典型潮间带沉积物有机质的分布特征与来源分析[D]. 上海: 华东师范大学. |
NIE J Q, 2018. Distribution characteristics and source analysis of organic matter in typical intertidal sediments in eastern China[D]. Shanghai: East China Normal University. | |
[27] |
孙昭玥, 郑西来, 郑天元, 等, 2021. 土壤包气带强化反应层脱氮的控制因素与性能研究[J]. 地学前缘, 28(5): 136-145.
DOI |
SUN Z Y, ZHENG X L, ZHENG T Y, et al., 2021. Study on control factors and properties of nitrogen removal of enhanced reaction layer in soil air envelope zone[J]. Earth Science Frontiers, 28(5): 136-145. | |
[28] | 王恒, 2018. 地下水中硝酸盐污染来源与防治研究进展[J]. 绿色科技, 61(10): 106-107. |
WANG H, 2018. Research progress on sources and prevention of nitrate pollution in groundwater[J]. Green Science and Technology, 61(10): 106-107. | |
[29] | 辛苑, 张耀方, 李添雨, 等, 2022. 密云水库入库河流微生物群落演替对氮素形态转化的影响[J]. 环境科学, 10(13): 1-12. |
XIN Y, ZHANG Y F, LI T Y, et al., 2022. Effects of microbial community succession on nitrogen speciation transformation in rivers entering Miyun Reservoir[J]. Environmental Science, 10(13): 1-12.
DOI URL |
|
[30] | 杨龙元, WAYNE S G, 1998. 休伦湖Saginaw湾沉积物反硝化率的测定及其时空特征[J]. 湖泊科学, 10(3): 32-38. |
YANG L Y, WAYNE S G, 1998. Determination of denitrification rate of sediment in Saginaw Bay, Lake Huron, and its spatiotemporal characteristics[J]. Journal of Lake Sciences, 10(3): 32-38.
DOI URL |
|
[31] | 张晓华, 林禾雨, 孙浩, 2018. 弧菌科分类学研究进展[J]. 中国海洋大学学报 (自然科学版), 48(8): 43-56. |
ZHANG X H, LIN H Y, SUN H, 2018. Research progress on taxonomy of Vibriomyceae[J]. Journal of Ocean University of China (Natural Science Edition), 48(8): 43-56. | |
[32] | 张耀中, 包芸, 2015. 盐水楔间断面对垂向速度分布的影响及薄层近似理论研究[C]// 中国力学学会. 中国力学大会—2015论文摘要集. 上海: 上海交通大学: 48. |
ZHANG Y Z, BAO Y, 2015. Influence of brine wedge intermittent on vertical velocity distribution and theoretical study on thin layer approximation[C]// Chinese society of mechanics, Chinese mechanics conference-2015 abstracts. Shanghai: Shanghai Jiao Tong University: 48. |
[1] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[2] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[3] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[4] | LIU Xilin, ZHUO Ruina. Influential Factors and Their Critical Thresholds of Initial Runoff Production Time on the Benggang Colluvial Slopes [J]. Ecology and Environment, 2023, 32(1): 36-46. |
[5] | ZHANG Lin, ZHOU Piao, QI Shi, ZHANG Dai, WU Bingchen, CUI Ranran. Difference Influence of Spatial Structure of Platycladus orientalis Plantations on Diversity of Understory Herbaceous and Its Correlation Degree [J]. Ecology and Environment, 2022, 31(9): 1794-1801. |
[6] | JIANG Nihao, ZHANG Shihao, ZHANG Shihan. Interspecific Associations and Environmental Interpretation of the Dominant Species of the Communities Invaded by Ageratina adenophora in Ailao Mountains [J]. Ecology and Environment, 2022, 31(7): 1370-1382. |
[7] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
[8] | XUE Wenkai, ZHU Pan, DE Ji, GUO Xiaofang. Study on the Temporal and Spatial Characteristics of the Dominant Species of Cultivable Filamentous Fungi in Nam Co Lake [J]. Ecology and Environment, 2022, 31(12): 2331-2340. |
[9] | LI Cong, LÜ Jinghua, LU Mei, YANG Zhidong, LIU Pan, REN Yulian, DU Fan. Responses of Soil Bacterial Communities to Vertical Vegetarian Zone Changes in the Subtropical Forests, Southeastern Yunnan [J]. Ecology and Environment, 2022, 31(10): 1971-1983. |
[10] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environment, 2022, 31(1): 181-186. |
[11] | LIU Xiaoju, CHU Jiangtao, ZHANG Yue, SHAN Qi. Effects of Environmental Factors and Fire Disturbance Factors on Distribution of Chamerion angustifolium in Kanas Taiga [J]. Ecology and Environment, 2022, 31(1): 37-43. |
[12] | CAI Xi'an, HUANG Juan, WU Tong, LIU Juxiu, JIANG Fen, WANG Senhao. Study on Methane Emission from Tree Leaves [J]. Ecology and Environment, 2021, 30(9): 1842-1847. |
[13] | YAO Shiting, LU Guangxin, DENG Ye, DANG Ning, WANG Yingcheng, ZHANG Haijuan, YAN Huilin. Effects of Simulated Warming on Soil Fungal Community Composition and Diversity [J]. Ecology and Environment, 2021, 30(7): 1404-1411. |
[14] | ZOU Chenyi, DING Hong, WANG Yasa, ZHANG Yushu, YU Juhua, ZHENG Xiangzhou. Effect of Straw on Urea Nitrogen Transformation in Soil [J]. Ecology and Environment, 2021, 30(6): 1213-1219. |
[15] | Xue Liyuan, Liu Zhiliang, Song Wei, An Ying, Yuan Xiaobo, Chen Xiao. Spatial Distribution of Aurelia sp. Ephyrae and Its Relationship with Environmental Factors in the Coastal Waters of Qinhuangdao in Spring, 2020 [J]. Ecology and Environment, 2021, 30(6): 1240-1248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn