生态环境学报 ›› 2025, Vol. 34 ›› Issue (12): 1985-1992.DOI: 10.16258/j.cnki.1674-5906.2025.12.015
• 综述 •
上一篇
赵程潇1(
), 马江鸿2, 刘虹霞1, 胡静雯3, 潘姿彤1, 王嘉莹1, 李金页1,*(
)
收稿日期:2025-04-30
出版日期:2025-12-18
发布日期:2025-12-10
通讯作者:
*E-mail:lijinye@cjlu.edu.cn
作者简介:赵程潇(2001年生),男,硕士研究生,研究方向为水处理。E-mail: p24060857022@cjlu.edu.cn
基金资助:
ZHAO Chengxiao1(
), MA Jianghong2, LIU Hongxia1, HU Jingwen3, PAN Zitong1, WANG Jiaying1, LI Jinye1,*(
)
Received:2025-04-30
Online:2025-12-18
Published:2025-12-10
摘要:
人工湿地作为一种环境友好的水处理技术在处理城乡生活污水,农田退水以及养殖废水等领域得到了广泛的应用,但普遍存在低温条件下脱氮效率下降的问题。通过添加生物炭来强化人工湿地的脱氮效率,是当前的研究热点之一。该文综述了生物炭对人工湿地强化脱氮作用的研究进展。最新研究表明,在人工湿地中添加各类生物炭可显著提升人工湿地的脱氮效能,例如在垂直流人工湿地中添加经700 ℃制成的竹子生物炭,其脱氮效率提升了53%,展示了良好的应用前景。生物炭对人工湿地的强化脱氮作用主要有以下3种机制:首先,生物炭是一种缓释碳源并含有K、Ca、Mg等养分,作为基质可改善人工湿地植物根际营养环境,促进植物生长并增加对氮的吸收同化;其次,生物炭是一种多孔结构材料,可以为微生物提供良好的附着空间,增加根际脱氮微生物数量,提高氮转化效率;再次,生物炭本身所含的官能团对不同含氮化合物具有一定的吸附能力,可以通过理化途径进一步提升脱氮效率。生物炭作为一种新型负碳生物材料,潜力巨大,为推动生物炭强化人工湿地技术的工程应用,未来亟需开展不同来源生物炭理化特性的研究,并深入探究其在人工湿地脱氮过程中的具体作用机制。
中图分类号:
赵程潇, 马江鸿, 刘虹霞, 胡静雯, 潘姿彤, 王嘉莹, 李金页. 生物炭对人工湿地的强化脱氮作用[J]. 生态环境学报, 2025, 34(12): 1985-1992.
ZHAO Chengxiao, MA Jianghong, LIU Hongxia, HU Jingwen, PAN Zitong, WANG Jiaying, LI Jinye. Enhanced Nitrogen Removal of Constructed Wetlands by Biochar[J]. Ecology and Environmental Sciences, 2025, 34(12): 1985-1992.
| 湿地 类型 | 生物炭 原料 | 热解温度/ ℃ | 湿地 植物 | 污水 类型 | 未添加生物炭脱氮效率 /% | 添加生物炭脱氮效率 (最高值)/% | 参考 文献 |
|---|---|---|---|---|---|---|---|
| 水平潜流 | - | - | 菖蒲 | 生活污水 | NO3−-N,84.66;NH4+-N,45.04;TN,43.40 | NO3−-N,91.48;NH4+-N,67.52;TN,65.61 | 陈鑫童等, |
| 潜流 | 椰壳;坚果壳 | - | 黄芪 | 农村生活污水 | - | 椰壳:NH4+-N,95.44; 坚果壳:NH4+-N,92.73 | Xing et al., |
| 垂直潜流 | 稻壳 | 550 | 旱莲草 | 农村生活污水 | - | NO3−-N,74 | Panghal et al., |
| 潜流 | 竹子 | 500 | 水芹 | 模拟废水 | NH4+-N,99.31;TN,75.02 | NH4+-N,99.36;TN,87.29 | Zhou et al., |
| 表面流 | 芦竹 | 300 | 水芹 | 模拟废水 | NH4+-N,95.33;NO3−-N,84.04;TN,88.01 | NH4+-N,94.26;NO3−-N,92.72;TN,93.26 | Li et al., |
| 垂直水平潜流 | 竹子;木材 | - | 芦苇 | 城市污水 | - | NH4+-N,99;TN,96 | Saeed et al., |
| 潜流 | 竹子 | 500 | 水芹 | 模拟废水 | NH4+-N,39.97;TN,39.23 | NH4+-N,50.05;TN,49.90 | Zhou et al., |
| 表面流 | 芦竹 | 300 | 水芹 | 模拟废水 | NO3−-N,36.16;TN,57.90 | NO3−-N,81.16;TN,85.62 | Li et al., |
| 垂直潜流 | 玉米秸秆;木头 | 600 | - | 厌氧消化后的沼液 | TN,22;NH4+-N,62 | TN,47;NH4+-N,83 | Kizito et al., |
| 水平潜流 | 橡木 | 600 | 美人蕉 | 模拟生活污水 | TN,40.10;NH4+-N,50.01;NO3−-N,82.80 | TN,58.27;NH4+-N,58.30;NO3−-N,92.08 | Gupta et al., |
| 水平潜流 | 木炭 | - | 宽叶香蒲 | 城市污水 | TN,9.5;NO3−-N,12.7 | TN,20.0;NO3−-N,24.6 | Kasak et al., |
| 垂直流 | 木屑;生物污泥 | 850 | 芦苇 | 三级澄清阶段出水 | NH4+-N,45 | NH4+-N,65; | Ayadi et al., |
| 潜流 | 芦竹 | 500 | 菖蒲 | 模拟废水 | TN,70.92;NH4+-N,34.76 | TN,80.21;NH4+-N,57.96 | 邓朝仁等, |
| 潮汐流 | 玉米;鸡粪 | 500 | 灯心草 | 生活污水 | TN,84.9;NH4+-N,42.4 | TN,90.3;NH4+-N,60.3 | 陈旭等, |
| 垂直流 | 玉米 | 450 | 黄菖蒲 | 城市尾水(污水处理厂出水) | - | NH4+-N,90 | Wang et al., |
| 水平潜流 | 芦竹 | 800 | 风车草 | 模拟废水 | TN,24. 93;NO3−-N,18.39 | TN,41.24;NO3−-N,49.54 | Gao et al., |
| 潜流 | 竹子 | 500 | 风车草 | 模拟废水 | TN,87.9;NH4+-N,94.2 | TN,94.9;NH4+-N,99.4 | Liang et al., |
| 垂直流 | 竹子 | 700 | 黄菖蒲 | 模拟二级出水 | TN,37.9;NH4+-N,39; NO3−-N,51.8 | TN,90.2;NH4+-N,81;NO3−-N,90.5 | Ajibade et al., |
| - | 板栗壳 | 400 | 芦苇 | 生活污水 | TN,74.0 | TN,77.4 | Guo et al., |
| 垂直流 | 香蒲 | 500 | - | 城市污水 | TN,39.31;NO3−-N,49.77 | TN,53.27;NO3−-N,59.48 | Guo et al., |
| 潜流 | 树枝 | 550 | 千屈菜 | 模拟农村生活污水 | NH4+-N,35.4;TN,35.2 | NH4+-N,62.5;TN,59.2 | Ji et al., |
| 垂直流 | - | - | 芦苇 | 模拟废水 | TN,39.50;NH4+-N,61.81;NO3−-N,30.60 | TN,82.14;NH4+-N,95.49;NO3−-N,83.24 | Zhong et al., |
| 垂直流 | 污泥;香蒲 | 600 | 宽叶香蒲 | 模拟废水 | TN,66.65;NH4+-N,92.32;NO3−-N,61.47 | TN,90.94;NH4+-N,99.59;NO3−-N,99.50 | Zheng et al., |
表1 生物炭强化人工湿地脱氮效率的相关研究
Table 1 Researches on nitrogen removal efficiency of biochar-enhanced constructed wetlands
| 湿地 类型 | 生物炭 原料 | 热解温度/ ℃ | 湿地 植物 | 污水 类型 | 未添加生物炭脱氮效率 /% | 添加生物炭脱氮效率 (最高值)/% | 参考 文献 |
|---|---|---|---|---|---|---|---|
| 水平潜流 | - | - | 菖蒲 | 生活污水 | NO3−-N,84.66;NH4+-N,45.04;TN,43.40 | NO3−-N,91.48;NH4+-N,67.52;TN,65.61 | 陈鑫童等, |
| 潜流 | 椰壳;坚果壳 | - | 黄芪 | 农村生活污水 | - | 椰壳:NH4+-N,95.44; 坚果壳:NH4+-N,92.73 | Xing et al., |
| 垂直潜流 | 稻壳 | 550 | 旱莲草 | 农村生活污水 | - | NO3−-N,74 | Panghal et al., |
| 潜流 | 竹子 | 500 | 水芹 | 模拟废水 | NH4+-N,99.31;TN,75.02 | NH4+-N,99.36;TN,87.29 | Zhou et al., |
| 表面流 | 芦竹 | 300 | 水芹 | 模拟废水 | NH4+-N,95.33;NO3−-N,84.04;TN,88.01 | NH4+-N,94.26;NO3−-N,92.72;TN,93.26 | Li et al., |
| 垂直水平潜流 | 竹子;木材 | - | 芦苇 | 城市污水 | - | NH4+-N,99;TN,96 | Saeed et al., |
| 潜流 | 竹子 | 500 | 水芹 | 模拟废水 | NH4+-N,39.97;TN,39.23 | NH4+-N,50.05;TN,49.90 | Zhou et al., |
| 表面流 | 芦竹 | 300 | 水芹 | 模拟废水 | NO3−-N,36.16;TN,57.90 | NO3−-N,81.16;TN,85.62 | Li et al., |
| 垂直潜流 | 玉米秸秆;木头 | 600 | - | 厌氧消化后的沼液 | TN,22;NH4+-N,62 | TN,47;NH4+-N,83 | Kizito et al., |
| 水平潜流 | 橡木 | 600 | 美人蕉 | 模拟生活污水 | TN,40.10;NH4+-N,50.01;NO3−-N,82.80 | TN,58.27;NH4+-N,58.30;NO3−-N,92.08 | Gupta et al., |
| 水平潜流 | 木炭 | - | 宽叶香蒲 | 城市污水 | TN,9.5;NO3−-N,12.7 | TN,20.0;NO3−-N,24.6 | Kasak et al., |
| 垂直流 | 木屑;生物污泥 | 850 | 芦苇 | 三级澄清阶段出水 | NH4+-N,45 | NH4+-N,65; | Ayadi et al., |
| 潜流 | 芦竹 | 500 | 菖蒲 | 模拟废水 | TN,70.92;NH4+-N,34.76 | TN,80.21;NH4+-N,57.96 | 邓朝仁等, |
| 潮汐流 | 玉米;鸡粪 | 500 | 灯心草 | 生活污水 | TN,84.9;NH4+-N,42.4 | TN,90.3;NH4+-N,60.3 | 陈旭等, |
| 垂直流 | 玉米 | 450 | 黄菖蒲 | 城市尾水(污水处理厂出水) | - | NH4+-N,90 | Wang et al., |
| 水平潜流 | 芦竹 | 800 | 风车草 | 模拟废水 | TN,24. 93;NO3−-N,18.39 | TN,41.24;NO3−-N,49.54 | Gao et al., |
| 潜流 | 竹子 | 500 | 风车草 | 模拟废水 | TN,87.9;NH4+-N,94.2 | TN,94.9;NH4+-N,99.4 | Liang et al., |
| 垂直流 | 竹子 | 700 | 黄菖蒲 | 模拟二级出水 | TN,37.9;NH4+-N,39; NO3−-N,51.8 | TN,90.2;NH4+-N,81;NO3−-N,90.5 | Ajibade et al., |
| - | 板栗壳 | 400 | 芦苇 | 生活污水 | TN,74.0 | TN,77.4 | Guo et al., |
| 垂直流 | 香蒲 | 500 | - | 城市污水 | TN,39.31;NO3−-N,49.77 | TN,53.27;NO3−-N,59.48 | Guo et al., |
| 潜流 | 树枝 | 550 | 千屈菜 | 模拟农村生活污水 | NH4+-N,35.4;TN,35.2 | NH4+-N,62.5;TN,59.2 | Ji et al., |
| 垂直流 | - | - | 芦苇 | 模拟废水 | TN,39.50;NH4+-N,61.81;NO3−-N,30.60 | TN,82.14;NH4+-N,95.49;NO3−-N,83.24 | Zhong et al., |
| 垂直流 | 污泥;香蒲 | 600 | 宽叶香蒲 | 模拟废水 | TN,66.65;NH4+-N,92.32;NO3−-N,61.47 | TN,90.94;NH4+-N,99.59;NO3−-N,99.50 | Zheng et al., |
| 原料 | 热解温度/℃ | C质量分数/% | H质量分数/% | N质量分数/% | S质量分数/% | O质量分数/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 玉米 | 450 | 77.30 | 2.35 | 0.87 | 0.02 | 11.26 | Wang et al., |
| 竹子 | 500 | 68 | - | - | - | - | Zhou et al., |
| 毛竹 | 500 | 87.19 | 0.40 | 1.47 | 0.54 | 10.4 | 邓朝仁等, |
| 芦竹 | 300 | 57.78 | 3.83 | 1.31 | 0.52 | - | Li et al., |
| 400 | 58.13 | 2.68 | 1.28 | 0.45 | - | ||
| 500 | 60.36 | 2.20 | 1.26 | 0.44 | - | ||
| 600 | 63.18 | 1.80 | 1.13 | 0.35 | - | ||
| 玉米 | 500 | 90.2 | 1.7 | 0.6 | 0.4 | 7.9 | 陈旭等, |
| 鸡粪 | 500 | 65.3 | 3.2 | 5.9 | 4.7 | 16.2 | |
| 玉米 | 600 | 63 | 3.4 | 6.1 | 4.4 | 17.6 | Kizito et al., |
| 木头 | 600 | 90 | 1.5 | 0.5 | 0.3 | 8.3 | |
| 橡木 | 600 | 90 | - | - | - | 8 | Gupta et al., |
表2 用于人工湿地的生物炭元素组成
Table 2 Composition of biochar in constructed wetland
| 原料 | 热解温度/℃ | C质量分数/% | H质量分数/% | N质量分数/% | S质量分数/% | O质量分数/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 玉米 | 450 | 77.30 | 2.35 | 0.87 | 0.02 | 11.26 | Wang et al., |
| 竹子 | 500 | 68 | - | - | - | - | Zhou et al., |
| 毛竹 | 500 | 87.19 | 0.40 | 1.47 | 0.54 | 10.4 | 邓朝仁等, |
| 芦竹 | 300 | 57.78 | 3.83 | 1.31 | 0.52 | - | Li et al., |
| 400 | 58.13 | 2.68 | 1.28 | 0.45 | - | ||
| 500 | 60.36 | 2.20 | 1.26 | 0.44 | - | ||
| 600 | 63.18 | 1.80 | 1.13 | 0.35 | - | ||
| 玉米 | 500 | 90.2 | 1.7 | 0.6 | 0.4 | 7.9 | 陈旭等, |
| 鸡粪 | 500 | 65.3 | 3.2 | 5.9 | 4.7 | 16.2 | |
| 玉米 | 600 | 63 | 3.4 | 6.1 | 4.4 | 17.6 | Kizito et al., |
| 木头 | 600 | 90 | 1.5 | 0.5 | 0.3 | 8.3 | |
| 橡木 | 600 | 90 | - | - | - | 8 | Gupta et al., |
| 原料 | 热解温度/ ℃ | 比表面积/ (m2·g−1) | 平均孔径/ nm | pH | 参考文献 |
|---|---|---|---|---|---|
| 木屑,生物污泥 | 850 | 389 | - | 7.1 | Ayadi et al., |
| 玉米 | 450 | 305.53 | 1.28 | - | Wang et al., |
| 竹子 | 500 | 340 | - | - | Zhou et al., |
| 毛竹 | 500 | 345.92 | 1.95 | - | 邓朝仁等, |
| 菖蒲 | 300 | 10.65 | - | 6.93 | Li et al., |
| 400 | 15.82 | - | 7.34 | ||
| 500 | 71.49 | - | 7.85 | ||
| 600 | 281.15 | - | 8.85 | ||
| 玉米 | 500 | 176.6 | 5.2 | 9.7 | 陈旭等, |
| 鸡粪 | 500 | 87.5 | 6.4 | 8.8 | |
| 玉米 | 600 | 123 | 6.2 | 8.9 | Kizito et al., |
| 木头 | 600 | 147 | 5.3 | 9.8 | |
| 玉米 | 450 | 232.72 | 1.286 | - | Wang et al., |
| 树枝 | 550 | 32.09 | - | - | Ji et al., |
| 玉米 | 600 | 9.53 | 15.35 | - | Liao et al., |
| 污泥 | 600 | 13.13 | 18.71 | 7.9 | Zheng et al., |
| 香蒲 | 6.14 | - | 8.9 | ||
| 竹子 | 700 | 228.26 | - | 9.5 | Ajibade et al., |
表3 用于人工湿地的生物炭的理化特性
Table 3 The physiochemical properties of biochar in constructed wetlands
| 原料 | 热解温度/ ℃ | 比表面积/ (m2·g−1) | 平均孔径/ nm | pH | 参考文献 |
|---|---|---|---|---|---|
| 木屑,生物污泥 | 850 | 389 | - | 7.1 | Ayadi et al., |
| 玉米 | 450 | 305.53 | 1.28 | - | Wang et al., |
| 竹子 | 500 | 340 | - | - | Zhou et al., |
| 毛竹 | 500 | 345.92 | 1.95 | - | 邓朝仁等, |
| 菖蒲 | 300 | 10.65 | - | 6.93 | Li et al., |
| 400 | 15.82 | - | 7.34 | ||
| 500 | 71.49 | - | 7.85 | ||
| 600 | 281.15 | - | 8.85 | ||
| 玉米 | 500 | 176.6 | 5.2 | 9.7 | 陈旭等, |
| 鸡粪 | 500 | 87.5 | 6.4 | 8.8 | |
| 玉米 | 600 | 123 | 6.2 | 8.9 | Kizito et al., |
| 木头 | 600 | 147 | 5.3 | 9.8 | |
| 玉米 | 450 | 232.72 | 1.286 | - | Wang et al., |
| 树枝 | 550 | 32.09 | - | - | Ji et al., |
| 玉米 | 600 | 9.53 | 15.35 | - | Liao et al., |
| 污泥 | 600 | 13.13 | 18.71 | 7.9 | Zheng et al., |
| 香蒲 | 6.14 | - | 8.9 | ||
| 竹子 | 700 | 228.26 | - | 9.5 | Ajibade et al., |
| [1] |
AJIBADE F O, WANG H C, GUADIE A, et al., 2021. Total nitrogen removal in biochar amended non-aerated vertical flow constructed wetlands for secondary wastewater effluent with low C/N ratio: Microbial community structure and dissolved organic carbon release conditions[J]. Bioresource Technology, 322: 124430.
