Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 150-157.DOI: 10.16258/j.cnki.1674-5906.2023.01.016
• Research Articles • Previous Articles Next Articles
XU Min1,2(), XU Chao2,*(
), YU Guanghui1,*(
), YIN Lichu3, ZHANG Quan2, ZHU Hanhua2, ZHU Qihong2, ZHANG Yangzhu3, HUANG Daoyou2
Received:
2022-08-02
Online:
2023-01-18
Published:
2023-04-06
Contact:
XU Chao,YU Guanghui
徐敏1,2(), 许超2,*(
), 余光辉1,*(
), 尹力初3, 张泉2, 朱捍华2, 朱奇宏2, 张杨珠3, 黄道友2
通讯作者:
许超,余光辉
作者简介:
徐敏(1998年生),女,硕士研究生,主要从事土壤与环境生态研究。E-mail: xumin4211@163.com
基金资助:
CLC Number:
XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice[J]. Ecology and Environment, 2023, 32(1): 150-157.
徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.016
处理 | pH | w(有机质)/(g·kg-1) | w(DOC)/(mg·kg-1) | w(DTPA-Cu)/(mg·kg-1) | w(DTPA-Fe)/(mg·kg-1) |
---|---|---|---|---|---|
HRS | 5.20±0.08b | 32.00±0.78a | 98.10±7.17a | 3.92±0.49a | 120.5±12.7ab |
HCF | 5.30± 0.02ab | 22.47±1.41b | 38.64±4.87b | 2.75±0.49b | 155.4±15.2a |
LRS | 5.08±0.12b | 29.30±0.78a | 114.65±4.64a | 3.79±0.24ab | 123.5±14.5ab |
LCF | 5.54±0.19a | 22.27±0.66b | 65.39±9.96b | 3.27±0.36ab | 105.3±13.5b |
Table 1 The basic physical and chemical properties in soil of groundwater level management and long-term straw returning
处理 | pH | w(有机质)/(g·kg-1) | w(DOC)/(mg·kg-1) | w(DTPA-Cu)/(mg·kg-1) | w(DTPA-Fe)/(mg·kg-1) |
---|---|---|---|---|---|
HRS | 5.20±0.08b | 32.00±0.78a | 98.10±7.17a | 3.92±0.49a | 120.5±12.7ab |
HCF | 5.30± 0.02ab | 22.47±1.41b | 38.64±4.87b | 2.75±0.49b | 155.4±15.2a |
LRS | 5.08±0.12b | 29.30±0.78a | 114.65±4.64a | 3.79±0.24ab | 123.5±14.5ab |
LCF | 5.54±0.19a | 22.27±0.66b | 65.39±9.96b | 3.27±0.36ab | 105.3±13.5b |
处理 | w(稻米Cd)/ (mg·kg-1) | w(稻草Cd)/ (mg·kg-1) | Cd富集系数 (BAF) | Cd转运系数 (TF) | ||
---|---|---|---|---|---|---|
BAF稻米 | BAF稻草 | TF米/草 | ||||
HRS | 0.63±0.07c | 3.07±0.17b | 1.00±0.05c | 4.87±0.42b | 0.21±0.03bc | |
HCF | 0.05±0.01d | 0.39±0.06c | 0.09±0.00d | 0.70±0.06c | 0.13±0.01c | |
LRS | 1.48±0.13a | 6.33±0.22a | 2.37±0.19a | 10.14±0.44a | 0.23±0.02ab | |
LCF | 1.04±0.09b | 3.70±0.13b | 1.70±0.18b | 6.02±0.36b | 0.28±0.02a |
Table 2 Cd mass fraction, enrichment coefficient and transport coefficient in different parts of rice
处理 | w(稻米Cd)/ (mg·kg-1) | w(稻草Cd)/ (mg·kg-1) | Cd富集系数 (BAF) | Cd转运系数 (TF) | ||
---|---|---|---|---|---|---|
BAF稻米 | BAF稻草 | TF米/草 | ||||
HRS | 0.63±0.07c | 3.07±0.17b | 1.00±0.05c | 4.87±0.42b | 0.21±0.03bc | |
HCF | 0.05±0.01d | 0.39±0.06c | 0.09±0.00d | 0.70±0.06c | 0.13±0.01c | |
LRS | 1.48±0.13a | 6.33±0.22a | 2.37±0.19a | 10.14±0.44a | 0.23±0.02ab | |
LCF | 1.04±0.09b | 3.70±0.13b | 1.70±0.18b | 6.02±0.36b | 0.28±0.02a |
指标 | 回归方程 | R2 | P |
---|---|---|---|
CaCl2-Cd | Y1=0.811XDOC+36.318 | 0.826 | 0.001 |
稻草Cd | Y2=0.058XC-Cd-0.032XD-Fe+1.595 | 0..976 | 0.000 |
稻米Cd | Y3=0.016XC-Cd-0.01XD-Fe+0.664 | 0.937 | 0.000 |
Table 3 Stepwise regression equation for soil available Cd and Cd mass fraction of rice with soil physicochemical property index
指标 | 回归方程 | R2 | P |
---|---|---|---|
CaCl2-Cd | Y1=0.811XDOC+36.318 | 0.826 | 0.001 |
稻草Cd | Y2=0.058XC-Cd-0.032XD-Fe+1.595 | 0..976 | 0.000 |
稻米Cd | Y3=0.016XC-Cd-0.01XD-Fe+0.664 | 0.937 | 0.000 |
[1] | BAI Y C, GU C H, TAO T Y, et al., 2013. Straw incorporation increases solubility and uptake of cadmium by rice plants[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 63(3): 193-199. |
[2] |
FILIPOVIC L, ROMIC M, ROMIC D, et al., 2018. Organic matter and salinity modify cadmium soil (phyto) availability[J]. Ecotoxicology and Environmental Safety, 147: 824-831.
