生态环境学报 ›› 2024, Vol. 33 ›› Issue (10): 1570-1579.DOI: 10.16258/j.cnki.1674-5906.2024.10.009
吴雲鹏1(), 李艳梅1,*(
), 胡元泽2, 王妍1, 车光欣1, 刘芳君1
收稿日期:
2024-07-12
出版日期:
2024-10-18
发布日期:
2024-11-15
通讯作者:
*李艳梅。E-mail: 363889038@qq.com作者简介:
吴雲鹏(1998年生),男,硕士研究生,研究方向为水土保持与荒漠化防治。E-mail: wuyp1999@126.com
基金资助:
WU Yunpeng1(), LI Yanmei1,*(
), HU Yuanze2, WANG Yan1, CHE Guangxin1, LIU Fangjun1
Received:
2024-07-12
Online:
2024-10-18
Published:
2024-11-15
摘要:
研究石漠化地区光伏电站土壤细菌群落和多样性的变化特征及其关键调控因子,对于评估光伏电站建设对生态环境的影响具有重要意义。选取云南石林光伏示范区内3种不同高度的光伏阵列(高板、中板、低板)以及未架设光伏阵列的对照区域(板外)为研究对象,采用高通量测序技术对土壤细菌进行测序,分析其在不同光伏阵列处理下的变化及对环境因子的响应。结果显示,环境因子、土壤细菌群落组成及多样性会积极响应光伏阵列高度的变化,其中,土壤含水量、pH值、全钾含量、植物多样性沿光伏阵列高度呈显著的增加趋势,而土壤有机质含量与密度呈显著的减少变化;光伏阵列高度的增加显著促进了变形菌门、放线菌门的相对丰度,但会降低酸杆菌的相对丰度。土壤细菌多样性(α和β多样性)沿光伏阵列高度呈显著的增加变化,在高板光伏阵列区域达到最大值;RDA分析和随机森林模型表明,土壤全钾和pH能够显著促进细菌的α多样性,且分别对放线菌门、酸杆菌门的相对丰度具有显著的促进作用,而含水量会显著地改变细菌的β多样性。结果表明,光伏阵列的架设主要通过改变土壤全钾含量、含水量和pH值来影响优势细菌群落和多样性变化。该研究可为石漠化地区光伏电站建设对生态环境影响的评估提供参考。
中图分类号:
吴雲鹏, 李艳梅, 胡元泽, 王妍, 车光欣, 刘芳君. 不同光伏阵列处理对滇中石漠化地区环境因子及细菌群落组成和多样性的影响[J]. 生态环境学报, 2024, 33(10): 1570-1579.
WU Yunpeng, LI Yanmei, HU Yuanze, WANG Yan, CHE Guangxin, LIU Fangjun. The Impact of Different Photovoltaic Array Treatments on the Physicochemical Properties, Bacterial Community Composition, and Diversity of Soils in Rocky Desertification Areas of Central Yunnan[J]. Ecology and Environment, 2024, 33(10): 1570-1579.
样地 | 光伏阵列参数 | 经纬度 | 海拔/m | 坡度类型 |
---|---|---|---|---|
高板区域 (HP) | 前檐离地3.1 m, 后檐离地3.8 m, 倾角25° | 103°25′07″E, 24°50′10″N | 1882 | 平坡 |
中板区域 (MP) | 前檐离地1.5 m, 后檐离地2.2 m, 倾角25° | 103°24′50″E, 24°50′03″N | 1886 | 平坡 |
低板区域 (LP) | 前檐离地0.5 m, 后檐离地1.2 m, 倾角25° | 103°25′05″E, 24°50′13″N | 1889 | 平坡 |
板外无光伏区域 (OP) | 无 | 103°25′04″E, 24°49′92″N | 1887 | 平坡 |
表1 光伏园区研究样地基本概况
Table 1 Basic overview of research plots in photovoltaic park
样地 | 光伏阵列参数 | 经纬度 | 海拔/m | 坡度类型 |
---|---|---|---|---|
高板区域 (HP) | 前檐离地3.1 m, 后檐离地3.8 m, 倾角25° | 103°25′07″E, 24°50′10″N | 1882 | 平坡 |
中板区域 (MP) | 前檐离地1.5 m, 后檐离地2.2 m, 倾角25° | 103°24′50″E, 24°50′03″N | 1886 | 平坡 |
低板区域 (LP) | 前檐离地0.5 m, 后檐离地1.2 m, 倾角25° | 103°25′05″E, 24°50′13″N | 1889 | 平坡 |
板外无光伏区域 (OP) | 无 | 103°25′04″E, 24°49′92″N | 1887 | 平坡 |
图1 土壤环境因子沿光伏阵列高度的变化 灰色区域表示其95%的置信区间,实线表示显著(p<0.05),虚线表示不显著(p>0.05);BD:土壤密度;MC:水分;pH:土壤酸碱度;OM:有机质;TN:全氮;TP:全磷;TK:全钾;Plant.richness:植物丰富度;Plant.Shannon:植物香农指数
Figure 1 Variation of soil environmental factors along the height of the PV array
图5 环境因子与细菌群落组成及多样性的冗余分析 BD:土壤密度;MC:水分;pH:土壤酸碱度;OM:有机质;TN:全氮;TP:全磷;TK:全钾;Plant.richness:植物丰富度;Plant.Shannon:植物香农指数
Figure 5 Redundancy analysis of environmental factors on bacterial community composition and diversity
图6 细菌群落组成及多样性与环境因子的随机森林模型分析 **表示(p<0.01),ns表示(p>0.05);BD:土壤密度;MC:水分;pH:土壤酸碱度;TK:全钾;PR:植物丰富度;PS:植物香农指数
Figure 6 Random Forest Model Analysis of Bacterial Community Composition and Diversity with Environmental Factors
[1] | BAI Z Y, JIA A M, BAI Z J, et al., 2022. Photovoltaic panels have altered grassland plant biodiversity and soil microbial diversity[J]. Frontiers in Microbiology, 13: 1065899. |
[2] | DELGADO B M, OLIVERIO A M, BREWER T E, et al., 2018. A global atlas of the dominant bacteria found in soil[J]. Science, 359(6373): 320-325. |
[3] | DING Y, ZANG R G, 2021. Determinants of aboveground biomass in forests across three climatic zones in China[J]. Forest Ecology and Management, 482: 118805. |
[4] | FAHEY C, KOYAMA A, ANTUNES P M, et al., 2020. Plant communities mediate the interactive effects of invasion and drought on soil microbial communities[J]. The ISME Journal, 14: 1396-1409. |
[5] |
LI H, YANG S, SEMENOV M V, et al., 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community[J]. Global Change Biology, 27(12): 2763-2779.
DOI PMID |
[6] | LI J Y, CHARLES L, YANG Z L, et al., 2022. Differential mechanisms drive species loss under artificial shade and fertilization in the alpine meadow of the Tibetan Plateau[J]. Frontiers in Plant Science, 13: 832473. |
[7] | LIU J, PENG Z H, TU H R, et al., 2024. Oligotrophic microbes are recruited to resist multiple global change factors in agricultural subsoils[J]. Environment International, 183(Suppl 1): 108429. |
[8] | LIU Z Y, PENG T, MA S L, et al., 2023. Potential benefits and risks of solar photovoltaic power plants on arid and semi-arid ecosystems: an assessment of soil microbial and plant communities[J]. Frontiers in Microbiology, 14: 1190650. |
[9] | LUO Z X, LUO J F, WU S N, et al., 2024. Soil bacterial community in a photovoltaic system adopted different survival strategies to cope with small-scale light stress under different vegetation restoration modes[J]. Frontiers in Microbiology, 15: 1365234. |
[10] | PHILIPPOT L, CHENU C, KAPPLER A, et al., 2024. The interplay between microbial communities and soil properties[J]. Nature Reviews Microbiology, 22(4): 226-239. |
[11] | PORTELA E, MONTEIRO F, FONSECA M, et al., 2019. Effect of soil mineralogy on potassium fixation in soils developed on different parent material[J]. Geoderma, 343: 226-234. |
[12] | WANG Y H, LI S F, LANG X D, et al., 2022. Effects of microtopography on soil fungal community diversity, composition, and assembly in a subtropical monsoon evergreen broadleaf forest of Southwest China[J]. Catena, 211: 106025. |
[13] | WU M H, CHEN S Y, CHEN J W, et al., 2021. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation[J]. Proceedings of the National Academy of Sciences, 118(25): e2025321118. |
[14] | 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agrochemical analysis[M]. 3rd edition. Beijing: Chin Agriculture Press. | |
[15] |
丁成翔, 刘禹, 2021. 光伏园区建设对青藏高原高寒荒漠草地土壤原核微生物群落的影响[J]. 草地学报, 29(5): 1061-1069.
DOI |
DING C X, LIU Y, 2021. Effects of solar photovoltaic park construction on soil microbial community in alpine desert of Qinghai Tibet Plateau[J]. Acta Agrestia Sinica, 29(5): 1061-1069. | |
[16] | 高海燕, 杨制国, 张胜男, 等, 2024. 科尔沁沙地油松人工林林龄对土壤酶活性及化学性质的影响[J]. 中南林业科技大学学报, 44(2): 108-117. |
GAO H Y, YANG Z G, ZHANG S N, et al., 2024. Effects of stand age on soil enzyme activity and chemical properties of Pinus tabulaeformis plantation in Horgin sandy land[J]. Journal of Central South University of Forestry & Technology, 44(2): 108-117. | |
[17] | 郭嫱, 2022. 光伏板阵列对松嫩退化草地植物群落和土壤特征的影响[D]. 长春: 东北师范大学. |
GUO Q, 2022. Effects of photovoltaic panel arrays on plant communities and soil characteristics in degraded grassland in the Songnen Plain[D]. Changchun: Northeast Normal University. | |
[18] | 郝近羽, 刘瑾, 陈源泉, 等, 2022. 施用不同有机物料对砂质土壤玉米成熟期根际细菌群落变化的影响[J]. 中国农业大学学报, 27(10): 65-79. |
HAO J Y, LIU J, CHEN Y Q, et al., 2022. Effects of application different organic materials on the bacterial community of maize rhizosphere in sandy soil at the maturity stage[J]. Journal of China Agricultural University, 27(10): 65-79. | |
[19] | 贾国建, 杜振宇, 马丙尧, 等, 2023. 山东省长期连作杨树人工林的土壤理化特性与综合肥力评价[J]. 中国土壤与肥料 (4): 8-15. |
JIA G J, DU Z Y, MA B Y, et al., 2023. Soil physico-chemical characteristics and comprehensive fertility of long-term continuous cropping poplar plantations in Shandong province[J]. Soil and Fertilizer Sciences in China (4): 8-15. | |
[20] |
姜懿珊, 孙迎韬, 张干, 等, 2023. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 32(8): 1355-1364.
DOI |
JIANG Y S, SUN Y S, ZHANG G, et al., 2023. Pattern and influencing factors of forest Soil microbial communities in different climate types in China[J]. Ecology and Environmental Sciences, 32(8): 1355-1364. | |
[21] |
李聪, 吕晶花, 陆梅, 等, 2022. 滇东南亚热带土壤细菌群落对植被垂直带变化的响应[J]. 生态环境学报, 31(10): 1971-1983.
