生态环境学报 ›› 2025, Vol. 34 ›› Issue (6): 961-973.DOI: 10.16258/j.cnki.1674-5906.2025.06.013
收稿日期:
2024-11-20
出版日期:
2025-06-18
发布日期:
2025-06-11
通讯作者:
* 於冉, E-mail: 作者简介:
吴雨桐(2000年生),女(回族),硕士研究生,主要研究方向为流域景观评价。E-mail: wuyutong@stu.ahau.edu.cn
基金资助:
WU Yutong(), YU Ran*(
), YU Qiqi, WANG Cheng, ZHANG Zihan
Received:
2024-11-20
Online:
2025-06-18
Published:
2025-06-11
摘要:
皖江流域是长江中下游地区重要的生态屏障区,探究该区域生境质量变化特征对区域生态可持续发展具有重要意义。以皖江流域为例,利用1990-2020年土地利用数据,结合InVEST模型和地理探测器探讨区域生境质量时空分布特征及驱动因素,并采用PLUS模型预测模拟区域2030年4种不同情境下的土地利用及生境质量变化。结果表明,1)耕地和林地是研究区主要土地利用类型,两者面积约占总面积的77%。1990-2020年期间,研究区主要土地利用变化是由耕地向建设用地转入,转入面积为2.69×103 km2。2)1990-2020年期间,研究区生境质量平均指数由0.550下降至0.535,区域整体生境质量水平下降,生境低水平面积扩张趋势明显。3)1990-2020年生境质量时空分异是自然和社会因子的共同作用,主要影响因子是土地利用类型,其次是高程。各因子之间的交互作用对生境质量变化的解释力比单个因子更强。4)2030年多情景模拟结果显示,与2020年相比,惯性发展、城镇发展生境平均指数下降0.003、0.006,耕地保护情景生境与2020年持平。生态保护情景生境平均指数上升0.004,该情景实现了生态保护与经济发展的动态平衡。研究结果可为地区规划景观格局与生态可持续发展提供有效的决策支持。
中图分类号:
吴雨桐, 於冉, 余祺琪, 王成, 张紫涵. 皖江流域生境质量评价及多情景优化研究[J]. 生态环境学报, 2025, 34(6): 961-973.
WU Yutong, YU Ran, YU Qiqi, WANG Cheng, ZHANG Zihan. Evaluation and Multi-Scenario Optimization of Habitat Quality in the Basin of Yangtze River in Anhui Province[J]. Ecology and Environmental Sciences, 2025, 34(6): 961-973.
因子 | 指标名称 | 单位 | 标注 |
---|---|---|---|
自然环境因子 | 高程 | m | X1 |
坡度 | ° | X2 | |
坡向 | - | X3 | |
NDVI | - | X4 | |
年均温度 | ℃ | X5 | |
年降雨量 | mm | X6 | |
社会经济因子 | 土地利用类型 | - | X7 |
每平方千米人口密度 | 人 | X8 | |
每平方千米GDP | 万元 | X9 |
表1 自然与经济因子指标
Table 1 Natural and economic factors
因子 | 指标名称 | 单位 | 标注 |
---|---|---|---|
自然环境因子 | 高程 | m | X1 |
坡度 | ° | X2 | |
坡向 | - | X3 | |
NDVI | - | X4 | |
年均温度 | ℃ | X5 | |
年降雨量 | mm | X6 | |
社会经济因子 | 土地利用类型 | - | X7 |
每平方千米人口密度 | 人 | X8 | |
每平方千米GDP | 万元 | X9 |
威胁因子 | 最大影响距离 | 权重 | 衰减函数 |
---|---|---|---|
城镇用地 | 10 | 0.9 | 指数衰减 |
农村居民地 | 6 | 0.6 | 指数衰减 |
工矿与交通用地 | 5 | 0.5 | 指数衰减 |
水田 | 1 | 0.3 | 线性衰减 |
旱地 | 1 | 0.3 | 线性衰减 |
表2 威胁因子权重和最大影响距离
Table 2 The weight and the maximum influence distance of the threat source
威胁因子 | 最大影响距离 | 权重 | 衰减函数 |
---|---|---|---|
城镇用地 | 10 | 0.9 | 指数衰减 |
农村居民地 | 6 | 0.6 | 指数衰减 |
工矿与交通用地 | 5 | 0.5 | 指数衰减 |
水田 | 1 | 0.3 | 线性衰减 |
旱地 | 1 | 0.3 | 线性衰减 |
土地利用类型 | 生境适宜度 | 城镇 用地 | 农村居民用地 | 工矿与交通用地 | 水田 | 旱地 | |
---|---|---|---|---|---|---|---|
一级 地类 | 二级地类 | ||||||
耕地 | 水田 | 0.3 | 0.5 | 0.6 | 0.5 | 0 | 1 |
旱地 | 0.3 | 0.5 | 0.6 | 0.5 | 1 | 0 | |
林地 | 有林地 | 1 | 0.7 | 0.7 | 0.7 | 0.8 | 0.7 |
灌木林 | 0.9 | 0.6 | 0.5 | 0.6 | 0.7 | 0.6 | |
疏木林 | 0.7 | 0.8 | 0.7 | 0.6 | 0.7 | 0.7 | |
其他林地 | 0.5 | 0.6 | 0.7 | 0.6 | 0.4 | 0.5 | |
草地 | 高覆盖度草地 | 0.8 | 0.6 | 0.7 | 0.4 | 0.6 | 0.7 |
中覆盖度草地 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | |
低覆盖度草地 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | 0.5 | |
水域 | 河渠 | 0.9 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 |
湖泊 | 1 | 0.7 | 0.6 | 0.5 | 0.6 | 0.7 | |
水库坑塘 | 0.9 | 0.6 | 0.6 | 0.4 | 0.5 | 0.6 | |
滩地 | 0.8 | 0.7 | 0.8 | 0.6 | 0.6 | 0.4 | |
建设 用地 | 城镇用地 | 0 | 0 | 0 | 0 | 0 | 0 |
农村居民用地 | 0 | 0 | 0 | 0 | 0 | 0 | |
工矿与交通用地 | 0 | 0 | 0 | 0 | 0 | 0 | |
未利用地 | 裸地 | 0.1 | 0.2 | 0.1 | 0.1 | 0 | 0 |
表3 生境类型对威胁因子敏感度
Table 3 Sensitivity of habitat types to threat factors
土地利用类型 | 生境适宜度 | 城镇 用地 | 农村居民用地 | 工矿与交通用地 | 水田 | 旱地 | |
---|---|---|---|---|---|---|---|
一级 地类 | 二级地类 | ||||||
耕地 | 水田 | 0.3 | 0.5 | 0.6 | 0.5 | 0 | 1 |
旱地 | 0.3 | 0.5 | 0.6 | 0.5 | 1 | 0 | |
林地 | 有林地 | 1 | 0.7 | 0.7 | 0.7 | 0.8 | 0.7 |
灌木林 | 0.9 | 0.6 | 0.5 | 0.6 | 0.7 | 0.6 | |
疏木林 | 0.7 | 0.8 | 0.7 | 0.6 | 0.7 | 0.7 | |
其他林地 | 0.5 | 0.6 | 0.7 | 0.6 | 0.4 | 0.5 | |
草地 | 高覆盖度草地 | 0.8 | 0.6 | 0.7 | 0.4 | 0.6 | 0.7 |