DOI URL |
[3] |
LI Z M, LIANG Y, HU H W, et al., 2021. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety[J]. Environment International, 156: 106749.
DOI URL |
[4] |
NEMATI K, BAKAR N K A, ABAS M R, et al., 2011. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 192(1): 402-410.
DOI PMID |
[5] |
NIE X X, DUAN X L, ZHANG M M, et al., 2019. Cadmium accumulation, availability, and rice uptake in soils receiving long-term applications of chemical fertilizers and crop straw return[J]. Environmental Science and Pollution Research, 26(30): 31243-31253.
DOI |
[6] |
SU Y, KWONG R W M, TANG W L, et al., 2021. Straw return enhances the risks of metals in soil?[J]. Ecotoxicology and Environmental Safety, 207: 111201.
DOI URL |
[7] |
SUI F Q, CHANG J D, TANG Z, et al., 2018. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant Soil, 433(1-2): 377-389.
DOI |
[8] |
TANAKA K, FUJIMAKI S, FUJIWARA T, et al., 2007. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science and Plant Nutrition, 53(1): 72-77.
DOI URL |
[9] |
URAGUCHI S, MORI S, KURAMATA M, et al., 2009. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 60(9): 2677-2688.
DOI PMID |
[10] |
WANG J, WANG P M, GU Y, et al., 2019. Iron-manganese (oxyhydro) oxides rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science & Technology, 53(5): 2500-2508.
DOI URL |
[11] |
WANG P, CHEN H P, KOPITTKE P M, et al., 2019. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 249: 1038-1048.
DOI PMID |
[12] |
WANG S, HUANG D Y, ZHU Q H, et al., 2015. Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw[J]. Environmental Science and Pollution Research, 22(4): 2679-2686.
DOI URL |
[13] |
YIN L C, ZHANG L, Yi Y N, et al., 2015. Effects of long-term groundwater management and straw application on aggregation of paddy soils in subtropical China[J]. Pedosphere, 25(3): 386-391.
DOI URL |
[14] |
YU H Y, LIU C P, ZHU J S, et al., 2016. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 209: 38-45.
DOI URL |
[15] |
ZHANG Q, CHEN H F, HUANG D Y, et al., 2019. Water managements limit heavy metal accumulation in rice: Dual effects of iron-plaque formation and microbial communities[J]. Science of the Total Environment, 687: 790-799.
DOI URL |
[16] |
ZHANG Q, ZHANG L, LIU T T, et al., 2018. The influence of liming on cadmium accumulation in rice grains via iron-reducing bacteria[J]. Science of the Total Environment, 645: 109-118.
DOI URL |
[17] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Analytical methods of soil agricultural chemistry[M]. Third edition. Beijing: China Agriculture Press | |
[18] | 陈迪, 李伯群, 杨永平, 等, 2021. 4种草本植物对镉的富集特征[J]. 环境科学, 42(2): 960-966. |
CHEN D, LI B Q, YANG Y P, et al., 2021. Cadmium accumulation characteristics of four herbs[J]. Environmental Science, 42(2): 960-966. | |
[19] | 杜爽爽, 2013. 稻草、紫云英用量及配比对酸性土壤砷、镉有效性的影响及其在水稻中的应用[D]. 武汉: 华中农业大学. |
DU S S, 2013. Effect of straw and Astragalus sinicus amendments on availability of arsenic and cadmium in acid soil and the practice in rice[D]. Wuhan: Huazhong Agricultural University. | |
[20] | 段桂兰, 王芳, 岑况, 等, 2017. 秸秆还田对水稻镉积累及其亚细胞分布的影响[J]. 环境科学, 38(9): 3927-3936. |
DUAN G L, WANG F, CEN K, et al., 2017. Effects of straw incorporation on cadmium accumulation and subcellular distribution in rice[J]. Environment Science, 38 (9): 3927-3936.
