Ecology and Environment ›› 2023, Vol. 32 ›› Issue (3): 609-618.DOI: 10.16258/j.cnki.1674-5906.2023.03.018
• Research Articles • Previous Articles Next Articles
YANG Nie1,2(), SUN Xiaoxun2, KONG Tianle1,2, SUN Weimin2, CHEN Quanyuan1, GAO Pin1,2,*(
)
Received:
2023-01-16
Online:
2023-03-18
Published:
2023-06-02
Contact:
GAO Pin
阳涅1,2(), 孙晓旭2, 孔天乐1,2, 孙蔚旻2, 陈泉源1, 高品1,2,*(
)
通讯作者:
高品
作者简介:
阳涅(1999年生),男,硕士研究生,研究方向为金属污染环境下微生物的响应机制。E-mail: 1255948322@qq.com
基金资助:
CLC Number:
YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment[J]. Ecology and Environment, 2023, 32(3): 609-618.
阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.03.018
[1] |
BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G, 2018. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 16(9): 567-576.
DOI PMID |
[2] |
BELZILE N, CHEN Y W, WANG Z, 2001. Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 174(4): 379-87.
DOI URL |
[3] |
CARLIN A, SHI W, DEY S, et al., 1995. The ars operon of Escherichia coli confers arsenical and antimonial resistance[J]. Journal of Bacteriology, 177(4): 981-986.
DOI URL |
[4] |
CHEN S Y, NIU L L, ZHANG Y X, 2010. Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated from sludge treating brewery wastewater[J]. International Journal of Systematic and Evolutionary Microbiology, 60(12): 2735-2738.
DOI URL |
[5] |
CHEN Y W, DENG T L, FILELLA M, et al., 2003. Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes[J]. Environmental Science & Technology, 37(6): 1163-1168.
DOI URL |
[6] |
COURTIN-NOMADE A, RAKOTOARISOA O, BRIL H, et al., 2012. Weathering of Sb-rich mining and smelting residues: insight in solid speciation and soil bacteria toxicity[J]. Geochemistry, 72(Supplement 4): 29-39.
DOI URL |
[7] | CSARDI G, NEPUSZ T, 2006. The igraph software package for complex network research[J]. Interjournal Complex Systems, 1695(5): 1-9. |
[8] |
CUI X D, WANG Y J, HOCKMANN K, et al., 2015. Effect of iron plaque on antimony uptake by rice (Oryza sativa L.)[J]. Environmental Pollution, 204: 133-40.
DOI URL |
[9] |
DOUGLAS G M, MAFFEI V J, ZANEVELD J R, et al., 2020. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 38(6): 685-688.
DOI PMID |
[10] |
ERCOLE E, ADAMO M, LUMINI E, et al., 2022. Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure[J]. Science of The Total Environment, 822: 153640.
DOI URL |
[11] |
FILELLA M, BELZILE N, CHEN Y W, 2002. Antimony in the environment: A review focused on natural waters: II. Relevant solution chemistry[J]. Earth Science Reviews, 59(1-4): 265-285.
DOI URL |
[12] |
FILELLA M, BELZILE N, LETT M C, 2007. Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions[J]. Earth-Science Reviews, 80(3-4): 195-217.
DOI URL |
[13] |
FRIEDMAN J H, 2006. Recent advances in predictive (machine) learning[J]. Journal of Classification, 23(2): 175-197.
DOI URL |
[14] |
GARNOVA E S, ZHILINA T N, TOUROVA T P, et al., 2004. Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia[J]. Extremophiles, 8(4): 309-316.
DOI URL |
[15] |
GRONOW S, MUNK C, LAPIDUS A, et al., 2011. Complete genome sequence of Paludibacter propionicigenes type strain (WB4T)[J]. Standards in Genomic Sciences, 4(1): 36-44.
DOI URL |
[16] |
HAHNKE S, LANGER T, KOECK D E, et al., 2016. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum[J]. International Journal of Systematic and Evolutionary Microbiology, 66(3): 1466-1475.