中覆盖度草地 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | |
低覆盖度草地 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 | 0.5 | |
水域 | 河渠 | 0.9 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 |
湖泊 | 1 | 0.7 | 0.6 | 0.5 | 0.6 | 0.7 | |
水库坑塘 | 0.9 | 0.6 | 0.6 | 0.4 | 0.5 | 0.6 | |
滩地 | 0.8 | 0.7 | 0.8 | 0.6 | 0.6 | 0.4 | |
建设 用地 | 城镇用地 | 0 | 0 | 0 | 0 | 0 | 0 |
农村居民用地 | 0 | 0 | 0 | 0 | 0 | 0 | |
工矿与交通用地 | 0 | 0 | 0 | 0 | 0 | 0 | |
未利用地 | 裸地 | 0.1 | 0.2 | 0.1 | 0.1 | 0 | 0 |
地类 | 惯性发展情景 | 城镇发展情景 | 耕地保护情景 | 生态保护情景 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | ||||
a | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | |||
b | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |||
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | |||
d | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | |||
e | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |||
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
表4 各情景土地利用转移矩阵
Table 4 Multi-scenario land use transition matrix
地类 | 惯性发展情景 | 城镇发展情景 | 耕地保护情景 | 生态保护情景 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | ||||
a | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | |||
b | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |||
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | |||
d | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | |||
e | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |||
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
判断依据 | 交互作用类型 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)]<q(X1∩X2)<Max[q(X1)+q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max [q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 自变量独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
表5 双因子交互作用结果类型
Table 5 Types of two-factor interaction result
判断依据 | 交互作用类型 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)]<q(X1∩X2)<Max[q(X1)+q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max [q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 自变量独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
地类 | 1990年 | 2000年 | 2010年 | 2020年 | 面积变化量 | 面积变化率 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | |||||
耕地 | 3.95×104 | 53.18 | 3.90×104 | 52.45 | 3.78×104 | 50.89 | 3.70×104 | 49.83 | −2.49×103 | −6.71 | ||||
林地 | 2.03×104 | 27.32 | 2.02×104 | 27.18 | 2.01×104 | 27.07 | 2.01×104 | 27.00 | −239.4 | −1.19 | ||||
草地 | 5.52×103 | 7.43 | 5.49×103 | 7.39 | 5.45×103 | 7.34 | 5.44×103 | 7.32 | −82.1 | −1.51 | ||||
水域 | 5.35×103 | 7.20 | 5.38×103 | 7.23 | 5.46×103 | 7.35 | 5.47×103 | 7.35 | 116.6 | 2.18 | ||||
建设用地 | 3.62×103 | 4.87 | 4.27×103 | 5.74 | 5.46×103 | 7.34 | 6.30×103 | 8.48 | 2.68×103 | 74.10 | ||||
未利用地 | 4.6 | 0.01 | 4.8 | 0.01 | 5.1 | 0.01 | 14.6 | 0.02 | 10.0 | 215.76 |
表6 1990-2020年土地利用类型面积及比例
Table 6 Area and proportion of land use types from 1990 to 2020
地类 | 1990年 | 2000年 | 2010年 | 2020年 | 面积变化量 | 面积变化率 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | |||||
耕地 | 3.95×104 | 53.18 | 3.90×104 | 52.45 | 3.78×104 | 50.89 | 3.70×104 | 49.83 | −2.49×103 | −6.71 | ||||
林地 | 2.03×104 | 27.32 | 2.02×104 | 27.18 | 2.01×104 | 27.07 | 2.01×104 | 27.00 | −239.4 | −1.19 | ||||
草地 | 5.52×103 | 7.43 | 5.49×103 | 7.39 | 5.45×103 | 7.34 | 5.44×103 | 7.32 | −82.1 | −1.51 | ||||
水域 | 5.35×103 | 7.20 | 5.38×103 | 7.23 | 5.46×103 | 7.35 | 5.47×103 | 7.35 | 116.6 | 2.18 | ||||
建设用地 | 3.62×103 | 4.87 | 4.27×103 | 5.74 | 5.46×103 | 7.34 | 6.30×103 | 8.48 | 2.68×103 | 74.10 | ||||
未利用地 | 4.6 | 0.01 | 4.8 | 0.01 | 5.1 | 0.01 | 14.6 | 0.02 | 10.0 | 215.76 |