DOI URL |
|
[21] | 黄界颍, 2013. 秸秆还田对铜陵矿区土壤Cd形态及有效性的影响机理[D]. 合肥: 合肥工业大学: 111-112. |
HANG J Y, 2013. Impact mechanism of straws returning on cadmium speciation and bioavailability of soils in Tongling mining area[D]. Hefei: Hefei University of Technology: 111-112. | |
[22] | 焦文涛, 蒋新, 余贵芬, 等, 2005. 土壤有机质对镉在土壤中吸附-解吸行为的影响[J]. 环境化学, 24(5): 545-549. |
JIAO W T, JIANG X, YU G F, et al., 2005. Effects of organic matter on cadmium adsorption-desorption in three soils[J]. Environmental Chemistry, 24(5): 545-549. | |
[23] | 李新爱, 童成立, 蒋平, 等, 2006. 长期不同施肥对稻田土壤有机质和全氮的影响[J]. 土壤, 38(3): 298-303. |
LI X A, TONG C L, JIANG P, et a1., 2006. Effects of long-term fertilization on soil organic matter and total nitrogen in paddy soil[J]. Soils, 38(3): 298-303. | |
[24] | 龙泽东, 孙梅, 罗尊长, 等, 2021. 长期不同耕作方式与秸秆还田对稻田镉生物有效性的影响[J]. 农业环境科学学报, 40(9): 1888-1896. |
LONG Z D, SUN M, LUO Z C, et al., 2021. Effect of different long-term tillage methods and straw returning on cadmium bioavailability in paddy fields[J]. Journal of Agro-Environment Science, 40(9): 1888-1896. | |
[25] | 裘高扬, 2016. 改良剂对稻田土壤中镉形态及有效性的影晌[D]. 杭州: 浙江大学. |
QIU G Y, 2016. Effect of modifier on cadmium morphology and availability in paddy soil[D]. Hangzhou: Zhejiang University. | |
[26] | 盛浩, 宋迪思, 王翠红, 等, 2015. 土壤溶解性有机碳四种测定方法的对比和转换[J]. 土壤, 47(6): 1049-1053. |
SHENG H, SONG D S, WANG C H, et a1., 2015. Comparison and transform of soil dissolved organic carbon measured by four methods[J]. Soil, 47(6): 1049-1053. | |
[27] | 史磊, 郭朝晖, 梁芳, 等, 2017. 水分管理和施用石灰对水稻镉吸收与运移的影响[J]. 农业工程学报, 33(24): 111-117. |
SHI L, GUO Z H, LIANG F, et al., 2017. Effects of lime and water management on uptake and translocation of cadmium in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 33(24): 111-117. | |
[28] | 汤文光, 肖小平, 唐海明, 等, 2015. 长期不同耕作与秸秆还田对土壤养分库容及重金属Cd的影响[J]. 应用生态学报, 26(1): 168-176. |
TANG W G, XIAO X P, TANG H M, et al., 2015. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration[J]. Chinese Journal of Applied Ecology, 26(1): 168-176. | |
[29] | 王梦梦, 何梦媛, 苏德纯, 2018. 稻田土壤性质与稻米镉含量的定量关系[J]. 环境科学, 39(4): 1918-1925. |
WANG M M, HE M Y, SU D C, 2018. Quantitative relationship between paddy soil properties and cadmium content in rice grains[J]. Environmental Science, 39(4): 1918-1925. | |
[30] | 汪鹏, 王静, 陈宏坪, 等, 2018. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 37(7): 1409-1417. |
WANG P, WANG J, CHEN H P, et al., 2018. Cadmium risk and mitigation in paddy systems in China[J]. Journal of Agro-Environment Science, 37(7): 1409-1417. | |
[31] | 吴佳, 纪雄辉, 魏维, 等, 2018. 水分状况对水稻镉砷吸收转运的影响[J]. 农业环境科学学报, 37(7): 1427-1434. |
WU J, JI X H, WEI W, et al., 2018. Effect of water levels on cadmium and arsenic absorption and transportation in rice[J]. Journal of Agro-Environment Science, 37(7): 1427-1434. | |
[32] | 吴佳琪, 黄运湘, 尹力初, 等, 2020. 长期秸秆还田和地下水位对土壤镉积累及有效性的影响[J]. 农业环境科学学报, 39(9): 1957-1963. |
WU J Q, HUANG Y X, YIN L C, et al., 2020. Effect of long-term straw returning and groundwater level on cadmium accumulation and availability in soils[J]. Journal of Agro-Environment Science, 39(9): 1957-1963. | |
[33] | 熊婕, 朱奇宏, 黄道友, 等, 2019. 南方典型稻区稻米镉累积量的预测模型研究[J]. 农业环境科学学报, 38(1): 22-28. |
XIONG J, ZHU Q H, HUANG D Y, et al., 2019. Prediction model for the accumulation of cadmium in rice in typical paddy fields of south China[J]. Journal of Agro-Environment Science, 38(1): 22-28. | |