DOI URL |
[17] |
HE M C, WANG N N, LONG X J, et al., 2019. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 75: 14-39.
DOI URL |
[18] |
HERATH I, VITHANAGE M, BUNDSCHUH J, 2017. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 223: 545-559.
DOI PMID |
[19] |
HUANG B C, LONG J, LIAO H K, et al., 2019. Characteristics of bacterial community and function in paddy soil profile around antimony mine and its response to antimony and arsenic contamination[J]. International Journal of Environmental Research and Public Health, 16(24): 4883.
DOI URL |
[20] |
JACQUIOD S, CYRIAQUE V, RIBER L, et al., 2018. Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome[J]. Journal of Hazardous Materials, 344: 299-307.
DOI PMID |
[21] |
KANEHISA M, GOTO S, 2000. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 28(1): 27-30.
DOI PMID |
[22] |
KULP T R, MILLER L G, BRAIOTTA F, et al., 2014. Microbiological reduction of Sb(V) in anoxic freshwater sediments[J]. Environmental Science & Technology, 48(1): 218-226.
DOI URL |
[23] |
LEHR C R, KASHYAP D R, MCDERMOTT T R, 2007. New insights into microbial oxidation of antimony and arsenic[J]. Applied and Environmental Microbiology, 73(7): 2386-2389.
PMID |
[24] |
LI J X, WANG Q, OREMLAND R S, et al., 2016. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways[J]. Applied and Environmental Microbiology, 82(18): 5482-5495.
DOI PMID |
[25] |
LI L, LIU H, LI H X, 2018. Distribution and migration of antimony and other trace elements in a Karstic river system, Southwest China[J]. Environmental Science and Pollution Research, 25(28): 28061-28074.
DOI |
[26] |
LI L, TU H, ZHANG S, et al., 2019. Geochemical behaviors of antimony in mining-affected water environment (Southwest China)[J]. Environmental Geochemistry and Health, 41(6): 2397-2411.
DOI PMID |
[27] |
LI Y C, XU Z, WU J X, et al., 2020. Efficiency and mechanisms of antimony removal from wastewater using mixed cultures of iron-oxidizing bacteria and sulfate-reducing bacteria based on scrap iron[J]. Separation and Purification Technology, 246: 116756.
DOI URL |
[28] |
LI Y B, ZHANG M M, XU R, et al., 2021. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling[J]. Environment International, 153: 106522.
DOI URL |
[29] |
LIM S, RHEE M S, CHANG D H, et al., 2016. Whole-genome sequence of Erysipelothrix larvae LV19T (=KCTC 33523T), a useful strain for arsenic detoxification, from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus[J]. Journal of Biotechnology, 223: 40-41.
DOI URL |
[30] |
MOK W M, WAI C M, 1990. Distribution and mobilization of arsenic and antimony species in the Coeur D'Alene River, Idaho[J]. Environmental Science & Technology, 24(1): 102-118.
DOI URL |
[31] |
NGUYEN V K, LEE J U, 2014. Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory[J]. Geomicrobiology Journal, 31(10): 855-861.
DOI URL |
[32] | NING Z P, XIAO Q X, LAN X L, et al., 2017. Spatial distribution characteristics and potential ecological risk of antimony and selected heavy metals in sediments of Duliujiang River[J]. Environmental Science, 38(7): 2784-2792. |
[33] |
OKKENHAUG G, ZHU Y G, LUO L, et al., 2011. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J]. Environmental Pollution, 159(10): 2427-2434.
DOI PMID |
[34] | OMS. 2008. Guidelines for drinking-water quality: Second addendum to third edition. Vol. 1: recommendations[J]. Water Quality, 1: 92. |
[35] |
QIN H B, UESUGI S, YANG S T, et al., 2019. Enrichment mechanisms of antimony and arsenic in marine ferromanganese oxides: Insights from the structural similarity[J]. Geochimica et Cosmochimica Acta, 257: 110-130.