DOI |
LI C, LÜ J H, LU M, et al., 2022. Responses of soil bacterial communities to vertical vegetarian zone changes in the subtropical forests, southeastern Yunnan[J]. Ecology and Environmental Sciences, 31(10): 1971-1983. | |
[22] | 龙家辉, 蓝家程, 姜勇祥, 2020. 喀斯特石漠化地区退耕还林对土壤细菌群落的影响[J]. 农技服务, 37(7): 8-10, 12. |
LONG J H, LAN J C, JIANG Y X, 2020. Effects of returning farmland to forest on soil bacterial community in karst rocky desertification area[J]. Agricultural Technology Service, 37(7): 8-10, 12. | |
[23] | 卢居勐, 陈晏, 沈一, 等, 2023. 光照驱动花生间作系统根际细菌群落结构演变和产量提升机制的研究[J]. 土壤, 55(6): 1237-1243. |
LU J M, CHEN Y, SHEN Y, et al., 2023. Light-driven succession of rhizosphere bacterial community structure and yield enhancement mechanism in peanut intercropping system[J]. Soils, 55(6): 1237-1243. | |
[24] | 陆梅, 孙向阳, 田昆, 等, 2018. 纳帕海高原湿地不同退化阶段土壤真菌群落结构特征[J]. 北京林业大学学报, 40(3): 55-65. |
LU M, SUN X Y, TIAN K, et al., 2018. Characteristics of soil fungal community structure at different degraded stages in Napahai Plateau Wetland of northwestern China[J]. Journal of Beijing Forestry University, 40(3): 55-65. | |
[25] | 罗忠新, 黎慜, 王涛, 等, 2024. 不同植被恢复类型下土壤碳含量对光伏组件遮阴的响应[J]. 西北农林科技大学学报(自然科学版), 52(9): 147-154. |
LUO Z X, LI M, WANG T, et al., 2024. Response of soil carbon contents to photovoltaic modules shading under different vegetation restoration types[J]. Journal of Northwest A & F University (Natural Science Edition), 52(9): 147-154. | |
[26] | 裴广廷, 孙建飞, 贺同鑫, 等, 2021. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 45(1): 74-84. |
PEI G T, SUN J F, HE T X, et al., 2021. Effects of long-term human disturbances on soil microbial diversity and community structure in a karst grassland ecosystem of northwestern Guangxi, China[J]. Chinese Journal of Plant Ecology, 45(1): 74-84. | |
[27] |
秦浩, 李蒙爱, 高劲, 等, 2023. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 32(3): 459-468.
DOI |
QIN H, LI A M, GAO J, et al., 2023. Composition and diversity of soil bacterial communities in shrub at different altitudes in Luya Mountain[J]. Ecology and Environmental Sciences, 32(3): 459-468. | |
[28] | 芮文鸿, 陈吉祥, 王永刚, 等, 2018. 天然气管道施工对脆弱黄土区土壤养分及细菌多样性影响[J]. 环境科学学报, 38(8): 3278-3285. |
RUI W H, CHEN J X, WANG Y G, et al., 2018. Effects of natural gas pipeline construction on soil nutrients and bacteria diversity in the fragile loess region[J]. Acta Scientiae Circumstantiae, 38(8): 3278-3285. | |
[29] | 田政卿, 张勇, 刘向, 等, 2024. 光伏电站建设对陆地生态环境的影响: 研究进展与展望[J]. 环境科学, 45(1): 239-247. |
TIAN Z Q, ZHANG Y, LIU X, et al., 2024. Effects of photovoltaic power station construction on terrestrial environment: Retrospect and prospect[J]. Environmental Science, 45(1): 239-247. | |
[30] | 王诗雯, 2023. 光伏板阵列对松嫩草地土壤微生物群落组成与多样性的影响[D]. 长春: 东北师范大学. |
WANG S W, 2023. Effects of photovoltaic panel arrays on components and biodiversities of soil microbes in the Songnen grassland[D]. Changchun: Northeast Normal University. | |