1990年 土地 利用类型 | 2020年土地利用类型 | 转出 面积 | |||||
---|---|---|---|---|---|---|---|
耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | ||
耕地 | 3.60×104 | 519.2 | 81.2 | 273.7 | 2.69×103 | 7.3 | 3.57×103 |
林地 | 537.9 | 1.94×104 | 242.2 | 11.8 | 154.9 | 2.3 | 949.2 |
草地 | 170.5 | 172.9 | 5.10×103 | 13.5 | 62.7 | 0.3 | 419.9 |
水域 | 134.8 | 12.8 | 11.0 | 5.16×103 | 29.0 | 0.1 | 187.7 |
建设用地 | 238.4 | 8.1 | 3.1 | 6.4 | 3.36×103 | 0.3 | 256.3 |
未利用地 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 4.3 | 0.4 |
转入面积 | 1.08×103 | 713.2 | 337.7 | 305.4 | 2.94×103 | 10.3 |
表7 1990-2020年土地利用转移矩阵
Table 7 Statistics of land area from 1990 to 2020 km2
1990年 土地 利用类型 | 2020年土地利用类型 | 转出 面积 | |||||
---|---|---|---|---|---|---|---|
耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | ||
耕地 | 3.60×104 | 519.2 | 81.2 | 273.7 | 2.69×103 | 7.3 | 3.57×103 |
林地 | 537.9 | 1.94×104 | 242.2 | 11.8 | 154.9 | 2.3 | 949.2 |
草地 | 170.5 | 172.9 | 5.10×103 | 13.5 | 62.7 | 0.3 | 419.9 |
水域 | 134.8 | 12.8 | 11.0 | 5.16×103 | 29.0 | 0.1 | 187.7 |
建设用地 | 238.4 | 8.1 | 3.1 | 6.4 | 3.36×103 | 0.3 | 256.3 |
未利用地 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 4.3 | 0.4 |
转入面积 | 1.08×103 | 713.2 | 337.7 | 305.4 | 2.94×103 | 10.3 |
驱动因子 | 1990年 | 2000年 | 2010年 | 2020年 | 1990-2020年 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q值 | 排序 | q值 | 排序 | q值 | 排序 | q值 | 排序 | 平均q值 | 排序 | |||||
高程(X1) | 0.378 | 3 | 0.374 | 2 | 0.373 | 2 | 0.377 | 2 | 0.376 | 2 | ||||
坡度(X2) | 0.385 | 2 | 0.368 | 3 | 0.367 | 3 | 0.374 | 3 | 0.374 | 3 | ||||
坡向(X3) | 0.004 | 9 | 0.004 | 9 | 0.004 | 9 | 0.004 | 9 | 0.004 | 9 | ||||
NDVI(X4) | 0.210 | 5 | 0.160 | 6 | 0.141 | 6 | 0.154 | 6 | 0.166 | 6 | ||||
气温(X5) | 0.129 | 8 | 0.135 | 7 | 0.135 | 7 | 0.148 | 7 | 0.137 | 7 | ||||
降雨量(X6) | 0.215 | 6 | 0.219 | 5 | 0.220 | 5 | 0.200 | 5 | 0.214 | 5 | ||||
土地利用(X7) | 0.925 | 1 | 0.882 | 1 | 0.882 | 1 | 0.896 | 1 | 0.896 | 1 | ||||
人口密度(X8) | 0.242 | 4 | 0.240 | 4 | 0.225 | 4 | 0.233 | 4 | 0.235 | 4 | ||||
GDP(X9) | 0.150 | 7 | 0.119 | 8 | 0.130 | 8 | 0.146 | 8 | 0.136 | 8 |
表8 生境质量空间分异驱动因子探测结果
Table 8 Detection results of spatial differentiation driving factors of habitat quality
驱动因子 | 1990年 | 2000年 | 2010年 | 2020年 | 1990-2020年 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q值 | 排序 | q值 | 排序 | q值 | 排序 | q值 | 排序 | 平均q值 | 排序 | |||||
高程(X1) | 0.378 | 3 | 0.374 | 2 | 0.373 | 2 | 0.377 | 2 | 0.376 | 2 | ||||
坡度(X2) | 0.385 | 2 | 0.368 | 3 | 0.367 | 3 | 0.374 | 3 | 0.374 | 3 | ||||
坡向(X3) | 0.004 | 9 | 0.004 | 9 | 0.004 | 9 | 0.004 | 9 | 0.004 | 9 | ||||
NDVI(X4) | 0.210 | 5 | 0.160 | 6 | 0.141 | 6 | 0.154 | 6 | 0.166 | 6 | ||||
气温(X5) | 0.129 | 8 | 0.135 | 7 | 0.135 | 7 | 0.148 | 7 | 0.137 | 7 | ||||
降雨量(X6) | 0.215 | 6 | 0.219 | 5 | 0.220 | 5 | 0.200 | 5 | 0.214 | 5 | ||||
土地利用(X7) | 0.925 | 1 | 0.882 | 1 | 0.882 | 1 | 0.896 | 1 | 0.896 | 1 | ||||
人口密度(X8) | 0.242 | 4 | 0.240 | 4 | 0.225 | 4 | 0.233 | 4 | 0.235 | 4 | ||||
GDP(X9) | 0.150 | 7 | 0.119 | 8 | 0.130 | 8 | 0.146 | 8 | 0.136 | 8 |
地类 | 2020年 | 2030年 | 2020-2030年变化 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IDS | UDS | PPS | EPS | IDS | UDS | PPS | EPS | ||||||||||
面积/km2 | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | ||||||||
耕地 | 3.7×104 | 3.63×104 | 48.82 | 3.59×104 | 48.27 | 3.71×104 | 49.93 | 3.63×104 | 49.56 | -757.6 | −1161.5 | 70.3 | −766.2 | ||||
林地 | 2.01×104 | 2×104 | 26.92 | 2×104 | 26.87 | 2×104 | 26.94 | 2.06×104 | 27.51 | -59.3 | −102.7 | −51.1 | 476.2 | ||||
草地 | 5.44×103 | 5.42×103 | 7.29 | 5.4×103 | 7.27 | 5.42×103 | 7.29 | 5.42×103 | 7.31 | -23.3 | −40.1 | −21.7 | −21.9 | ||||