DOI URL |
[36] |
QIN Z R, ZHAO Z H, XIA L L, et al., 2022. Pollution pressure and soil depth drive prokaryotic microbial assemblage and co-occurrence patterns in an organic polluted site[J]. Journal of Hazardous Materials, 438: 129570.
DOI URL |
[37] |
RONG Q, LING C Y, LU D T, et al., 2022. Sb (III) resistance mechanism and oxidation characteristics of Klebsiella aerogenes X[J]. Chemosphere, 293: 133453.
DOI URL |
[38] | SCHUMACHER B A. 2002. Methods for the determination of total organic carbon in soils and sediments[J]. Carbon, 32: 25. |
[39] | SEGATA N, IZARD J, WALDRON L, et al., 2011. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 12(6): 1-18. |
[40] |
SHAGOL C C, KRISHNAMOORTHY R, KIM K, et al., 2014. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea[J]. Environmental Science and Pollution Research, 21(15): 9356-9365.
DOI URL |
[41] |
SU P Z, GAO P, SUN W M, et al., 2022. Keystone taxa and functional analysis in arsenic and antimony co-contaminated rice terraces[J]. Environmental Science and Pollution Research, 29(40): 61236-61246.
DOI |
[42] |
SUN W M, SUN X X, LI B Q, et al., 2019b. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions[J]. Science of The Total Environment, 675: 273-285.
DOI URL |
[43] |
SUN W M, XIAO E Z, HÄGGBLOM M, et al., 2018. Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses[J]. Environmental Science & Technology, 52(22): 13370-13380.
DOI URL |
[44] |
SUN W M, XIAO E Z, XIAO T F, et al., 2017. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J]. Environmental Science & Technology, 51(16): 9165-9175.
DOI URL |
[45] |
SUN X X, KONG T L, XU R, et al., 2020b. Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites: Responses to two different contamination conditions[J]. Environmental Pollution, 260: 114052.
DOI URL |
[46] |
SUN X X, LI B Q, HAN F, et al., 2019a. Impacts of arsenic and antimony co-contamination on sedimentary microbial communities in rivers with different pollution gradients[J]. Microbial Ecology, 78(3): 589-602.
DOI |
[47] |
SUN X X, XU R, DONG Y R, et al., 2020a. Investigation of the ecological roles of putative keystone taxa during tailing revegetation[J]. Environmental Science & Technology, 54(18): 11258-11270.
DOI URL |
[48] |
TELFORD K, MAHER W, KRIKOWA F, et al., 2009. Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia[J]. Environmental Chemistry, 6(2): 133-143.
DOI URL |
[49] |
TERRY L R, KULP T R, WIATROWSKI H, et al., 2015. Microbiological oxidation of antimony (III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J]. Applied and Environmental Microbiology, 81(24): 8478-8488.
DOI URL |
[50] |
THANABALASINGAM P, PICKERING W, 1990. Specific sorption of antimony (III) by the hydrous oxides of Mn, Fe, and Al[J]. Water, Air, and Soil Pollution, 49: 175-185.
DOI URL |
[51] |
WANG J, SHE J Y, ZHOU Y C, et al., 2020. Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments[J]. Science of The Total Environment, 739: 139957.
DOI URL |
[52] |
WANG Q, WARELOW T P, KANG Y S, et al., 2015a. Arsenite oxidase also functions as an antimonite oxidase[J]. Applied and Environmental Microbiology, 81(6): 1959-1965.
DOI URL |
[53] |
WANG Q, XIE Z Y, LI F B, 2015b. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale[J]. Environmental Pollution, 206: 227-235.
DOI URL |
[54] |
WANG X Q, HE M C, XI J H, et al., 2011. Antimony distribution and mobility in rivers around the world's largest antimony mine of Xikuangshan, Hunan Province, China[J]. Microchemical Journal, 97(1): 4-11.
