| [1] |
BOLAN N S, KUNHIKRISHNAN A, THANGARAJAN R, et al., 2014. Remediation of heavy metal(loid)s contaminated soils-To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 266: 141-166.
DOI
URL
|
| [2] |
CHEN Y, WANG H, ZHANG J, et al., 2022. Biochar combined with nitrogen fertilizer reduction enhances rice yield and nitrogen use efficiency in a double-rice cropping system[J]. Field Crops Research, 284: 108345.
|
| [3] |
HAIDER F U, AIN N U, KHAN I, et al., 2024. Co-application of biochar and plant growth regulators improves maize growth and decreases Cd accumulation in cadmium-contaminated soil[J]. Journal of Cleaner Production, 440: 140515.
DOI
URL
|
| [4] |
JU X T, KOU C L, CHRISTIE P, et al., 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(9): 3041-3046.
|
| [5] |
LEHMANN J, 2007. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 5(7): 381-387.
DOI
URL
|
| [6] |
LIU X, LI J, LI X, et al., 2019. Combined application of biochar and reduced chemical fertilizer improves soil fertility and grain yield of wheat: A two-year field study[J]. Journal of Soils and Sediments, 19(12): 4144-4154.
|
| [7] |
LUO J, SOLAIMAN Z M, LEHMANN J, et al., 2011. A review of biochar properties and their roles in crop growth and soil quality[J]. Critical Reviews in Plant Sciences, 30(1): 43-59.
|
| [8] |
PARK J H, CHOPPALA G K, BOLAN N S, et al., 2011. Biochar application to acidic soils: A review of current status and future prospects[J]. Journal of Environmental Management, 92(5): 1243-1251.
|
| [9] |
SPOKAS K A, 2010. Review of the stability of biochar in soils: Predictions from leaching and oxidation experiments, and changes in biochar structure and composition[J]. Biochar, 2(1): 25-46.
|
| [10] |
UCHIMIYA M, AHMAD M, LIM J E, et al., 2010. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemical Engineering Journal, 159(1-2): 226-234.
|
| [11] |
WANG H, ZHANG J, LIU Y, et al., 2022. Biochar combined with reduced nitrogen fertilizer application affects rice yield and nitrogen use efficiency in a double-rice cropping system[J]. Field Crops Research, 284: 108345.
|
| [12] |
ZHANG X, BIAN R, PAN G, et al., 2015. Aging of biochar in soils: A review[J]. Environmental Science & Technology, 49(15): 8807-8820.
|
| [13] |
ZHAO F J, MA Y B, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 49(2): 750-759.
DOI
URL
|
| [14] |
ZHAO X L, LI J, ZHOU X, et al., 2021. Long-term biochar application reduces cadmium accumulation in rice grains in a contaminated paddy soil[J]. Chemosphere, 279: 130512.
DOI
URL
|
| [15] |
李敏, 张乃明, 陈建军, 等, 2020. 生物炭对镉污染土壤的修复效应及机制[J]. 农业环境科学学报, 39(5): 913-922.
|
|
LI M, ZHANG N M, CHEN J J, et al., 2020. The remediation effect and mechanism of biochar on cadmium-contaminated soil[J]. Journal of Agro-Environment Science, 39(5): 913-922.
|
| [16] |
李梦然, 许学慧, 赵萌莉, 2021. 不同形态氮肥对苗期玉米镉富集的影响[J]. 中国土壤与肥料 (4): 289-294.
|
|
LI M R, XU X H, ZHAO M L, 2021. Effects of different forms of nitrogenous fertilizer on cadmium accumulation in seedling stage of maize (Zea mays L.)[J]. Soil and Fertilizer Sciences in China (4): 289-294.
|
| [17] |
李志贤, 向言词, 李会东, 等, 2014. 施氮水平对玉米吸收和富集重金属Cd、Pb的影响[J]. 水土保持学报, 28(6): 143-147.
|
|
LI Z X, XIANG Y C, LI H D, et al., 2014. Effects of Nitrogen Application Levels on Cd, Pb Uptake and Accumulation by Maize[J]. Journal of Soil and Water Conservation, 28(6): 143-147.
|
| [18] |
孙建好, 周健民, 王火焰, 等, 2018. 氮肥类型对土壤pH和小麦生长的影响[J]. 土壤学报, 55(2): 443-452.
|
|
SUN J H, ZHOU J M, WANG H Y, et al., 2018. The impact of nitrogen fertilizer types on soil pH and wheat growth[J]. ACTA Pedologica Sinica, 55(2): 443-452.
|
| [19] |
王艳, 李廷轩, 张锡洲, 等, 2017. 镉胁迫对玉米根系形态及养分吸收的影响[J]. 应用生态学报, 28(8): 2617-2624.
|
|
WANG Y, LI T X, ZHANG X Z, et al., 2017. The impact of cadmium stress on maize root morphology and nutrient absorption[J]. Chinese Journal of Applied Ecology, 28(8): 2617-2624.
|
| [20] |
赵秀兰, 秦欢, 周鑫, 等, 2022. 氮肥对生物炭修复镉污染土壤的影响[J]. 农业环境科学学报, 41(3): 473-481.
|
|
ZHAO X L, QIN H, ZHOU X, et al., 2022. The impact of nitrogen fertilizer on cadmium-contaminated soil remediation using biochar[J]. Journal of Agro-Environment Science, 41(3): 473-481.
|
| [21] |
中华人民共和国生态环境部国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S].
|
|
Ministry of Ecology and Environment of the People’s Republic of China and State Administration for Market Regulation, 2018, Soil environmental quality risk control standard for soil contamination of agricultural land: GB 15618—2018[S].
|
| [22] |
中华人民共和国农业部, 2015. 水果及制品可溶性糖的测定3,5-二硝基水杨酸比色法, NY/T 2742—2015[S].
|
|
Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2015. Determination of soluble sugar in fruits and derived products3, 5-dinitrosalieylie acid colorimetry, NY/T 2742—2015[S].
|
| [23] |
中华人民共和国农业部, 2022. 生物炭, NY/T 4159—2022[S].
|
|
Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2022. Biochar, NY/T 4159—2022[S].
|
| [24] |
中华人民共和国国家卫生健康委员会国家市场监督管理总局, 2022. 食品安全国家标准食品中污染物限量: GB 2762—2022[S].
|
|
National Health Commission of the People’s Republic of China and State Administration for Market Regulation, 2022. National Food Safety Standard - Limits of Contaminants in Foods, GB 2762—2022[S].
|