水域 | 5.47×103 | 5.51×103 | 7.41 | 5.49×103 | 7.38 | 5.47×103 | 7.36 | 5.48×103 | 7.38 | 39.0 | 20.6 | 2.4 | 16.7 | ||||
建设用地 | 6.3×103 | 7.1×103 | 9.55 | 7.59×103 | 10.20 | 6.3×103 | 8.48 | 6.6×103 | 8.23 | 799.1 | 1.28×103 | 0.4 | 292.9 | ||||
未利用地 | 14.6 | 10.3 | 0.01 | 8.4 | 0.01 | 7.9 | 0.01 | 10.5 | 0.02 | -4.3 | −6.2 | −6.7 | −4.1 |
表9 不同情境下各用地类型面积变化
Table 9 Changes of land use types under different scenarios
地类 | 2020年 | 2030年 | 2020-2030年变化 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IDS | UDS | PPS | EPS | IDS | UDS | PPS | EPS | ||||||||||
面积/km2 | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | ||||||||
耕地 | 3.7×104 | 3.63×104 | 48.82 | 3.59×104 | 48.27 | 3.71×104 | 49.93 | 3.63×104 | 49.56 | -757.6 | −1161.5 | 70.3 | −766.2 | ||||
林地 | 2.01×104 | 2×104 | 26.92 | 2×104 | 26.87 | 2×104 | 26.94 | 2.06×104 | 27.51 | -59.3 | −102.7 | −51.1 | 476.2 | ||||
草地 | 5.44×103 | 5.42×103 | 7.29 | 5.4×103 | 7.27 | 5.42×103 | 7.29 | 5.42×103 | 7.31 | -23.3 | −40.1 | −21.7 | −21.9 | ||||
水域 | 5.47×103 | 5.51×103 | 7.41 | 5.49×103 | 7.38 | 5.47×103 | 7.36 | 5.48×103 | 7.38 | 39.0 | 20.6 | 2.4 | 16.7 | ||||
建设用地 | 6.3×103 | 7.1×103 | 9.55 | 7.59×103 | 10.20 | 6.3×103 | 8.48 | 6.6×103 | 8.23 | 799.1 | 1.28×103 | 0.4 | 292.9 | ||||
未利用地 | 14.6 | 10.3 | 0.01 | 8.4 | 0.01 | 7.9 | 0.01 | 10.5 | 0.02 | -4.3 | −6.2 | −6.7 | −4.1 |
生境质量 等级 | 2020年 | 2030年 | 2020-2030年变化 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IDS | UDS | PPS | EPS | IDS | UDS | PPS | EPS | ||||||||||
面积/km2 | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | ||||||||
低 | 6.32×103 | 7.1×103 | 9.55 | 7.59×103 | 10.20 | 6.3×103 | 8.48 | 6.6×103 | 8.87 | 785.5 | 1.27×103 | −13.2 | 279.4 | ||||
较低 | 3.71×104 | 3.63×104 | 48.83 | 3.59×104 | 48.29 | 3.71×104 | 49.95 | 3.63×104 | 48.83 | −763.7 | −1.17×103 | 64.9 | −768.2 | ||||
中等 | 6.49×103 | 766.5 | 1.03 | 790.3 | 1.06 | 6.46×103 | 8.69 | 6.47×103 | 8.70 | −5.72×103 | −5.7×103 | −26.3 | −19.0 | ||||
较高 | 1.25×103 | 6.11×103 | 8.22 | 6.1×103 | 8.19 | 1.26×103 | 1.69 | 1.25×103 | 1.68 | 4.86×103 | 4.84×103 | 11.3 | 4.8 | ||||
高 | 2.32×104 | 2.41×104 | 32.37 | 2.4×104 | 32.25 | 2.32×104 | 31.19 | 2.37×104 | 31.92 | 819.8 | 736.6 | −53.8 | 485.9 |
表10 不同情境下生境质量面积变化
Table 10 Changes of habitat quality grade under different scenarios
生境质量 等级 | 2020年 | 2030年 | 2020-2030年变化 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IDS | UDS | PPS | EPS | IDS | UDS | PPS | EPS | ||||||||||
面积/km2 | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | 占比/% | 面积/km2 | ||||||||
低 | 6.32×103 | 7.1×103 | 9.55 | 7.59×103 | 10.20 | 6.3×103 | 8.48 | 6.6×103 | 8.87 | 785.5 | 1.27×103 | −13.2 | 279.4 | ||||
较低 | 3.71×104 | 3.63×104 | 48.83 | 3.59×104 | 48.29 | 3.71×104 | 49.95 | 3.63×104 | 48.83 | −763.7 | −1.17×103 | 64.9 | −768.2 | ||||
中等 | 6.49×103 | 766.5 | 1.03 | 790.3 | 1.06 | 6.46×103 | 8.69 | 6.47×103 | 8.70 | −5.72×103 | −5.7×103 | −26.3 | −19.0 | ||||
较高 | 1.25×103 | 6.11×103 | 8.22 | 6.1×103 | 8.19 | 1.26×103 | 1.69 | 1.25×103 | 1.68 | 4.86×103 | 4.84×103 | 11.3 | 4.8 | ||||
高 | 2.32×104 | 2.41×104 | 32.37 | 2.4×104 | 32.25 | 2.32×104 | 31.19 | 2.37×104 | 31.92 | 819.8 | 736.6 | −53.8 | 485.9 |
[1] | CHEN M J, BAI Z K, WANG Q R, et al., 2021. Habitat quality effect and driving mechanism of land use transitions: A case study of Henan water source area of the middle route of the south-to-north water transfer project[J]. Land, 10(8): 796. |
[2] | CAO Y, WANG C, SU Y, et al., 2023. Study on spatiotemporal evolution and driving forces of habitat quality in the basin along the Yangtze River in Anhui Province based on InVEST model[J]. Land, 12(5): 1092. |
[3] | HUANG Y, YANG B, WANG M, et al., 2020. Analysis of the future land cover change in Beijing using CA-Markov chain model[J]. Environmental Earth Sciences, 79(2): 60. |
[4] | HUANG M Y, YUE W Z, FENG S R, et al., 2020. Spatial-temporal evolution of habitat quality and analysis of landscape patterns in Dabie Mountain area of west Anhui province based on InVEST model[J]. Acta Ecologica Sinica, 40(9): 2895-2906. |
[5] | HU S, CHEN L Q, LI L, et al., 2020. Simulation of land use change and ecosystem service value dynamics under ecological constraints in Anhui Province, China[J]. International Journal of Environmental Research and Public Health, 17(12): 4228. |
[6] | HE N, GUO W X, WANG H X, et al., 2023. Temporal and spatial variations in landscape habitat quality under multiple land-use/land-cover scenarios based on the PLUS-InVEST model in the Yangtze River Basin, China[J]. Land, 12(7): 1338. |
[7] | JIANG L G, LIU Y, WU S, et al., 2021. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data[J]. Ecological indicators, 129: 107933. |
[8] | KUNWAR R M, EVANS A, MAINALI J, et al., 2020. Change in forest and vegetation cover influencing distribution and uses of plants in the Kailash Sacred Landscape, Nepal[J]. Environment, Development and Sustainability, 22(2): 1397-1412. |
[9] | LI X, FU J Y, JIANG D, et al., 2022. Land use optimization in Ningbo City with a coupled GA and PLUS model[J]. Journal of Cleaner Production, 375: 134004. |
[10] | LIANG X, GUAN Q F, CLARKE K C, et al., 2021. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 85: 101569. |
[11] | SHANG J, CAI H S, LONG Y, et al., 2021. Temporal-spatial distribution and transition of habitat quality in Poyang Lake region based on InVEST model[J]. Resour. Environ. Yangtze Basin, 30(8): 1901-1915. |
[12] | TANG F, FU M C, WANG L, et al., 2020. Land-use change in Changli County, China: Predicting its spatio-temporal evolution in habitat quality[J]. Ecological Indicators, 117: 106719. |
[13] | ZHAO B X, LI S J, LIU Z S, 2022. Multi-scenario simulation and prediction of regional habitat quality based on a system dynamic and patch-generating land-use simulation coupling model: A case study of Jilin Province[J]. Sustainability, 14(9): 5303. |
[14] | 包玉斌, 刘康, 李婷, 等, 2015. 基于InVEST模型的土地利用变化对生境的影响——以陕西省黄河湿地自然保护区为例[J]. 干旱区研究, 32(3): 622-629. |
BAO Y B, LIU K, LI T, et al., 2015. Effects of land use change on habitat based on InVEST Model: Taking Yellow River Wetland nature reserve in Shaanxi Province as an example[J]. Arid Zone Research, 32(3): 622-629. | |
[15] | 曹玉红, 陈晨, 张大鹏, 等, 2019. 皖江城市带土地利用变化的生态风险格局演化研究[J]. 生态学报, 39(13): 4773-4781. |
CAO Y H, CHEN C, ZHANG D P, et al., 2019. Evolution of ecological risk pattern of land use change in Wanjiang City Belt[J]. Acta Ecologica Sinica, 39(13): 4773-4781. | |
[16] | 邓越, 蒋卫国, 王文杰, 等, 2018. 城市扩张导致京津冀区域生境质量下降[J]. 生态学报, 38(12): 4516-4525. |
DENG Y, JIANG W G, WANG W J, et al., 2018. Urban expansion led to the degradation of habitat quality in the Beijing-Tianjin-Hebei area[J]. Acta Ecologica Sinica, 38(12): 4516-4525. | |
[17] | 勾蒙蒙, 刘常富, 李乐, 等, 2023. 三峡库区典型流域生境质量时空演变特征与情景模拟[J]. 生态学杂志, 42(1): 180-189. |
GOU M M, LIU C F, LI L, et al., 2023. Spatiotemporal variations and scenario simulation of habitat quality in a typical basin of the Three Gorges Reservoir Area[J]. Chinese Journal of Ecology, 42(1): 180-189.
DOI |
|
[18] | 高周冰, 王晓瑞, 隋雪艳, 等, 2022. 基于FLUS和InVEST模型的南京市生境质量多情景预测[J]. 农业资源与环境学报, 39(5): 1001-1013. |
GAO Z B, WANG X R, SUI X Y, et al., 2022. Multi-scenario prediction of habitat quality in Nanjing based on FLUS and InVEST models[J]. Journal of Agricultural Resources and Environment, 39(5): 1001-1013. | |
[19] |
侯孟阳, 姚顺波, 邓元杰, 等, 2019. 格网尺度下延安市生态服务价值时空演变格局与分异特征——基于退耕还林工程的实施背景[J]. 自然资源学报, 34(3): 539-552.
DOI |
HOU M Y, YAO S B, DENG Y J, et al., 2019. Spatial-temporal evolution pattern and differentiation of ecological service value in Yan’an city at the grid scale based on Sloping Land Conversion Program[J]. Journal of Natural Resources, 34(3): 539-552. | |
[20] | 黄木易, 汤玉茹, 郭芹, 等, 2025. 基于权衡/协同效应的安徽省生态功能区识别及情景模拟研究[J]. 中国环境科学, 45(1): 450-464. |
HUANG M Y, TANG Y R, GUO Q, et al., 2025. Identification of ecological functional areas and multi-scenario simulation study in Anhui Province based on trade-off/synergy effect[J]. China Environmental Science, 45(1): 450-464. | |
[21] | 霍艾迪, 刘琪, 李心悦, 等, 2024. 秦岭北麓沣河流域矿区生境质量的时空演变及驱动因素分析[J]. 农业工程学报, 40(8): 223-231. |
HUO A D, LIU Q, LI X R, et al., 2024. Spatial-temporal evolution and driving factors of habitat quality in Xiangyu mining area, Feng River basin, north foot of Qinling Mountains of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 40(8): 223-231. | |
[22] | 何寿奎, 2019. 长江经济带环境治理与绿色发展协同机制及政策体系研究[J]. 当代经济管理, 41(8): 57-63. |
HE S K, 2019. A study on the coordination mechanism and policy system of environmental governance and green development in the Yangtze River Economic Belt[J]. Contemporary Economic Management, 41(8): 57-63. | |
[23] | 梁晓瑶, 袁丽华, 宁立新, 等, 2020. 基于InVEST模型的黑龙江省生境质量空间格局及其影响因素[J]. 北京师范大学学报(自然科学版), 56(6): 864-872. |
LIANG X Y, YUAN L H, NING L X, et al., 2020. Spatial pattern of habitat quality and driving factors in Heilongjiang Province[J]. Journal of Beijing Normal University (Natural Science), 56(6): 864-872. | |
[24] | 马瑞, 范燕敏, 武红旗, 等, 2023. 耦合GMOP与PLUS模型的干旱区土地利用格局模拟[J]. 农业资源与环境学报, 40(1): 143-153. |
MA R, FAN Y M, WU H Q, et al., 2023. Simulation of land-use patterns in arid areas coupled with GMOP and PLUS models[J]. Journal of Agricultural Resources and Environment, 40(1): 143-153. | |
[25] | 马良, 金陶陶, 文一惠, 等, 2015. InVEST模型研究进展[J]. 生态经济, 31(10): 126-131, 179. |
MA L, JIN T T, WEN Y H, et al., 2015. The Research Progress of InVEST Model[J]. Ecological Economy, 31(10): 126-131, 179. | |
[26] |
孙毅中, 杨静, 宋书颖, 等, 2020. 多层次矢量元胞自动机建模及土地利用变化模拟[J]. 地理学报, 75(10): 2164-2179.
DOI |
SUN Y Z, YANG J, SONG S Y, et al., 2020. Modeling of multilevel vector cellular automata and its simulation of land use change[J]. Acta Geographica Sinica, 75(10): 2164-2179.