DOI URL |
[55] | WEN T, XIE P, YANG S, et al., 2022. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts[J]. iMeta, 1(3): e32. |
[56] |
WILSON S C, LOCKWOOD P V, ASHLEY P M, et al., 2010. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review[J]. Environmental Pollution, 158(5): 1169-1181.
DOI PMID |
[57] |
WU T L, CUI X D, CUI P X, et al., 2019. Speciation and location of arsenic and antimony in rice samples around antimony mining area[J]. Environmental Pollution, 252: 1439-1447.
DOI URL |
[58] |
WU X D, SONG J M, LI X G, et al., 2011. Behaviors of dissolved antimony in the Yangtze River Estuary and its adjacent waters[J]. Journal of Environmental Monitoring, 13(8): 2292-2303.
DOI URL |
[59] |
XIAO E Z, KRUMINS V, TANG S, et al., 2016. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond[J]. Environmental Pollution, 215: 141-153.
DOI PMID |
[60] |
XIAO E Z, NING Z P, XIAO T F, et al., 2019. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump[J]. Environmental Pollution, 253: 141-151.
DOI PMID |
[61] |
XU R, LI B Q, XIAO E Z, et al., 2020c. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage[J]. Environmental Pollution, 261: 114226.
DOI URL |
[62] |
XU R, SUN X X, HAN F, et al., 2020b. Impacts of antimony and arsenic co-contamination on the river sedimentary microbial community in an antimony-contaminated river[J]. Science of The Total Environment, 713: 136451.
DOI URL |
[63] |
XU R, SUN X X, LIN H Z, et al., 2020a. Microbial adaptation in vertical soil profiles contaminated by an antimony smelting plant[J]. FEMS Microbiology Ecology, 96(11): fiaa188.
DOI URL |
[64] |
YAMAMURA S, IIDA C, KOBAYASHI Y, et al., 2021. Production of two morphologically different antimony trioxides by a novel antimonate-reducing bacterium, Geobacter sp. SVR[J]. Journal of Hazardous Materials, 411: 125100.
DOI URL |
[65] |
YANG S Z, WEN X, SHI Y L, et al., 2016. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments[J]. Scientific Reports, 6(1): 1-13.
DOI |
[66] |
YANG Z R, HOSOKAWA H, KURODA M, et al., 2021. Microbial antimonate reduction and removal potentials in river sediments[J]. Chemosphere, 266: 129192.
DOI URL |
[67] | YE L, CHEN H Z, JING C Y, 2019. Sulfate-reducing bacteria mobilize adsorbed antimonate by thioantimonate formation[J]. Environmental Science & Technology Letters, 6(7): 418-422. |
[68] | YU Y S, SU J M, XU J Q, et al., 2022. As (III) Exposure Induces a Zinc Scarcity Response and Restricts Iron Uptake in High-Level Arsenic-Resistant Paenibacillus taichungensis Strain NC1[J]. Applied and Environmental Microbiology, 88(9): e00312-22. |
[69] |
ZHANG M M, LU G M, LI Z, et al., 2021. Effects of antimony on anaerobic methane oxidization and microbial community in an antimony-contaminated paddy soil: A microcosm study[J]. Science of The Total Environment, 784: 147239.
DOI URL |
[70] |
ZHANG Z X, LU Y, LI H P, et al., 2018. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China[J]. Science of The Total Environment, 645: 235-243.
DOI URL |
[71] |
ZHAO X Y, CHEN J T, GUO M R, et al., 2022. Constructed wetlands treating synthetic wastewater in response to day-night alterations: Performance and mechanisms[J]. Chemical Engineering Journal, 446(Part 5): 137460.
DOI URL |
[72] | 李哲, 2020. 典型锑污染土壤中的厌氧锑氧化过程及其相关功能微生物的研究[D]: 武汉: 武汉工程大学. |
LI Z, 2020. Anaerobic antimonite oxidation and the microorganisms involved in a typical antimony-contaminated soil[D]. Wuhan: Wuhan Institute of Technology. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn