生态环境学报 ›› 2025, Vol. 34 ›› Issue (10): 1495-1506.DOI: 10.16258/j.cnki.1674-5906.2025.10.001
• “新污染物”研究专栏 •
下一篇
赵彧1,2(), 方王凯1,2, 张紫薇1,2, 张焕军1,2,*(
), 李轶1,2
收稿日期:
2025-03-29
出版日期:
2025-10-18
发布日期:
2025-09-26
通讯作者:
E-mail: 作者简介:
赵彧(2001年生),男,硕士研究生,主要从事环境中新型污染物生态风险的研究。E-mail: 13797515613@163.com
基金资助:
ZHAO Yu1,2(), FANG Wangkai1,2, ZHANG Ziwei1,2, ZHANG Huanjun1,2,*(
), LI Yi1,2
Received:
2025-03-29
Online:
2025-10-18
Published:
2025-09-26
摘要:
非甾体消炎药(Nonsteroidal anti-inflammatory drugs,NSAIDs)在湖泊水环境的残留已受到广泛关注,但其对于湖泊水体中微生物群落及抗生素抗性基因(Antibiotic resistance genes,ARGs)的潜在影响尚未明晰。以太湖西部沿岸区、竺山湾、梅梁湾、贡湖湾和湖心区为研究区域,分析了水体中4种典型NSAIDs的赋存特征,利用相关性分析和共现网络分析探究NSAIDs与细菌群落及ARGs的关系,并通过偏最小二乘路径模型(PLS-PM)定量解析NSAIDs对ARGs影响。 结果表明,酮洛芬和双氯芬酸是太湖水体中浓度最高的NSAIDs,其质量浓度范围分别为29.0-49.5 ng·L−1和2.4-10.4 ng·L−1,且太湖西北部湖区的总NSAIDs浓度高于中东部湖区。不同湖区细菌群落多样性空间差异显著(p<0.05),hgcl clade、Microcystis PCC-7914和Clade Ⅲ_norank是太湖水体中的优势菌属,其相对丰度的空间差异与NSAIDs趋势一致。太湖不同湖区水体中9种ARGs的总丰度为6.70×1010-1.76×1011 copies·L−1,其中主要ARGs类型为ermB、mphA和sul1,其空间差异也与NSAIDs具有一致性。此外,NSAIDs与太湖水体中ARGs的潜在宿主呈显著正相关(p<0.05)。偏最小二乘路径模型(Partial least squares path model,PLS-PM)分析结果表明,NSAIDs主要通过增加可移动遗传原件(Mobile genetic elements,MGEs)的丰度促进ARGs的富集,也可通过改变细菌群落多样性进而调控ARGs的赋存与传播。该研究为评估NSAIDs在自然水体中的生态风险提供了科学依据。
中图分类号:
赵彧, 方王凯, 张紫薇, 张焕军, 李轶. 太湖水体中非甾体消炎药的赋存特征及其对细菌群落和抗生素抗性基因的影响[J]. 生态环境学报, 2025, 34(10): 1495-1506.
ZHAO Yu, FANG Wangkai, ZHANG Ziwei, ZHANG Huanjun, LI Yi. Occurrence Characteristics of Nonsteroidal Anti-inflammatory Drugs and Their Effects on Bacterial Communities and Antibiotic Resistance Genes in Taihu Lake[J]. Ecology and Environmental Sciences, 2025, 34(10): 1495-1506.
基因 种类 | 名称 | 引物 | 引物序列 | 片段长度/ bp |
---|---|---|---|---|
磺胺类 | sul1 | F | GACTGCAGGCTGGTGGTTAT | 107 |
R | GAAGAACCGCACAATCTCGT | |||
sul2 | F | TCCGGTGGAGGCCGGTATCTGG | 190 | |
R | CGGGAATGCCATCTGCCTTGAG | |||
四环素类 | tetC | F | CTTGAGAGCCTTCAACCCAG | 418 |
R | ATGGTCGTCATCTACCTGCC | |||
tetW | F | GAGAGCCTGCTATATGCCAGC | 168 | |
R | GGGCGTATCCACAATGTTAAC | |||
大环内酯类 | mphA | F | CTTGAGAGCCTTCAACCCAG | 214 |
R | ATGGTCGTCATCTACCTGCC | |||
ermB | F | GAGAGCCTGCTATATGCCAGC | 190 | |
R | GGGCGTATCCACAATGTTAAC | |||
喹诺酮类 | qnrS | F | CTTGAGAGCCTTCAACCCAG | 54.6 |
R | ATGGTCGTCATCTACCTGCC | |||
β-内酰胺类 | ampC | F | CTTGAGAGCCTTCAACCCAG | 189 |
R | ATGGTCGTCATCTACCTGCC | |||
氨基糖苷类 | strA | F | CTTGAGAGCCTTCAACCCAG | 241 |
R | ATGGTCGTCATCTACCTGCC | |||
整合子 | intI1 | F | CTTGAGAGCCTTCAACCCAG | 151 |
R | ATGGTCGTCATCTACCTGCC |
表1 目标基因所对应的引物序列
Table 1 Primer sequences corresponding to the target gene
基因 种类 | 名称 | 引物 | 引物序列 | 片段长度/ bp |
---|---|---|---|---|
磺胺类 | sul1 | F | GACTGCAGGCTGGTGGTTAT | 107 |
R | GAAGAACCGCACAATCTCGT | |||
sul2 | F | TCCGGTGGAGGCCGGTATCTGG | 190 | |
R | CGGGAATGCCATCTGCCTTGAG | |||
四环素类 | tetC | F | CTTGAGAGCCTTCAACCCAG | 418 |
R | ATGGTCGTCATCTACCTGCC | |||
tetW | F | GAGAGCCTGCTATATGCCAGC | 168 | |
R | GGGCGTATCCACAATGTTAAC | |||
大环内酯类 | mphA | F | CTTGAGAGCCTTCAACCCAG | 214 |
R | ATGGTCGTCATCTACCTGCC | |||
ermB | F | GAGAGCCTGCTATATGCCAGC | 190 | |
R | GGGCGTATCCACAATGTTAAC | |||
喹诺酮类 | qnrS | F | CTTGAGAGCCTTCAACCCAG | 54.6 |
R | ATGGTCGTCATCTACCTGCC | |||
β-内酰胺类 | ampC | F | CTTGAGAGCCTTCAACCCAG | 189 |
R | ATGGTCGTCATCTACCTGCC | |||
氨基糖苷类 | strA | F | CTTGAGAGCCTTCAACCCAG | 241 |
R | ATGGTCGTCATCTACCTGCC | |||
整合子 | intI1 | F | CTTGAGAGCCTTCAACCCAG | 151 |
R | ATGGTCGTCATCTACCTGCC |
湖区名称 | γ(EC)/ (μS∙cm−1) | pH | ρ(DO)/ (mg∙L−1) | ρ(TN)/ (mg∙L−1) | ρ(NH4+-N)/ (mg∙L−1) | ρ(TP)/ (mg∙L−1) |
---|---|---|---|---|---|---|
WT | 393.00a | 8.39a | 7.15c | 4.07a | 0.64a | 0.22a |
ZS | 382.33a | 8.32a | 7.10c | 3.59ab | 0.50ab | 0.19a |
ML | 397.00a | 8.61a | 7.87bc | 2.98b | 0.33b | 0.21a |
GH | 382.00a | 8.55a | 9.16a | 2.35c | 0.09c | 0.09b |
CA | 387.25a | 8.57a | 8.87ab | 2.11c | 0.10c | 0.10b |
表2 太湖水体主要理化参数
Table 2 Main physical and chemical parameters in water of Taihu Lake
湖区名称 | γ(EC)/ (μS∙cm−1) | pH | ρ(DO)/ (mg∙L−1) | ρ(TN)/ (mg∙L−1) | ρ(NH4+-N)/ (mg∙L−1) | ρ(TP)/ (mg∙L−1) |
---|---|---|---|---|---|---|
WT | 393.00a | 8.39a | 7.15c | 4.07a | 0.64a | 0.22a |
ZS | 382.33a | 8.32a | 7.10c | 3.59ab | 0.50ab | 0.19a |
ML | 397.00a | 8.61a | 7.87bc | 2.98b | 0.33b | 0.21a |
GH | 382.00a | 8.55a | 9.16a | 2.35c | 0.09c | 0.09b |
CA | 387.25a | 8.57a | 8.87ab | 2.11c | 0.10c | 0.10b |
图2 太湖不同湖区水体中NSAIDs质量浓度 图中WT、ZS、ML、GH、CA分别代表西部沿岸区、竺山湾、梅梁湾、贡湖湾、湖心区;不同小写字母表示不同湖区间差异显著(p<0.05),下同
Figure 2 Mass concentrations of NSAIDs in water of different regions of Taihu Lake
湖区 名称 | OTU 数量 | Shannon 指数 | Simpson 指数 | Chao1 指数 | 覆盖度 |
---|---|---|---|---|---|
WT | 1205.67ac | 4.87ab | 0.034a | 1402.98a | 0.99a |
ZS | 1262.33a | 5.37a | 0.014b | 1466.38a | 0.99a |
ML | 956.33b | 4.76b | 0.038a | 1257.98ab | 0.99a |
GH | 938.67b | 4.55b | 0.024a | 1132.13b | 0.99a |
CA | 1036.33bc | 4.53b | 0.033ab | 1275.05ab | 0.99a |
表3 太湖水体细菌群落多样性指数(97%相似水平)
Table 3 Bacterial community diversity index in water of Taihu Lake (at 97% Similarity Level)
湖区 名称 | OTU 数量 | Shannon 指数 | Simpson 指数 | Chao1 指数 | 覆盖度 |
---|---|---|---|---|---|
WT | 1205.67ac | 4.87ab | 0.034a | 1402.98a | 0.99a |
ZS | 1262.33a | 5.37a | 0.014b | 1466.38a | 0.99a |
ML | 956.33b | 4.76b | 0.038a | 1257.98ab | 0.99a |
GH | 938.67b | 4.55b | 0.024a | 1132.13b | 0.99a |
CA | 1036.33bc | 4.53b | 0.033ab | 1275.05ab | 0.99a |
图6 NSAIDs、细菌群落、ARGs和intI1基因之间的关系 图中总浓度表示4种NSAIDs的质量浓度之和;*表示p<0.05水平相关性显著
Figure 6 The relationships between NSAIDs, bacterial communities, ARGs and intI1 gene
图7 NSAIDs对ARGs影响的偏最小二乘路径分析 图中线条旁数字表示标准化路径系数(即直接效应);红线表示正相关,蓝线表示负相关;*和**分别表示p<0.05和p<0.01水平下影响显著
Figure 7 Partial least squares path analysis of the influence of NSAIDs on ARGs
[1] |
ALMEIDA F A D, VARGAS E L G, CARNEIRO D G, et al., 2018. Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella[J]. Microbial Pathogenesis, 121: 369-388.
DOI PMID |
[2] | CHEN H Y, JING L J, YAO Z P, et al., 2019b. Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes[J]. Environment International, 127: 267-275. |
[3] | CHEN J Y, SU Z G, DAI T J, et al., 2019a. Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea bays[J]. Journal of Environmental Sciences, 81: 156-167. |
[4] | FU Y H, HU F, WANG F, et al., 2024. Distinct assembly patterns of soil antibiotic resistome revealed by land-use changes over 30 years[J]. Environmental Science & Technology, 58(23): 10216-10226. |
[5] | HERNANDEZ D J, DAVID A S, MENGES E S, et al., 2021. Environmental stress destabilizes microbial networks[J]. The ISME Journal, 15(6): 1722-1734. |
[6] | HUANG J C, DING J N, JIANG H, et al., 2022. Pharmaceuticals and personal care products across different water bodies in Taihu Lake Basin, China: Occurrence, source, and flux[J]. International Journal of Environmental Research and Public Health, 19(17): 11135. |
[7] | HUANG X, ZHANG Z S, REN X L, et al., 2024. Metabolite identification and disinfection by-product formation in AAO-MBR system with waste liquid isopropyl alcohol as a carbon source[J]. Journal of Environmental Chemical Engineering, 12(5): 113562. |
[8] | JIANG C, GENG J J, HU H D, et al., 2017. Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors[J]. Plos One, 12(6): e0179236. |
[9] | LI Y F, ZHANG C N, WANG X X, et al., 2023. Pollutant impacts on bacteria in surface water and sediment: Conventional versus emerging pollutants in Taihu Lake, China[J]. Environmental Pollution, 323: 121334. |
[10] | LIN J Y, ZHANG Y, BIAN Y, et al., 2023. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies[J]. Science of the Total Environment, 904: 166897. |
[11] | LIU C, WANG Y J, ZHOU Z Y, et al., 2024b. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions[J]. The ISME Journal, 18(1): wrae169. |
[12] | LIU H Q, LAM J C, W, LI W W, et al., 2017. Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China[J]. Science of the Total Environment, 586: 1162-1169. |
[13] | LIU Q, JIA J, HU H J, et al., 2024a. Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa[J]. Journal of Hazardous Materials, 468: 133786. |
[14] | LOUCA S, POLZ M F, MAZEL F, et al., 2018. Function and functional redundancy in microbial systems[J]. Nature Ecology & Evolution, 2(6): 936-943. |
[15] | LUO Y, MAO D Q, RYSZ M, et al., 2010. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 44(19): 7220-7225. |
[16] | MASEDA D, RICCIOTTI E, 2020. NSAID-Gut microbiota interactions[J]. Frontiers in Pharmacology, 11: 01153. |
[17] | MENAGEN B, PEDAHZUR R, AVNIR D, 2017. Sustained release from a metal-Analgesics entrapped within biocidal silver[J]. Science Reports, 7(1): 4161. |
[18] | MULKIEWICZ E, WOLECKI D, ŚWIACKA K, et al., 2021. Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms[J]. Science of the Total Environment, 791: 148251. |
[19] | NJOKU C B, OSEGHE E, MSAGATI T A M, 2022. Synthesis and application of perovskite nanoparticles for the adsorption of ketoprofen and fenoprofen in wastewater for sustainable water management[J]. Journal of Molecular Liquids, 346: 118232. |
[20] | NKOOM M, LU G H, LIU J C, 2018. Occurrence and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake, China: A review[J]. Environmental Science: Processes & Impacts, 20(12): 1640-1648. |
[21] | NNADOZIE C F, ODUME O N, 2019. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes[J]. Environmental Pollution, 254(Part B): 113067. |
[22] | PAROLINI M, 2020. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review[J]. Science of the Total Environment, 740: 140043. |
[23] |
PENG S, FENG Y Z, WANG Y M, et al., 2017. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years[J]. Journal of Hazardous Materials, 340: 16-25.
DOI PMID |
[24] | PENNEKAMP F, PONTARP M, TABI A, et al., 2018. Biodiversity increases and decreases ecosystem stability[J]. Nature, 563(7729): 109-112. |
[25] | PINO-OTíN M R, MUñIZ S, VAL J, et al., 2017. Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms[J]. Science of the Total Environment, 595: 441-450. |
[26] |
RAWSON T M, MING D, AHMAD R, et al., 2020. Antimicrobial use, drug-resistant infections and COVID-19[J]. Nature Reviews Microbiology, 18(8): 409-410.
DOI PMID |
[27] | RUPRECHT J E, BIRRER S C, DAFFORN K A, et al., 2021. Wastewater effluents cause microbial community shifts and change trophic status[J]. Water Research, 200: 117206. |
[28] | SUBIRATS J, TIMONER X, SàNCHEZ-MELSIÓ A, et al., 2018. Emerging contaminants and nutrients synergistically affect the spread of class 1 integron-integrase (intI1) and sul1 genes within stable streambed bacterial communities[J]. Water Research, 138: 77-85. |
[29] |
SUN Q, LI M Y, MA C, et al., 2016. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China[J]. Environmental Pollution, 208: 371-381.
DOI PMID |
[30] | VAN BOECKEL T P, BROWER C, GILBERT M, et al., 2015. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences, 112(18): 5649-5654. |
[31] | WANG Y, LU J, ENGELSTÄDTER J, et al., 2020a. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation[J]. The ISME Journal, 14(8): 2179-2196. |
[32] | WANG Y F, QIAO M, ZHU D, et al., 2020b Antibiotic resistance in the collembolan gut microbiome accelerated by the nonantibiotic drug carbamazepine[J]. Environmental Science & Technology, 54(17): 10754-10762. |
[33] | WHITFIELD-CARGILE C M, COHEN N D, CHAPKIN R S, et al., 2016. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy[J]. Gut Microbes, 7(3): 246-261. |
[34] |
WU C X, HUANG X L, WITTER J D, et al., 2014. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China[J]. Ecotoxicology and Environmental Safety, 106: 19-26.
DOI PMID |
[35] | YANG Y W, CHEN N X, SUN L, et al., 2021. Short-term cold stress can reduce the abundance of antibiotic resistance genes in the cecum and feces in a pig model[J]. Journal of Hazardous Materials, 416: 125868. |
[36] | YU P F, GUO Z Y, WANG T T, et al., 2023. Insights into the mechanisms of natural organic matter on the photodegradation of indomethacin under natural sunlight and simulated light irradiation[J]. Water Research, 244: 120539. |
[37] |
YUAN K, WANG X W, CHEN X, et al., 2019. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms[J]. Chemosphere, 234: 520-527.
DOI PMID |
[38] | ZHANG H J, XU L Y, HOU X, et al., 2024. Ketoprofen promotes the conjugative transfer of antibiotic resistance among antibiotic resistant bacteria in natural aqueous environments[J]. Environmental Pollution, 360: 124676. |
[39] | ZHAO C D, SUYAMUD B, YUAN Y, et al., 2025. Effect of non-antibiotic factors on conjugative transfer of antibiotic resistance genes in aquaculture water[J]. Journal of Hazardous Materials, 483: 136701. |
[40] |
ZHAO R X, FENG J, LIU J, et al., 2019. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics[J]. Water Research, 151: 388-402.
DOI PMID |
[41] | ZHAO S, LI H Y, ZHOU J, et al., 2024. Simultaneous degradation of NSAIDs in aqueous and sludge stages by an electron-Fenton system derived from sediment microbial fuel cell based on a novel Fe@Mn biochar GDC[J]. Chemical Engineering Journal, 482: 148979. |
[42] | ZHENG W L, HUYAN J Q, TIAN Z, et al., 2020. Clinical class 1 integron-integrase gene - A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant[J]. Environment International, 135: 105372. |
[43] | ZHU S Y, YANG B Q, WANG Z Q, et al., 2023. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors[J]. Ecotoxicology and Environmental Safety, 262: 115124. |
[44] | 邓芠, 2016. 酮洛芬在水环境中的光化学降解行为研究[D]. 广州: 广东工业大学: 1-13. |
DENG W, 2016. The study on photolytic behavior of ketoprofen in aqueous environment[D]. Guangzhou: Guangdong University of Technology: 1-13. | |
[45] | 邓小虎, 2014. 非甾体抗炎药镇痛作用的临床应用进展[J]. 中国新药杂志, 23(14): 1637-1642. |
DENG X H, 2014. Non-steroidal anti-inflammatory drugs for pain management[J]. Chinese Journal of New Drugs, 23(14): 1637-1642. | |
[46] | 国家环境保护总局, 2002. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社: 200-284. |
State Environmental Protection Agency, 2002. Monitoring and analysismethods of water and wastewater[M]. The fourth edition. Beijing: China Environmental Science Press: 200-284. | |
[47] | 胡小婕, 秦超, 高彦征, 2022. 有机污染物对抗生素抗性基因水平转移的影响及机制[J]. 科学通报, 67(35): 4224-4235. |
HU X J, QIN C, GAO Y Z, 2022. Organic contaminants influence the horizontal transfer of antibiotic resistance genes[J]. Chinese Science Bulletin, 67(35): 4224-4235. | |
[48] | 黄柳青, 王雯冉, 张浴曈, 等, 2024. 地表水中全氟及多氟烷基化合物 (PFASs) 的污染现状研究进展[J]. 环境化学, 43(3): 693-710. |
HUANG L Q, WANG W R, ZHANG Y T, et al., 2024. Research progress on the pollution status of per-and polyfluoroalkyl substances (PFASs) in surface water: A review[J]. Environmental Chemistry 43(3): 693-710. | |
[49] | 黄璐璐, 谷宇锋, 吴翠蓉, 等, 2020. 细菌的应激反应和生理代谢与耐药性及其控制策略[J]. 生物工程学报, 36(11): 2287-2297. |
HUANG L L, GU Y F, WU C R, et al., 2020. Bacterial stress response, physiological metabolism and antimicrobial tolerance and the control strategies[J]. Chinese Journal of Biotechnology, 36(11): 2287-2297. | |
[50] | 李银辉, 刘韵超, 郑子英, 等, 2025. 河北省典型蔬菜地土壤中抗生素抗性基因的污染特征及其健康风险评估[J]. 生态毒理学报, 20(2): 297-309. |
LI Y H, LIU Y C, ZHENG Z Y, et al., 2025. Pollution characteristics and health risk assessment of antibiotic resistance genes in typical vegetable field soil in Hebei Province[J]. Asian Journal of Ecotoxicology, 20(2): 297-309. | |
[51] | 廉杰, 2020. 非甾体类消炎药在太湖中的赋存及其对芦苇生理生长的影响研究[D]. 无锡: 江南大学: 1-20. |
LIAN J, 2020. Occurrence of non-steroidal anti-inflammatory drugs in Taihu Lake and its effect on the physiological growth of reed[D]. Wu'xi: Jiangnan University: 1-20. | |
[52] | 廉杰, 李祎飞, 王晓暄, 等, 2020. 太湖水体中NSAIDs的时空分布规律和生态风险评价[J]. 环境科学, 41(5): 2229-2238. |
LIAN J, LI Y F, WANG X X, et al., 2020. Temporal and spatial occurrence of NSAIDs in Taihu Lake and relevant risk assessment[J]. Environmental Science, 41(5): 2229-2238. | |
[53] | 刘娜, 金小伟, 薛荔栋, 等, 2017. 太湖流域药物和个人护理品污染调查与生态风险评估[J]. 中国环境科学, 37(9): 3515-3522. |
LIU N, JIN X W, XUE L D, et al., 2017. Concentrations distribution and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake[J]. China Environmental Science, 37(9): 3515-3522. | |
[54] | 马明, 殷燚杰, 石亚东, 等, 2024. “引江济太” 影响下太湖贡湖湾湖流时空变化[J]. 湖泊科学, 36(6): 1922-1932. |
MA M, YIN Y J, SHI Y D, et al., 2024. Temporal and spatial changes of lake current in Gonghu Bay under the influence of “Water diversion from the Yangtze River to Taihu Lake”[J]. Journal of Lake Sciences, 36(6): 1922-1932. | |
[55] | 马云, 商弘颖, 刘学虎, 等, 2013. 对乙酰氨基酚降解菌的分离鉴定和初步特性研究[J]. 浙江工业大学学报, 41(1): 31-34, 43. |
MA Y, SHANG H Y, LIU X H, et al., 2013. Isolation and characterization of an acetaminophen degrading bacterium[J]. Journal of Zhejiang University of Technology, 41(1): 31-34, 43. | |
[56] | 潘晓雪, 2016. “引江济太” 对贡湖主要饮用水源地水质影响分析[D]. 无锡: 江南大学: 1-16. |
PAN X X, 2016. Effect of “Water diversion from the Yangtze River to Taihu Lake” on the main drinking water sources of the Gonghu Bay[D]. Wuxi: Jiangnan University: 1-16. | |
[57] | 苏超, 崔严, 2020. 长江流域淡水生态系统内分泌干扰物、药物和个人护理品的风险排序[J]. 环境科学, 41(11): 4981-4988. |
SU C, CUI Y, 2020. Risk ranking of endocrine disrupting compounds, pharmaceuticals, and personal care products in the aquatic environment of the Yangtze River Basin[J]. Environmental Science, 41(11): 4981-4988. | |
[58] | 苏志国, 张衍, 代天娇, 等, 2018. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 45(10): 2217-2233. |
SU Z G, ZHANG Y, DAI T J, et al., 2018. Antibiotic resistance genes and class 1 integron in the environment: research progress[J]. Microbiology China, 45(10): 2217-2233. | |
[59] | 孙秋根, 王智源, 董建玮, 等, 2018. 太湖流域河网4种典型抗生素的时空分布和风险评价[J]. 环境科学学报, 38(11): 4400-4410. |
SUN Q G, WANG Z Y, DONG J W, et al., 2018. Spatial-temporal distribution and risk evaluation of four typical antibiotics in river networks of Taihu Lake Basin[J]. Acta Scientiae Circumstantia, 38(11): 4400-4410. | |
[60] | 王雯, 侯雨君, 石云舟, 等, 2024. 非甾体抗炎药致胃溃疡动物模型概述[J]. 中国实验动物学报, 32(8): 1084-1092. |
WANG W, HOU Y J, SHI Y Z, et al., 2024. Review of animal models of non-steroidal anti-inflammatory drug-induced gastric ulcer[J]. Acta Laboratorium Animalis Scientia Sinica, 32(8): 1084-1092. | |
[61] | 魏欣, 薛顺利, 杨帆, 等, 2017. 零价铁对污泥高温厌氧消化过程中四环素抗性基因及第一类整合子的消减影响[J]. 环境科学, 38(2): 697-702. |
WEI X, XUE S L, YANG F, et al., 2017. Effect of zero valent iron on the decline of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic digestion of sludge[J]. Environmental Science, 38(2): 697-702. | |
[62] | 文菲菲, 黄魁, 夏慧, 等, 2025. 湿地植物对农村污水耐药基因遗传元件的富集研究[J]. 中国环境科学, 45(4): 1985-1994. |
WEN F F, HUANG K, XIA H, et al., 2025. Enrichment of antibiotic resistance genetic elements in rural sewage by wetland plants[J]. China Environmental Science, 45(4): 1985-1994. | |
[63] | 谢嘉倩, 辛晓东, 洪俊明, 等, 2022. 闽南地区低温下复合填料强化生物滤柱除臭及微生物分析[J]. 环境工程学报, 16(4): 1123-1132. |
XIE J Q, XIN X D, HONG J M, et al., 2022. Efficiency and microbial analysis of deodorization process of biofilter enhanced by composite filler under low temperature in Southern Fujian[J]. Chinese Journal of Environmental Engineering, 16(4): 1123-1132. | |
[64] | 严静娜, 2018. 非甾体抗炎药在污水处理系统中的赋存及降解研究——以双氯芬酸为例[D]. 广州: 华南理工大学: 1-14. |
YAN J N, 2018. Occurrence and degradation mechanism of Non-steroidal Anti-inflammatory Drugs in sewage treatment system: Diclofenac represented[D]. Guangzhou: South China University of Technology: 1-14. | |
[65] | 姚程, 胡小贞, 姜霞, 等, 2021. 太湖贡湖湾人工湖滨带水生植物恢复及其富营养化控制[J]. 湖泊科学, 33(6): 1626-1638. |
YAO C, HU X Z, JIANG X, et al., 2021. Macrophytes restoration and its effects on eutrophication control in rehabilitated lakeshore zone of Gonghu Bay, Lake Taihu[J]. Journal of Lake Sciences, 33(6): 1626-1638. | |
[66] | 张春秋, 蒋聪, 耿金菊, 等, 2019. 环境浓度双氯芬酸对活性污泥处理性能和微生物群落的影响[J]. 环境科学学报, 39(10): 3215-3224, 3565. |
ZHANG C Q, JIANG C, GENG J J, et al., 2019. Effect of diclofenac at environmental concentration on the wastewater treatment efficiency and the microbial community in activated sludge[J]. Acta Scientiae Circumstantiae, 39(10): 3215-3224, 3565. | |
[67] | 张晓娜, 许慧芹, 汝少国, 等, 2023. 海洋环境中抗生素抗性基因的分布、来源、传播和风险研究[J]. 生态毒理学报, 18(1): 174-190. |
ZHANG X N, XU H Q, RU S G, et al., 2023. Study on distribution, source, propagation and risk of antibiotic resistance genes in marine environment[J]. Asian Journal of Ecotoxicology, 18(1): 174-190. | |
[68] | 张正华, 陆光华, 丁剑楠, 2015. 水体中双氯芬酸的分布与生态效应研究[J]. 四川环境, 34(1): 120-126. |
ZHANG Z H, LU G H, DING J N, 2015. Distribution and ecological effects of diclofenac in water[J]. Sichuan Environment, 34(1): 120-126. | |
[69] | 赵思雅, 申珊齐, 李爱民, 2024. 太湖抗生素、抗性基因的时空分布特征及生态风险评估[J]. 生态毒理学报, 19(3): 192-207. |
ZHAO S Y, SHEN S Q, LI A M, 2024. Characteristics of spatial and temporal distribution of antibiotics and resistance genes and ecological risk assessment in Lake Taihu[J]. Asian Journal of Ecotoxicology, 19(3): 192-207. | |
[70] | 周伟, 2020. 电子束辐照和UV/H2O2降解水体中吲哚美辛的处理特性及相关作用机理研究[D]. 上海: 上海大学: 1-16. |
ZHOU W, 2020. Study on degradation characteristics and mechanism of indomethacin in water by electron beam irradiation and UV/H2O2[D]. Shanghai: Shanghai University: 1-16. |
[1] | 林于蓝, 陈厚朴, 于文豪, 王宝英, 张杨, 张金波, 蔡祖聪, 赵军. 强还原处理对土壤中常见抗生素及其抗性基因的影响研究[J]. 生态环境学报, 2024, 33(7): 1107-1116. |
[2] | 凌虹, 朱晓晓, 巫丹, 苏小妹, 郭西亚. 基于生态功能定位的太湖流域水生态安全评估[J]. 生态环境学报, 2024, 33(3): 418-427. |
[3] | 吴雲鹏, 李艳梅, 胡元泽, 王妍, 车光欣, 刘芳君. 不同光伏阵列处理对滇中石漠化地区环境因子及细菌群落组成和多样性的影响[J]. 生态环境学报, 2024, 33(10): 1570-1579. |
[4] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[5] | 高晓宇, 王磊. 抗生素抗性基因在土壤中积累、转移与消减的研究进展[J]. 生态环境学报, 2023, 32(11): 2062-2071. |
[6] | 彭双, 宋丹, 王一明, 林先贵. 土壤环境中四环素抗性基因向病原菌的转移研究[J]. 生态环境学报, 2023, 32(11): 1978-1987. |
[7] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[8] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[9] | 朱锦福, 黄瑞灵, 董志强, 毛晓宁, 周华坤. 青海湖高寒湿地土壤细菌群落对氮添加的响应[J]. 生态环境学报, 2022, 31(6): 1101-1109. |
[10] | 杨贤房, 陈朝, 郑林, 万智巍, 陈永林, 王远东. 稀土矿区不同土地利用类型土壤细菌群落特征及网络分析[J]. 生态环境学报, 2022, 31(4): 793-801. |
[11] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
[12] | 李光炫, 石岸, 张黎明, 邢世和, 杨文浩. 不同粒径生物质炭对土壤重金属钝化及细菌群落的影响[J]. 生态环境学报, 2022, 31(3): 583-592. |
[13] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[14] | 杨世福, 马玲玲, 陈芸芝, 唐旭利. 鼎湖山季风常绿阔叶林演替系列土壤细菌群落的变化特征[J]. 生态环境学报, 2022, 31(12): 2275-2282. |
[15] | 梁永春, 尹芳, 赵英芬, 刘磊. 基于Landsat 8影像的太湖生化需氧量遥感反演[J]. 生态环境学报, 2021, 30(7): 1492-1502. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||