DOI |
|
[27] | 唐文睿, 曹玉红, 2024. 基于InVEST-PLUS模型的皖江流域碳储量时空演变及预测[J/OL]. 环境科学, 1-19 [2025-03-21]. https://doi.org/10.13227/j.hjkx.202406063. |
TANG W R, CAO Y H, 2024. Spatial-temporal evolution and prediction of carbon reserves in Wanjiang River Basin with the InVEST-PLUS model[J/OL]. Environmental Science, 1-19 [2025-03-21]. https://doi.org/10.13227/j.hjkx.202406063. | |
[28] | 王秀明, 刘谞承, 龙颖贤, 等, 2020. 基于改进的InVEST模型的韶关市生态系统服务功能时空变化特征及影响因素[J]. 水土保持研究, 27(5): 381-388. |
WANG X M, LIU X C, LONG Y X, et al., 2020. Spatial-temporal changes and influencing factors of ecosystem services in Shaoguan City based on improved InVEST[J]. Research of Soil and Water Conservation, 27(5): 381-388. | |
[29] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134.
DOI |
|
[30] | 王燕, 高吉喜, 金宇, 等, 2020. 基于2005-2015年土地利用变化和InVEST模型的内蒙古巴林右旗农牧交错带生境质量研究[J]. 生态与农村环境学报, 36(5): 654-662. |
WANG Y, GAO J X, JIN Y, et al., 2020. Habitat quality of farming-pastoral ecotone in Bairin Right Banner, inner mongolia based on land use change and InVEST model from 2005 to 2015[J]. Journal of Ecology and Rural Environment, 36(5): 654-662. | |
[31] | 王保盛, 廖江福, 祝薇, 等, 2019. 基于历史情景的FLUS模型邻域权重设置——以闽三角城市群2030年土地利用模拟为例[J]. 生态学报, 39(12): 4284-4298. |
WANG B S, LIAO J F, ZHU W, et al., 2019. The weight of neighborhood setting of the FLUS model based on a historical scenario: A case study of land use simulation of urban agglomeration of the Golden Triangle of Southern Fujian in 2030[J]. Acta Ecologica Sinica, 39(12): 4284-4298. | |
[32] | 谢一茹, 高培超, 王翔宇, 等, 2020. 经济发展预期下的粮食产量与生态效益权衡——黑龙江省土地利用优化配置[J]. 北京师范大学学报(自然科学版), 56(6): 873-881. |
XIE Y R, GAO P C, WANG X Y, et al., 2020. Exploring the trade-offs between grain yield and ecological benefits in an economic development context: Land-use optimization of Heilongjiang Province[J]. Journal of Beijing Normal University (Natural Science), 56(6): 873-881. | |
[33] | 许梦杰, 陈凌秀, 谢慧黎, 等, 2024. 闽台海岸带生境质量时空演变及其影响因素[J]. 海洋通报, 43(4): 546-556. |
XU M J, CHEN L X, XIE H L, et al., 2024. Temporal and spatial evolution of habitat quality in Fujian and Taiwan coastal zones based on land use change and its influencing factors[J]. Marine Science Bulletin, 43(4): 546-556. | |
[34] |
谢余初, 巩杰, 张素欣, 等, 2018. 基于遥感和InVEST模型的白龙江流域景观生物多样性时空格局研究[J]. 地理科学, 38(6): 979-986.
DOI |
XIE Y C, GONG J, ZHANG S X, et al., 2018. Spatiotemporal change of landscape biodiversity based on InVEST model and remote sensing technology in the Bailong River Watershed[J]. Scientia Geographica Sinica, 38(6): 979-986.
DOI |
|
[35] | 谢怡凡, 姚顺波, 邓元杰, 等, 2020. 延安市退耕还林(草)工程对生境质量时空格局的影响[J]. 中国生态农业学报(中英文), 28(4): 575-586. |
XIE Y F, YAO S B, DENG Y J, et al., 2020. Impact of the ‘Grain for Green’ project on the spatial and temporal pattern of habitat quality in Yan’an City, China[J]. Chinese Journal of Eco-Agriculture, 28(4): 575-586. | |
[36] | 于目良, 刘悦俊, 张燕杰, 2024. 青藏高原未来土地利用变化与景观生态风险多情景预测[J]. 长江流域资源与环境, 33(10): 2204-2218. |
YU M L, LIU Y J, ZHANG Y J, 2024. Multi-scenario prediction of future land use change and landscape ecological risk on the Qingzang Plateau[J]. Resources and Environment in the Yangtze Basin, 33(10): 2204-2218. | |
[37] | 杨永, 李瑞红, 刘航, 等, 2024. 东北农林交错区生境质量时空演变及归因分析[J]. 生态学杂志, 43(5): 1399-1407. |
YANG Y, LI R H, LIU H, et al., 2024. Spatio-temporal evolution and driving forces of habitat quality in agroforestry ecotone of Northeast China[J]. Chinese Journal of Ecology, 43(5): 1399-1407. | |