DOI URL |
| [2] |
AYADI M, PASSASEO D, BONACCORSO G, et al., 2024. Biochar from co-pyrolysis of biological sludge and sawdust in comparison with the conventional filling media of vertical-flow constructed wetlands for the treatment of domestic-textile wastewater[J]. Water Science and Technology, 89(5): 1252-1263.
DOI PMID |
| [3] |
CAI Y F, ZHU M M, MENG X Y, et al., 2022. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: A review[J]. Bioresource Technology, 351: 126924.
DOI URL |
| [4] |
GAO Y, ZHANG W, GAO B, et al., 2018. Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar[J]. Water Research, 139: 301-310.
DOI PMID |
| [5] |
GARCIA-AVILA F, 2020. Treatment of municipal wastewater by vertical subsurface flow constructed wetland: Data collection on removal efficiency using Phragmites australis and Cyperus papyrus[J]. Data in Brief, 30: 105584.
DOI URL |
| [6] |
GUO F C, LUO Y, NIE M, et al., 2023a. A comprehensive evaluation of biochar for enhancing nitrogen removal from secondary effluent in constructed wetlands[J]. Chemical Engineering Journal, 478: 147469.
DOI URL |
| [7] |
GUO F C, LUO Y, NIE W B, et al., 2023c. Biochar boosts nitrate removal in constructed wetlands for secondary effluent treatment: Linking nitrate removal to the metabolic pathway of denitrification and biochar properties[J]. Bioresource Technology, 379: 129000.
DOI URL |
| [8] |
GUO X, XIE H M, PAN W L, et al., 2023b. Enhanced nitrogen removal via biochar-mediated nitrification, denitrification, and electron transfer in constructed wetland microcosms[J]. Environmental Science and Pollution Research, 30(28): 72710-72720.
DOI |
| [9] |
GUPTA P, ANN T W, LEE S M, 2016. Use of biochar to enhance constructed wetland performance in wastewater reclamation[J]. Environmental Engineering Research, 21(1): 36-44.
DOI URL |
| [10] |
HUANG L, XIONG H F, JIANG C L, et al., 2023. Pathways and biological mechanisms of N2O emission reduction by adding biochar in the constructed wetland based on 15N stable isotope tracing[J]. Journal of Environmental Management, 342: 118359.
DOI URL |
| [11] |
HUO J Y, HU X J, CHENG S Y, et al., 2022. Effects and mechanisms of constructed wetlands with different substrates on N2O emission in wastewater treatment[J]. Environmental Science and Pollution Research, 29(13): 19045-19053.
DOI |
| [12] |
JI B H, CHEN J Q, MEI J, et al., 2020. Roles of biochar media and oxygen supply strategies in treatment performance, greenhouse gas emissions, and bacterial community features of subsurface-flow constructed wetlands[J]. Bioresource Technology, 302: 122890.
DOI URL |
| [13] |
JIA L, HUANG L, 2021a. Long term effect of biochar on the efficiency of subsurface flow wetland pollutant treatment[J]. Desalination and Water Treatment, 219: 11-17.
DOI URL |
| [14] |
JIA W, YANG L Y, 2021b. Community composition and spatial distribution of N-Removing microorganisms optimized by Fe-modified biochar in a constructed wetland[J]. International Journal of Environmental Research and Public Health, 18(6): 2938.
DOI URL |
| [15] |
KASAK K, TRUU J, OSTONEN I, et al., 2018. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands[J]. Science of The Total Environment, 639: 67-74.
DOI URL |
| [16] |
KIZITO S, LV T, WU S B, et al., 2017. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation[J]. Science of The Total Environment, 592: 197-205.
DOI URL |
| [17] |
LI J, FAN J L, LIU D X, et al., 2019. Enhanced nitrogen removal in biochar-added surface flow constructed wetlands: Dealing with seasonal variation in the north China[J]. Environmental Science and Pollution Research, 26(4): 3675-3684.
DOI |
| [18] |
LI J, FAN J L, ZHANG J, et al., 2018. Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands[J]. Environmental Science and Pollution Research, 25(14): 13929-13937.
DOI |
| [19] |
LIANG J F, LI Q W, GAO J Q, et al., 2021. Biochar-compost addition benefits Phragmites australis growth and soil property in coastal wetlands[J]. Science of The Total Environment, 769: 145166.
DOI URL |
| [20] |
LIANG Y K, WANG Q H, HUANG L, et al., 2020. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity[J]. Bioresource Technology, 307: 123249.
DOI URL |
| [21] |
LIAO Y, JIANG L, CAO X K, et al., 2022. Efficient removal mechanism and microbial characteristics of tidal flow constructed wetland based on in-situ biochar regeneration (BR-TFCW) for rural gray water[J]. Chemical Engineering Journal, 431: 134185.