[31] | 王诗雯, 王思彤, 李由, 等, 2024. 光伏阵列对松嫩草地土壤细菌群落组成与多样性的影响[J]. 东北师大学报(自然科学版), 56(1): 107-114. |
WANG S W, WANG S T, LI Y, et al., 2024. Effects of photovoltaic arrays on composition and biodiversity of soil bacteria in the Songnen grassland[J]. Journal of Northeast Normal University (Natural Science Edition), 56(1): 107-114. | |
[32] | 王涛, 王得祥, 郭廷栋, 等, 2016. 光伏电站建设对土壤和植被的影响[J]. 水土保持研究, 23(3): 90-94. |
WANG T, WANG D X, GUO T D, et al., 2016. The impact of photovoltaic power construction on soil and vegetation[J]. Research of Soil and Water Conservation, 23(3): 90-94. | |
[33] | 魏志超, 黄娟, 刘雨晖, 等, 2017. 不同发育阶段杉木人工林土壤细菌类群特征[J]. 西南林业大学学报(自然科学), 37(5): 122-129. |
WEI Z C, HUANG J, LIU Y H, et al., 2017. Community characteristics of Soil bacteria of Cunninghamia lanceolata plantations at different developmental stages[J]. Journal of Southwest Forestry University (Natural Sciences), 37(5): 122-129. | |
[34] | 巫韬, 胡超建, 黎国林, 等, 2023. 珠江口岸红树林树种及理化因子对土壤微生物的影响[J]. 应用与环境生物学报, 29(5): 1157-1163. |
WU T, HU C J, LI G L, et al., 2023. Effects of mangrove species and physicochemical factors on soil microorganisms at the Pearl River Estuary[J]. Chinese Journal of Applied and Environmental Biology, 29(5): 1157-1163. | |
[35] | 吴智泉, 罗忠新, 罗久富, 等, 2023. 石漠化光伏场区土壤肥力质量空间分异特征[J]. 生态学杂志, 42(11): 2597-2603. |
WU Z Q, LUO Z X, LUO J F, et al., 2023. Spatial differentiation of soil fertility in a photovoltaic power station in rocky desertification zone[J]. Chinese Journal of Ecology, 42(11): 2597-2603.
DOI |
|
[36] |
熊涵, 刘彦伶, 李渝, 等, 2023. 长期不同施肥模式对黄壤旱地土壤细菌群落结构和土壤养分的影响[J]. 应用生态学报, 34(7): 1949-1956.
DOI |
XIONG H, LIU Y L, LI Y, et al., 2023. Effects of long-term fertilization patterns on bacterial community structure and soil nutrients in dryland of yellow soil[J]. Chinese Journal of Applied Ecology, 34(7): 1949-1956.
DOI |
|
[37] |
徐凡迪, 李帅锋, 苏建荣, 2021. 云南松林次生演替阶段土壤细菌群落的变化[J]. 应用生态学报, 32(3): 887-894.
DOI |
XU F D, LI S F, SU J R, et al., 2021. Changes of soil bacterial community structure at the secondary successional stages in the Pinus yunnanensis forest[J]. Chinese Journal of Applied Ecology, 32(3): 887-894. | |
[38] |
越大林, 李国荣, 李进芳, 等, 2024. 黄河源高寒退化草地典型鼠丘土壤风蚀及养分流失规律研究[J]. 干旱区研究, 41(4): 603-617.
DOI |
YUE D L, LI G R, LI J F, et al., 2024. Soil wind erosion and nutrient loss in typical rodent mounds in a degraded alpine grassland in the Yellow River source zone[J]. Arid Zone Research, 41(4): 603-617.
DOI |
|
[39] | 张恒彬, 吴娇娇, 余春娅, 等, 2023. 不同等级石漠化生境下石生苔藓叶绿素含量和叶绿素荧光参数研究[J]. 生态学报, 43(10): 3882-3893. |
ZHANG H B, WU J J, YU C Y, et al., 2023. Chlorophyll content and fluorescence parameters of epilithic mosses in habitats of different rocky-desertification grades[J]. Acta Ecologica Sinica, 43(10): 3882-3893. | |
[40] |
张仲富, 喻庆国, 王行, 等, 2021. 植物群落和土壤理化性质对碧塔海湿地土壤细菌群落的影响[J]. 应用生态学报, 32(6): 2199-2208.