[38] | 杨国清, 刘耀林, 吴志峰, 2007. 基于CA-Markov模型的土地利用格局变化研究[J]. 武汉大学学报(信息科学版), 32(5): 414-418. |
YANG G Q, LIU Y L, WU Z F, 2007. Analysis and simulation of land-use temporal and spatial pattern based on CA-Markov model[J]. Geomatics and Information Science of Wuhan University, 32(5): 414-418. | |
[39] | 张廷, 胡玉柱, 胡海辉, 等, 2024. 基于PLUS-InVEST模型的哈尔滨市土地利用及生境质量预测[J]. 环境科学, 45(8): 4709-4721. |
ZHANG T, HU Y Z, HU H H, et al., 2024. Prediction of land use and habitat quality in Harbin city based on the PLUS- InVEST model[J]. Environmental Science, 45(8): 4709-4721. | |
[40] | 张立伟, 张运, 黄晨, 2018. 皖江城市带近20 a生态环境变化遥感指数分析[J]. 长江流域资源与环境, 27(5): 1061-1070. |
ZHANG L W, ZHANG Y, HUANG C, 2018. Remote sensing index analysis on ecological environment changes in the recent 20 years of City Belt in Wanjiang[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 27(5): 1061-1070. | |
[41] | 张舟, 刘晶晶, 张权, 等, 2024. 基于PLUS-InVEST-Geodector模型的苏州市碳储量时空变化及驱动力分析[J/OL]. 环境科学, 1-17 [2025-03-21]. https://doi.org/10.13227/j.hjkx.202405077. |
ZHANG Z, LIU J J, ZHANG Q, et al., 2024. Analysis of spatial-temporal variation and driving forces of carbon storage in Suzhou city based on the PLUS-InVEST-Geodector model[J/OL]. Environmental Science, 1-17 [2025-03-21]. https://doi.org/10.13227/j.hjkx.202405077. | |
[42] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017. 土地利用现状分类: GB/T 21010—2017[S]. 北京: 中国标准出版社. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, 2017. Current land use classification: GB/T 21010—2017[S]. Bejing: Standards Press of China. | |
[43] | 朱增云, 阿里木江·卡斯木, 2020. 基于地理探测器的伊犁谷地生境质量时空演变及其影响因素[J]. 生态学杂志, 39(10): 3408-3420. |
ZHU Z Y, ALIMUJIANG K, 2020. Spatial-temporal evolution of habitat quality in Yili Valley based on geographical detector and its influencing factors[J]. Chinese Journal of Ecology, 39(10): 3408-3420.
DOI |
[1] | 王天雯, 罗明良, 白雷超. 嘉陵江流域生态系统服务动态变化及权衡协同分析[J]. 生态环境学报, 2025, 34(6): 888-901. |
[2] | 杨昊彧, 黄康江, 陈晓东, 赵劼, 熊军, 田康. 贵州省生态空间效率演变及景观格局的影响归因[J]. 生态环境学报, 2025, 34(6): 902-913. |
[3] | 赵志轩, 魏芳菲, 吴皓天, 王怡宁, 王澎喆. 澜沧江-湄公河流域生态系统服务价值对土地利用变化的响应[J]. 生态环境学报, 2025, 34(5): 688-698. |
[4] | 张洪波, 尹班, 李春勇, 崔松云, 和艳, 李小红, 邓丽仙. 近40年红河流域(中国部分)水源涵养功能动态演变特征及驱动因素[J]. 生态环境学报, 2025, 34(4): 556-569. |
[5] | 李曼, 吴东丽, 何昊, 余慧婕, 赵琳, 刘聪, 胡正华, 李琪. 1990-2020年黄河流域碳储量时空演变及驱动因素研究[J]. 生态环境学报, 2025, 34(3): 333-344. |
[6] | 郭昭, 师芸, 刘铁铭, 张雨欣, 闫永智. 2001-2020年秦岭北麓NPP时空格局及驱动因素分析[J]. 生态环境学报, 2025, 34(3): 401-410. |
[7] | 张任菲, 肖萌, 刘志成. 京津冀地区景观破碎化的时空异质性及驱动因素研究[J]. 生态环境学报, 2025, 34(3): 461-473. |
[8] | 张继, 杨世琦, 赵磊, 冯介玲, 陈艳英. 基于InVEST模型的重庆市“一带三屏”生境质量时空演变特征分析[J]. 生态环境学报, 2025, 34(2): 167-180. |
[9] | 马月伟, 陈玉美, 张盛蓝, 桂雅丽, 陈艳梅. 夹金山脉大熊猫栖息地生境质量与人类活动强度耦合协调研究[J]. 生态环境学报, 2025, 34(2): 197-208. |
[10] | 赵乐鋆, 王诗瑶, 赵子渝, 洪星, 李夫星, 吴佳仪, 华婧妤. 2008-2022年华北平原七省市AOD时空变化特征及主要影响因素分析[J]. 生态环境学报, 2025, 34(2): 256-267. |
[11] | 赵忠宝, 李婧, 刘小丹, 柏祥, 刘昊野, 徐晓娜, 耿世刚, 鲁少波. 河北省森林生态产品价值评估及其空间分布驱动因素研究[J]. 生态环境学报, 2025, 34(2): 321-332. |
[12] | 汪洋, 李帆, 严笑, 梅言, 李培, 黄林, 赵俊杰. 山地高密度城市空间形态对冬季气溶胶格局的约束力探测——重庆中心城区案例研究[J]. 生态环境学报, 2025, 34(1): 56-66. |
[13] | 唐建亭, 袁杰, 陈宗颜, 李晓燕, 孙子婷. 祁连山南坡土地利用变化及碳储量研究[J]. 生态环境学报, 2024, 33(9): 1353-1361. |
[14] | 张舒涵, 姜海玲, 于海淋, 冯馨慧. 沈阳现代化都市圈景观生态风险时空演变及驱动力分析[J]. 生态环境学报, 2024, 33(9): 1471-1481. |
[15] | 张雯, 郑天, 刘永超, 钟捷, 苏杰, 李加林. 基于电路理论的浙江省生态保护修复关键区域识别[J]. 生态环境学报, 2024, 33(9): 1482-1494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||