DOI URL |
| [22] |
LIN G W, DING Y, 2024. Enhancement of immobilized biochar/FeS on nitrogen removal in constructed wetland at low temperature[J]. Journal of Water Process Engineering, 58: 104834.
DOI URL |
| [23] |
PANGHAL V, SINGH A, ARORA D, et al., 2024. Biochar-modified constructed wetlands using Eclipta alba as a plant for sustainable rural wastewater treatment[J]. Environmental Science and Pollution Research, 31(11): 17387-17400.
DOI |
| [24] |
PELISSARI C, GUIVERNAU M, VINAS M, et al., 2018. Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands[J]. Water Research, 141: 185-195.
DOI PMID |
| [25] | QI Z P, LIU Q, ZHU Z R, et al., 2016. Rhodamine B removal from aqueous solutions using loofah sponge and activated carbon prepared from loofah sponge[J]. Desalination & Water Treatment, 57(60): 29421-29433. |
| [26] |
SAEED T, YASMIN N, SUN G, et al., 2019. The use of biochar and crushed mortar in treatment wetlands to enhance the removal of nutrients from sewage[J]. Environmental Science and Pollution Research, 26(1): 586-599.
DOI |
| [27] |
SANJRANI M A, ZHOU B, ZHAO H, et al., 2019. The influence of wetland media in improving the performance of pollutant removal during water treatment: A review[J]. Applied Ecology and Environmental Research, 17(2): 3803-3818.
DOI URL |
| [28] |
SHANG Z X, WANG Y R, WANG S Q, et al., 2022. Enhanced phosphorus removal of constructed wetland modified with novel Lanthanum-ammonia-modified hydrothermal biochar: Performance and mechanism[J]. Chemical Engineering Journal, 449: 137818.
DOI URL |
| [29] |
SUN Y C, WANG T T, 2023. Application of biochar, adsorbent and nanomaterials in wastewater treatment[J]. Water, 15(7): 1320.
DOI URL |
| [30] |
TAO J Q, XU H Q, ZHANG T, et al., 2022. Study on reed straw carbon source-enhanced nitrogen removal effect in wetland system[J]. Water Air and Soil Pollution, 233(11): 429.
DOI |
| [31] |
VISTANTY H BUDIYONO, BUDIHARDJO M A, et al., 2025. Full-scale application and performance of circulated biological and constructed wetland system for batik wastewater treatment[J]. Journal of Environmental Chemical Engineering, 13(1): 115101.
DOI URL |
| [32] |
VYMAZAL J, SOCHACKI A, FUCÍK P, et al., 2020. Constructed wetlands with subsurface flow for nitrogen removal from tile drainage[J]. Ecological Engineering, 155: 105943.
DOI URL |
| [33] |
WANG F, LIU Y, MA Y X, et al., 2012. Characterization of nitrification and microbial community in a shallow moss constructed wetland at cold temperatures[J]. Ecological Engineering, 42: 124-129.
DOI URL |
| [34] |
WANG H X, SHENG L X, ZANG S Y, 2023b. Study on H2SO4-modified corn straw biochar as substrate material of constructed wetland[J]. Environmental Science and Pollution Research International, 30(54): 115556-115570.
DOI |
| [35] |
WANG H X, TENG H W, WANG X Y, et al., 2022c. Physicochemical modification of corn straw biochar to improve performance and its application of constructed wetland substrate to treat city tail water[J]. Journal of Environmental Management, 310: 114758.
DOI URL |
| [36] | WANG H X, XU J L, SHENG L X, et al., 2022b. Study on treatment of city tail water by constructed wetland with corn straw biochar substrate[J]. Environmental Technology & Innovation, 28: 102855. |
| [37] |
WANG S H, YANG H R, CHE F F, et al., 2023a. Removal efficacy of fly ash composite filler on tailwater nitrogen and phosphorus and its application in constructed wetlands[J]. Frontiers in Chemistry, 11: 1160489.
DOI URL |
| [38] |
WANG T, LIU Z Y, KUANG B, et al., 2022a. Electroactive algae-bacteria wetlands for the treatment of micro-polluted aquaculture wastewater: Pilot-scale verification[J]. Biochemical Engineering Journal, 184: 108471.
DOI URL |
| [39] |
XING C J, XU X X, XU Z H, et al., 2021. Study on the decontamination effect of biochar-constructed wetland under different hydraulic conditions[J]. Water, 13(7): 893.
DOI URL |
| [40] |
ZHAO Y Q, COLLUM S, PHELAN M, et al., 2013. Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials[J]. Chemical Engineering Journal, 229: 364-370.
DOI URL |
| [41] |
ZHAO Y Q, YANG H, XIA S B, et al., 2022. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: Effect of carbonization temperature[J]. Environmental Science and Pollution Research, 29: 57773-57789.