[34] | 颜世红, 吴春发, 胡友彪, 等, 2013. 典型土壤中有效态镉CaCl2提取条件优化研究[J]. 中国农学通报, 29(9): 99-104. |
YAN S H, WU C F, HU Y B, et al., 2013. Optimization of CaCl2 extraction of available cadmium in typical soils[J]. Chinese Agricultural Science Bulletin, 29(9): 99-104. | |
[35] | 易亚男, 尹力初, 张蕾, 2014. 不同地下水位和施肥管理对水稻土有机碳组分的影响[J]. 生态学杂志, 33(5): 1284-1289. |
YI Y N, YIN L C, ZHANG L, 2014. Effects of water table and fertilization on organic carbon fractions in paddy soil[J]. Chinese Journal of Ecology, 33(5): 1284-1289. | |
[36] | 张庆沛, 李冰, 王昌全, 等, 2016. 秸秆还田配施无机改良剂对稻田土壤镉赋存形态及生物有效性的影响[J]. 农业环境科学学报, 35(12): 2345-2352. |
ZHANG Q P, LI B, WANG C Q, et al., 2016. Effects of combined application of straw and inorganic amendments on cadmium speciation and bioavailability in paddy soil[J]. Journal of Agro-Environment Science, 35(12): 2345-2352. | |
[37] | 郑顺安, 刘代丽, 章明奎, 等, 2020. 长期秸秆还田对污染农田土壤与农产品重金属的影响[J]. 水土保持学报, 34(2): 354-359. |
ZHENG S A, LIU D L, ZHANG M K, et al., 2020. Effect of long-term straw returning on heavy metals of soil and agricultural products in the polluted farmland[J]. Journal of Soil and Water Conservation, 34(2): 354-359. | |
[38] | 中华人民共和国生态环境部. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境科学出版, 2018. |
Ministry of Ecology and Environment of the People’s Republic of China. Soil environmental quality: Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: China Environmental Science Press, 2018. | |
[39] | 朱丹妹, 刘岩, 张丽, 等, 2017. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 36(8): 1508-1517. |
ZHU D M, LIU Y, ZHANG L, et al., 2017. Effects of pH, Eh, Fe, and flooded time on available-Cd content after flooding of different kinds of soil[J]. Journal of Agro-Environment Science, 36(8): 1508-1517. |
[1] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[2] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[3] | YANG Kai, YANG Jingrui, CAO Peipei, LÜ Chunhua, SUN Wenjuan, YU Lingfei, DENG Xi. Dynamic Response of Rice Plant Height, Tillering and SPAD under Elevated CO2 Concentration and Their Simulation [J]. Ecology and Environment, 2023, 32(5): 933-942. |
[4] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[5] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[6] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[7] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[8] | MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil [J]. Ecology and Environment, 2022, 31(9): 1892-1900. |
[9] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[10] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environment, 2022, 31(8): 1566-1572. |
[11] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[12] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[13] | JIANG Chaoqiang, LI Chen, ZHU Qifa, XU Haiqing, LIU Yanhong, SHEN Jia, YAN Yifeng, YU Fei, ZU Chaolong. Evaluation of Carbon Sink and Economic Benefit in Different Planting Patterns in Southern Anhui [J]. Ecology and Environment, 2022, 31(7): 1285-1292. |
[14] | YAN Mingjuan, CHEN Xianyu, CAO Rongbin, LIN Cheng, WU Yiqun, HUANG Dingyi, WU Hailing, CHEN Zicong. The Distribution Characteristics of Soil Mn and Zn in Typical White Tea Plantation in Fujian Province [J]. Ecology and Environment, 2022, 31(5): 885-895. |
[15] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn