生态环境学报 ›› 2022, Vol. 31 ›› Issue (12): 2275-2282.DOI: 10.16258/j.cnki.1674-5906.2022.12.001
• 研究论文 •
下一篇
杨世福1,2(), 马玲玲1,2, 陈芸芝1,2, 唐旭利1,*(
)
收稿日期:
2022-04-12
出版日期:
2022-12-18
发布日期:
2023-02-15
通讯作者:
*唐旭利,E-mail: xltang@scib.ac.cn作者简介:
杨世福(1998年生),男,硕士,主要研究方向为生态系统生态学。E-mail: yangshifu@scbg.ac.cn
基金资助:
YANG Shifu1,2(), MA Lingling1,2, CHEN Yunzhi1,2, TANG Xuli1,*(
)
Received:
2022-04-12
Online:
2022-12-18
Published:
2023-02-15
摘要:
阐明土壤细菌群落变化对于理解土壤细菌在森林生产力维持和养分循环中的关键作用至关重要。以鼎湖山国家级自然保护区内的南亚热带地带性植被——季风常绿阔叶林及其演替阶段的马尾松林(演替初期阶段)和针阔叶混交林(演替中期阶段)为研究对象,基于Illumina Miseq测序技术,分析季风常绿阔叶林不同演替阶段森林土壤细菌群落的组成、结构和多样性。结果表明:土壤养分含量随演替的正向进行而增加,处于演替顶级阶段的季风常绿阔叶林中土壤含水量及有机碳、全氮、铵态氮、全磷和有效磷的含量均显著高于演替初期阶段的马尾松林(P<0.05)。变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria)为鼎湖山各演替阶段森林共有的土壤细菌群落优势门。不同演替阶段森林土壤细菌群落结构差异显著(P<0.05)。随着森林演替的正向进行,变形菌门和放线菌门的相对丰度变化不显著,但酸杆菌门和浮霉菌门(Planctomycetes)的相对丰度显著增加(P<0.05),绿弯菌门(Chloroflexi)的相对丰度呈降低趋势。适宜在稳定环境中生长的k策略细菌(如酸杆菌门)的相对丰度在演替顶级阶段显著高于初期阶段(P<0.05),而适宜在养分充足环境中快速生长繁殖的r策略细菌(如变形菌门)的相对丰度在不同演替阶段森林土壤中无显著变化。土壤细菌群落的多样性指数(Shannon指数)随着演替的正向进行呈先增加后降低的趋势,而丰富度指数(Chao 1指数)呈现逐渐增加的趋势。土壤有机碳含量、含水量、pH以及硝态氮含量的差异是导致土壤细菌群落随演替阶段发生变化的主要原因。综上所述,随着演替的进行,土壤细菌群落由r策略细菌占优势转变为k策略细菌占优势,其多样性指数和丰富度指数呈现不同的变化趋势,并且其结构和组成发生显著改变。
中图分类号:
杨世福, 马玲玲, 陈芸芝, 唐旭利. 鼎湖山季风常绿阔叶林演替系列土壤细菌群落的变化特征[J]. 生态环境学报, 2022, 31(12): 2275-2282.
YANG Shifu, MA Lingling, CHEN Yunzhi, TANG Xuli. Characteristics of Soil Bacteria Community in Forests Along Monsoon Evergreen Broadleaved Forest Successional Sequence in Dinghushan National Nature Reserve[J]. Ecology and Environment, 2022, 31(12): 2275-2282.
指标 Indexes | 马尾松林 Pine forest (PF) | 混交林 Pine and broadleaved mixed forest (MF) | 阔叶林 Monsoon-evergreen broadleaved forest (BF) |
---|---|---|---|
土壤有机碳质量分数 w(SOC)/(g∙kg−1) | 24.17±1.20b | 29.76±1.77a | 32.81±1.75a |
全氮质量分数 w(TN)/(g∙kg−1) | 2.3±0.10b | 3.18±0.13a | 3.35±0.13a |
全磷质量分数 w(TP)/(g∙kg−1) | 0.18±0.01b | 0.24±0.01a | 0.26±0.01a |
硝态氮质量分数 w(NO3−-N)/(mg∙kg−1) | 11.08±1.06a | 13.64±2.40a | 18.54±3.75a |
铵态氮质量分数 w(NH4+-N)/(mg∙kg−1) | 6.69±0.57b | 9.76±2.00ab | 11.96±0.83a |
有效磷质量分数 w(AP)/(mg∙kg−1) | 1.00±0.20b | 1.66±0.26a | 1.84±0.14a |
pH值 pH value | 3.98±0.03a | 3.92±0.02ab | 3.86±0.03b |
土壤含水量 SWC/% | 21.99±1.21b | 30.88±0.72a | 31.08±1.26a |
表1 鼎湖山不同演替阶段森林0—10 cm土壤理化性质
Table 1 Physicochemical properties in top soil (0-10 cm in depth) of three successional forests in the Dinghushan National Nature Reserve
指标 Indexes | 马尾松林 Pine forest (PF) | 混交林 Pine and broadleaved mixed forest (MF) | 阔叶林 Monsoon-evergreen broadleaved forest (BF) |
---|---|---|---|
土壤有机碳质量分数 w(SOC)/(g∙kg−1) | 24.17±1.20b | 29.76±1.77a | 32.81±1.75a |
全氮质量分数 w(TN)/(g∙kg−1) | 2.3±0.10b | 3.18±0.13a | 3.35±0.13a |
全磷质量分数 w(TP)/(g∙kg−1) | 0.18±0.01b | 0.24±0.01a | 0.26±0.01a |
硝态氮质量分数 w(NO3−-N)/(mg∙kg−1) | 11.08±1.06a | 13.64±2.40a | 18.54±3.75a |
铵态氮质量分数 w(NH4+-N)/(mg∙kg−1) | 6.69±0.57b | 9.76±2.00ab | 11.96±0.83a |
有效磷质量分数 w(AP)/(mg∙kg−1) | 1.00±0.20b | 1.66±0.26a | 1.84±0.14a |
pH值 pH value | 3.98±0.03a | 3.92±0.02ab | 3.86±0.03b |
土壤含水量 SWC/% | 21.99±1.21b | 30.88±0.72a | 31.08±1.26a |
图2 鼎湖山不同演替阶段森林土壤细菌α多样性指数 图中的数值表示为平均值(n=8)±标准误;不同小写字母表示差异显著(P<0.05)。下同
Figure 2 Soil bacterial alpha diversity index of three successional forests in the Dinghushan National Nature Reserve Values are mean (n=8)±standard error; Different lowercase letters indicate significant differences (P<0.05). The same below
图3 鼎湖山不同演替阶段森林土壤细菌的主要门(丰度大于1%)
Figure 3 Bacterial community composition at phylum level (with relative abundance >1%) of three successional forests in the Dinghushan National Nature Reserve
图4 鼎湖山不同演替阶段森林土壤细菌群落PCoA分析
Figure 4 Principal coordinates analysis (PCoA) of bacterial composition based of three successional forests in the Dinghushan National Nature Reserve ***: P<0.001; **: P<0.01; *: P<0.05. The same below
[1] |
BANNING N C, GLEESON D B, GRIGG A H, et al., 2011. Soil microbial community successional patterns during forest ecosystem restoration[J]. Applied and Environmental Microbiology, 77(17): 6158-6164.
DOI PMID |
[2] |
BOLYEN E, RIDEOUT J R, DILLON M R, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 37(8): 852-857.
DOI PMID |
[3] |
CAO J B, HE X X, CHEN Y Q, et al., 2020. Leaf litter contributes more to soil organic carbon than fine roots in two 10-year-old subtropical plantations[J]. Science of the Total Environment, 704: 135341.
DOI URL |
[4] |
CHABRERIE O, LAVAL K, PUGET P, et al., 2003. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France[J]. Applied Soil Ecology, 24(1): 43-56.
DOI URL |
[5] |
CHAI Y F, CAO Y, YUE M, et al., 2019. Soil abiotic properties and plant functional traits mediate associations between soil microbial and plant communities during a secondary forest succession on the Loess Plateau[J]. Frontiers in Microbiology, 10: 00895.
DOI URL |
[6] |
CHEN S F, ZHOU Y Q, CHEN Y R, et al., 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 34(17): 884-890.
DOI PMID |
[7] |
CLEVELAND C C, NEMERGUT D R, SCHMID S K, et al., 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition[J]. Biogeochemistry, 82(3): 229-240.
DOI URL |
[8] |
CLINE L C, ZAK D R, 2015. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession[J]. Ecology, 96(12): 3374-3385.
PMID |
[9] |
DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 7(1): 10541.
DOI URL |
[10] |
DENG J J, YIN Y, ZHU W X, et al., 2018. Variations in soil bacterial community diversity and structures among different revegetation types in the Baishilazi Nature Reserve[J]. Frontiers in Microbiology, 9: 02874.
DOI URL |
[11] |
DUAN Y L, LIAN J, WANG L L, et al., 2021. Variation in soil microbial communities along an elevational gradient in alpine meadows of the Qilian Mountains, China[J]. Frontiers in Microbiology, 12: 684386.
DOI URL |
[12] |
EDGAR R C, 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996.
DOI PMID |
[13] |
FIERER N, BRADFORD M A, JACKSON R B, 2007. Toward an ecological classification of soil bacteria[J]. Ecology, 88(6): 1354-1364.
DOI PMID |
[14] |
GUO Y Q, CHEN X T, WU Y Y, et al., 2018. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities[J]. Science of the Total Environment, 635: 598-606.
DOI URL |
[15] |
HUANG W J, LIU J X, WANG Y P, et al., 2013. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant and Soil, 364(1-2): 181-191.
DOI URL |
[16] |
HUANG Y H, LI Y L, XIAO Y, et al., 2011. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in south China[J]. Forest Ecology and Management, 261(7): 1170-1177.
DOI URL |
[17] |
JIA G M, CAO J, WANG C Y, et al., 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China[J]. Forest Ecology and Management, 217(1): 117-125.
DOI URL |
[18] |
JIANG S, XING Y J, LIU G C, et al., 2021. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests[J]. Soil Biology and Biochemistry, 161: 108393.
DOI URL |
[19] |
LIE Z Y, LIN W, HUANG W J, et al., 2019. Warming changes soil N and P supplies in model tropical forests[J]. Biology and Fertility of Soils, 55(7): 751-763.
DOI |
[20] |
LIU J, JIA X Y, YAN W N, et al., 2020. Changes in soil microbial community structure during long-term secondary succession[J]. Land Degradation and Development, 31(9): 1151-1166.
DOI URL |
[21] | LLADO S, LOPEZ-MONDEJAR R, BALDRIAN P, 2017. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change[J]. Microbiology and Molecular Biology Reviews, 81(2): e00063. |
[22] |
MAGOC T, SALZBERG S L, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
DOI PMID |
[23] |
MORRISSEY E M, MAU R L, SCHWARTZ E, et al., 2017. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter[J]. The ISME Journal, 11(8): 1890-1899.
DOI URL |
[24] |
QU Z L, LIU B, MA Y, et al., 2020. The response of the soil bacterial community and function to forest succession caused by forest disease[J]. Functional Ecology, 34(12): 2548-2559.
DOI URL |
[25] |
REN C J, LIU W C, ZHAO F Z, et al., 2019. Soil bacterial and fungal diversity and compositions respond differently to forest development[J]. Catena, 181: 104071.
DOI URL |
[26] |
ROESCH L F, FULTHORPE R R, RIVA A, et al., 2007. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. The ISME Journal, 1(14): 283-290.
DOI URL |
[27] |
ROUSK J, BAATH E, BROOKES P C, et al., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 4(10): 1340-1351.
DOI URL |
[28] |
SHANG R G, LI S F, HUANG X B, et al., 2021. Effects of soil properties and plant diversity on soil microbial community composition and diversity during secondary succession[J]. Forests, 12(6): 805.
DOI URL |
[29] |
SMITH A P, MARIN-SPIOTTA E, BALSER T, 2015. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: A multiyear study[J]. Global Change Biology, 21(9): 3532-3547.
DOI PMID |
[30] |
TANG X L, WANG Y P, ZHOU G Y, et al., 2011. Different patterns of ecosystem carbon accumulation between a young and an old-growth subtropical forest in Southern China[J]. Plant Ecology, 212(8): 1385-1395.
DOI URL |
[31] |
XIANG X J, SHI Y, YANG J, et al., 2014. Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest[J]. Scientific Reports, 4: 3829.
DOI PMID |
[32] |
XU Y X, REN S Q, LIANG Y F, et al., 2021. Soil nutrient supply and tree species drive changes in soil microbial communities during the transformation of a multi-generation Eucalyptus plantation[J]. Applied Soil Ecology, 166: 103991.
DOI URL |
[33] |
YABE S, AIBA Y, SAKAI Y, et al., 2010. Thermosporothrix hazakensis gen. nov., sp nov., isolated from compost, description of Thermosporotrichaceae fam. nov within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 60: 1794-1801.
DOI URL |
[34] |
YAN B S, SUN L P, LI J J, et al., 2020. Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotungensis forests of the Loess Plateau, western China[J]. Geoderma, 364: 114199.
DOI URL |
[35] |
ZENG Q C, AN S S, LIU Y, 2017. Soil bacterial community response to vegetation succession after fencing in the grassland of China[J]. Science of the Total Environment, 609: 2-10.
DOI URL |
[36] |
ZHANG C, LIU G B, XUE S, et al., 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology and Biochemistry, 97: 40-49.
DOI URL |
[37] |
ZHANG Y G, CONG J, LU H, et al., 2015. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China[J]. Microbial Biotechnology, 8(4): 739-746.
DOI PMID |
[38] |
ZHOU Z H, WANG C K, JIANG L F, et al., 2017. Trends in soil microbial communities during secondary succession[J]. Soil Biology and Biochemistry, 115: 92-99.
DOI URL |
[39] | 邓娇娇, 周永斌, 殷有, 等, 2019. 辽东山区典型人工针叶林土壤细菌群落多样性特征[J]. 生态学报, 39(3): 997-1008. |
DENG J J, ZHOU Y B, YIN Y, et al., 2019. Soil bacterial community structure characteristics in coniferous forests of Montane Regions of eastern Liaoning Province, China[J]. Acta Ecologica Sinica, 39(3): 997-1008. | |
[40] | 方运霆, 莫江明, 彭少麟, 等, 2003. 森林演替在南亚热带森林生态系统碳吸存中的作用[J]. 生态学报, 23(9): 1685-1694. |
FANG Y T, MO J M, PENG S L, et al., 2003. Role of forest succession on carbon sequestration of forest ecoystems in lower subtropical China[J]. Acta Ecologica Sinica, 23(9): 1685-1694. | |
[41] | 李林, 周小勇, 黄忠良, 等, 2006. 鼎湖山植物群落α多样性与环境的关系[J]. 生态学报, 26(7): 2301-2307. |
LI L, ZHOU X Y, HANG Z L, et al., 2006. Study on the relationship between α diversity of plant community and environment on Dinghushan[J]. Acta Ecologica Sinica, 26(7): 2301-2307. | |
[42] | 易志刚, 蚁伟民, 周丽霞, 等, 2005. 鼎湖山主要植被类型土壤微生物生物量研究[J]. 生态环境, 14(5): 727-729. |
YI Z G, YI W M, ZHOU L X, et al., 2005. Soil microbial biomass of the main forests in Dinghushan Biosphere Reserve[J]. Ecology and Environmental Sciences, 14(5): 727-729. |
[1] | 陈丽娟, 周文君, 易艳芸, 宋清海, 张一平, 梁乃申, 鲁志云, 温韩东, MOHD Zeeshan, 沙丽清. 云南哀牢山亚热带常绿阔叶林土壤CH4通量特征[J]. 生态环境学报, 2022, 31(5): 949-960. |
[2] | 温智峰, 魏识广, 李林, 叶万辉, 练琚愉. 南亚热带常绿阔叶林植物不同分类水平上的空间分布格局及空间关联[J]. 生态环境学报, 2022, 31(3): 440-450. |
[3] | 杨丹荔, 罗辑, 贾龙玉, 陈云飞. 海螺沟冰川退缩区原生演替生态系统中铅累积的历史记录[J]. 生态环境学报, 2022, 31(12): 2393-2402. |
[4] | 王浩, 陈永金, 刘加珍, 万波, 张丽. 黄河三角洲新生湿地3种柽柳灌丛对土壤有机碳空间分布的影响研究[J]. 生态环境学报, 2022, 31(1): 9-16. |
[5] | 张天霖, 蔡章林, 赵厚本, 吴仲民, 周光益, 邱治军. 13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应[J]. 生态环境学报, 2021, 30(9): 1797-1804. |
[6] | 李巧玉, 张小晶, 陈娟, 刘媛, 刘锦春, 陶建平. 川西亚高山彩叶林景观分布格局及其地形影响研究[J]. 生态环境学报, 2021, 30(8): 1581-1588. |
[7] | 汪益敏, 陶玥琛, 程致远, 李博文. 高速公路路堑边坡客土喷播的长期防护效果[J]. 生态环境学报, 2021, 30(8): 1724-1731. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||