DOI |
| [42] |
ZHENG F F, FANG J H, GUO F C, et al., 2022. Biochar based constructed wetland for secondary effluent treatment: Waste resource utilization[J]. Chemical Engineering Journal, 432: 134377.
DOI URL |
| [43] |
ZHONG L, YANG S S, DING J, et al., 2021. Enhanced nitrogen removal in an electrochemically coupled biochar-amended constructed wetland microcosms: The interactive effects of biochar and electrochemistry[J]. Science of The Total Environment, 789: 147761.
DOI URL |
| [44] |
ZHOU L, WANG J J, XU D F, et al., 2020. Responses of nitrogen transformation and dissolved oxygen in constructed wetland to biochar and earthworm amendment[J]. Environmental Science and Pollution Research, 27(23): 29475-29484.
DOI |
| [45] |
ZHOU X, WANG R G, LIU H, et al., 2019b. Nitrogen removal responses to biochar addition in intermittent-aerated subsurface flow constructed wetland microcosms: Enhancing role and mechanism[J]. Ecological Engineering, 128: 57-65.
DOI URL |
| [46] |
ZHOU X, WU S B, WANG R G, et al., 2019a. Nitrogen removal in response to the varying C/N ratios in subsurface flow constructed wetland microcosms with biochar addition[J]. Environmental Science and Pollution Research, 26(4): 3382-3391.
DOI |
| [47] | 邓朝仁, 梁银坤, 黄磊, 等, 2019. 生物炭对潜流人工湿地污染物去除及N2O排放影响[J]. 环境科学, 40(6): 2840-2846. |
| DENG Z R, LIANG Y K, HUANG L, et al., 2019. Influences of biochar on pollutant removal efficiencies and nitrous oxide emissions in a subsurface flow constructed wetland[J]. Environmental Science, 40(6): 2840-2846. | |
| [48] | 陈梅, 王芳, 张德俐, 等, 2019. 生物炭结构性质对氨氮的吸附特性影响[J]. 环境科学, 40(12): 5421-5429. |
| CHEN M, WANG F, ZHANG D L, et al., 2019. Effect of biochar structure on adsorption characteristics of ammonia nitrogen[J]. Environmental Science, 40(12): 2840-2846. | |
| [49] |
陈旭, 张璐, 2019. 生物炭基质潮汐流人工湿地处理生活污水性能[J]. 生态环境学报, 28(7): 1443-1449.
DOI |
| CHEN X, ZHANG L, 2019. Treatment of domestic wastewater in biochar-packed tidal flow constructed wetland[J]. Ecology and Environmental Sciences, 28(7): 1443-1449. | |
| [50] | 陈鑫童, 郝庆菊, 熊艳芳, 等, 2022. 铁矿石和生物炭添加对潜流人工湿地污水处理效果和温室气体排放及微生物群落的影响[J]. 环境科学, 43(3): 1492-1499. |
| CHEN X T, HAO Q J, XIONG Y F, et al., 2022. Effects of hematite and biochar addition on wastewater treatment efficiency, greenhouse gas emission, and microbial community in subsurface flow constructed wetland[J]. Environmental Science, 43(3): 1492-1499. | |
| [51] | 侯洁, 2017. 生物炭对潜流人工湿地生物脱氮影响机理研究[D]. 重庆: 西南大学: 1-75. |
| HOU J, 2017. Influences of biochar on biological Nitrogen Removal in subsurface flow constructed wetland[D]. Chongqing: Xinan University: 1-75. | |
| [52] | 黄磊, 陈玉成, 赵亚琦, 等, 2018. 生物炭添加对湿地植物生长及氧化应激响应的影响[J]. 环境科学, 39(6): 2904-2910. |
| HUANG L, CHEN Y C, ZHAO Y Q, et al., 2018. Influence of biochar application on growth and antioxidative a responses of macrophytes in subsurface flow constructed wetlands[J]. Environmental Science, 39(6): 2904-2910. | |