DOI |
ZHANG Z F, YU Q G, WANG X, et al., 2021. Effects of plant community and soil properties on soil bacterial community in Bitahai Wetland, Southwest China[J]. Chinese Journal of Applied Ecology, 32(6): 2199-2208. | |
[41] | 赵晶, 郝孟婕, 王清宇, 等, 2021. 不同植被恢复模式下光伏电站土壤有机碳储量分布特征[J]. 浙江农林大学学报, 38(5): 1033-1039. |
ZHAO J, HAO M J, WANG Q Y, et al., 2021. Distribution characteristics of soil organic carbon storage in photovoltaic power station under different vegetation restoration modes[J]. Journal of Zhejiang A & F University, 38(5): 1033-1039. | |
[42] | 周信雁, 杨尚东, 2024. 番茄连作土壤中微生物群落的变化特征及其重塑研究进展[J]. 华中农业大学学报, 43(1): 1-8. |
ZHOU X Y, YANG S D, 2024. Progress on changing characteristics and reconstruction of microbial communities in soil under tomato continuous cropping[J]. Journal of Huazhong Agricultural University, 43(1): 1-8. |
[1] | 侯金龙, 马志强, 杨澄, 葛双双, 何迪, 董璠. 京津冀地区植被碳源/汇的时空变化特征及影响因素分析[J]. 生态环境学报, 2024, 33(9): 1329-1338. |
[2] | 李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352. |
[3] | 李彦林, 陈杨洋, 杨霜溶, 刘菊梅. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371. |
[4] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
[5] | 朱乐洋, 张西哲, 陶江, 王秀, 韩艳英, 叶彦辉. 氮添加对色季拉山急尖长苞冷杉林土壤呼吸的影响[J]. 生态环境学报, 2024, 33(9): 1384-1396. |
[6] | 吴东阳, 吴家欢, 李伟志, 黄志杰, 杨春亚, 陈火君. 蚓粪、猪粪配施化肥对土壤质量、辣椒生长及品质的影响[J]. 生态环境学报, 2024, 33(9): 1416-1425. |
[7] | 丛鑫, 张怀迪, 张荣, 赵琛, 陈坤, 刘寒冰. 基于Meta分析的近10年中国农田土壤重金属污染特征与风险解析[J]. 生态环境学报, 2024, 33(9): 1451-1459. |
[8] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[9] | 庞波, 海香, 张海芳, 张艳军, 王慧, 刘红梅, 杨殿林. 藜芦扩散对山地草甸草地植被特征和土壤理化性质的影响[J]. 生态环境学报, 2024, 33(8): 1174-1181. |
[10] | 王文静, 翟水晶, 王赛. 闽江下游湿地土壤硅的沿程分布特征及影响因素[J]. 生态环境学报, 2024, 33(8): 1182-1191. |
[11] | 范贝贝, 丁帅, 张田田, 张帅, 魏露露, 陈清. 周期性淹水-落干和施用秸秆对白云石改良棕壤磷素流失风险的模拟研究[J]. 生态环境学报, 2024, 33(8): 1203-1213. |
[12] | 张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响[J]. 生态环境学报, 2024, 33(7): 1048-1062. |
[13] | 林于蓝, 陈厚朴, 于文豪, 王宝英, 张杨, 张金波, 蔡祖聪, 赵军. 强还原处理对土壤中常见抗生素及其抗性基因的影响研究[J]. 生态环境学报, 2024, 33(7): 1107-1116. |
[14] | 王梓晗, 吕世杰, 王忠武, 刘红梅. 放牧强度对优势种群重要值和物种多样性及其二者典型关系的影响[J]. 生态环境学报, 2024, 33(6): 869-876. |
[15] | 关玉亮, 甘先华, 殷祚云, 黄钰辉, 陶玉柱, 李宽, 张卫强, 邓彩琼, 曾祥尧, 黄芳芳. 南岭自然保护区不同海拔梯度植物多样性分布格局[J]. 生态环境学报, 2024, 33(6): 877-887. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||