| [53] | 李静, 2019. 生物炭基人工湿地强化脱氮研究[D]. 济南: 山东大学: 1-89. |
| LI J, 2019. Study on enhanced nitrogen removal in biochar-based constructed wetland[D]. Ji’nan: Shandong University: 1-89. | |
| [54] | 马柯, 2019. 基于生物炭/零价铁强化的复合流人工湿地性能研究[D]. 杭州: 浙江大学: 1-85. |
| MA K, 2019. Research on the performance of hybrid constructed wetlands enhanced with biochar-ZVI[D]. Hangzhou: Zhejiang University: 1-85. | |
| [55] | 吴晓磊, 1995. 人工湿地废水处理机理[J]. 环境科学, 16(3): 83-86, 96. |
| WU X L, 1955. Mechanism of constructed wetland wastewater treatment[J]. Environmental Science, 16(3): 83-86, 96. | |
| [56] | 徐德福, 潘潜澄, 李映雪, 等, 2018. 生物炭对人工湿地植物根系形态特征及净化能力的影响[J]. 环境科学, 39(7): 3187-3193. |
| XU D F, PAN Q C, LI Y X, et al., 2018. Effect of biochar on root morphological characteristics of wetland plants and purification capacity of constructed wetland[J]. Environmental Science, 39(7): 3187-3193. | |
| [57] | 闫军芬, 杨凯心, 王志康, 等, 2025. 生物炭对滨海盐碱农田土壤肥力和玉米生长的影响[J/OL]. 鲁东大学学报(自然科学版), 1-11 [2025-10-13]. https://link.cnki.net/urlid/37.1453.N.20250624.1355.002. |
| YAN J F, YANG K X, WANG Z K, et al., 2025. The comprehensive effects of biochar on soil fertility and maize growth in coastal saline-alkali soil[J/OL]. Journal of Ludong University (Natural Science Edition), 1-11 [2025-10-13]. https://link.cnki.net/urlid/37.1453.N.20250624.1355.002. |
| [1] | 张梅, 丛培东, 段思阳, 赵秀婷, 李富祥, 刘利, 李海燕. 鸭绿江下游入侵植物刺果瓜叶茎花序功能性状的生境分异[J]. 生态环境学报, 2025, 34(8): 1255-1264. |
| [2] | 柳凤娟, 马超, 黄玲涵, 陈琪, 罗绪强. 生物炭添加对尾砂污染土壤中As和Sb植物有效性的影响[J]. 生态环境学报, 2025, 34(8): 1273-1281. |
| [3] | 蔡敏, 周丽, 张旭, 崔娜欣, 庞思, 邹国燕, 袁泉, 黄伟伟, 赵志勇. 植物提取液对养殖水体浮游植物群落结构和功能的影响[J]. 生态环境学报, 2025, 34(7): 1090-1099. |
| [4] | 郭家文, 刘凯, 刘高源, 高欣欣, 杨昆, 潘波. 外源不同形式蔗叶添加物对云南红壤及甘蔗生长的影响[J]. 生态环境学报, 2025, 34(7): 1100-1110. |
| [5] | 贺环, 周丹丹, 马芷萱, 李芳芳, 秦珊珊, 豆思娴. 钙改性对生物炭中溶解性有机质与Cd(Ⅱ)结合的影响[J]. 生态环境学报, 2025, 34(7): 1121-1132. |
| [6] | 林泳怡, 周燕飞, 邓金环, 田纪辉, 蔡昆争. 生物炭与磷添加促进赤红壤的硅形态转化和大豆植株硅吸收转运[J]. 生态环境学报, 2025, 34(5): 710-719. |
| [7] | 张淑娟, 陈昕龙, 亓静凡, 董月晓, 于佳正, 尤朝阳. 基于丛枝菌根的钒污染土壤修复[J]. 生态环境学报, 2025, 34(4): 631-641. |
| [8] | 陈岩, 石成龙, 李璞君, 肖江, 陈光才. 含重金属林木生物质与骨粉共水热液相产物:解析及应用潜力初步评价[J]. 生态环境学报, 2025, 34(4): 642-652. |
| [9] | 王龙飞, 张皎皎, 王子怡, 陈玉东, 李轶. 生物膜技术在河湖生态修复中的创新与实践[J]. 生态环境学报, 2025, 34(4): 653-664. |
| [10] | 梅耀萍, 吴本丽, 黄龙, 吴仓仓, 陈静, 陈夏君, 何吉祥. 不同水生植物对水产养殖尾水氮磷去除效果研究[J]. 生态环境学报, 2025, 34(3): 442-450. |
| [11] | 岳航宇, 郭成久, 苏芳莉, 魏超. 辽河口湿地不同植被类型根际土壤微生物群落结构及多样性分析[J]. 生态环境学报, 2025, 34(2): 222-232. |
| [12] | 吴小令, 杜衍红, 窦飞, 高双全, 王向琴. 生物炭和腐殖质治理重金属污染菜地的定位试验研究[J]. 生态环境学报, 2025, 34(12): 1952-1961. |
| [13] | 王永梅, 袁雨珍, 王梓成, 李志丰, 高双全, 刘传平, 杜衍红. 生物炭协同化肥减量对重金属污染土壤甜玉米安全生产的长期效应[J]. 生态环境学报, 2025, 34(12): 1962-1973. |
| [14] | 梁冬霞, 郜礼阳, 张风姬, 周巧仪, 黄华林, 穆小婷, 凌彩金. 淹水对茶园土壤养分和微生物群落结构的影响[J]. 生态环境学报, 2025, 34(11): 1739-1748. |
| [15] | 吉波, 程红光, 韩世明, 邢丹, 吴志兵, 张金莲, 刘芳, 朱艺, 邓丽蓉, 张晓松. 生物炭与丛枝菌根真菌对土壤中磷供应影响的研究进展[J]. 生态环境学报, 2025, 34(11): 1812-1826. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||