生态环境学报 ›› 2024, Vol. 33 ›› Issue (4): 626-632.DOI: 10.16258/j.cnki.1674-5906.2024.04.013
何艺1,2(), 秦欣欣1,2, 张翔1,2, 孙楠1,2, 杨雅淋1,2, 连军锋1,2,*(
)
收稿日期:
2024-01-18
出版日期:
2024-04-18
发布日期:
2024-05-31
通讯作者:
*连军锋。E-mail: lianjf@jxust.edu.cn作者简介:
何艺(1999年生),男,硕士研究生,研究方向为微塑料。E-mail: 1140431957@qq.com
基金资助:
HE Yi1,2(), QIN Xinxin1,2, ZHANG Xiang1,2, SUN Nan1,2, YANG Yalin1,2, LIAN Junfeng1,2,*(
)
Received:
2024-01-18
Online:
2024-04-18
Published:
2024-05-31
摘要:
塑料由于其优异的性能被广泛的应用于生产生活,然而其在环境中不易降解,这导致环境当中存在着许多微塑料,可能造成潜在的生态环境风险。因此,明确水体当中微塑料的丰度并对其进行风险评估对于降低微塑料带来的安全问题有着至关重要的作用。然而,此前关于流域内微塑料丰度的研究多停留于河流表层水体的研究,忽略了水平方向取样点位以及取样深度对微塑料分布造成的影响,所得出的结论代表性不足。赣江是长江中游的主要支流,在赣州城市区段的代表断面处取样分析,横向与纵向相结合分析了该断面处微塑料的丰度、颜色形态、粒径、聚合物情况的变化情况,并通过生态风险指数法计算了微塑料风险等级。结果表明:该代表断面微塑料丰度为0.25-0.35 pieces·L-1,表层水、中层水和底层水的平均微塑料丰度分别为2.65、2.03和0.91 pieces·L-1,微塑料丰度横向范围表现处越靠近河岸处越大,纵向范围随着取样深度的增大而减小;微塑料主要形状为纤维和碎片,以黑色为主,粒径范围在0.125-3.000 mm的微塑料的占比超过94%;集合种类为聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、乙烯-醋酸乙烯共聚物、聚碳酸酯、聚对苯二甲酸乙二脂和聚氯乙烯;研究区域微塑料潜在风险等级为Ⅱ级。总体而言,赣江赣州城市段河流微塑料丰度在横向和纵向分布上是不均匀的,污染程度总体而言相对较轻。该研究将促进对城市水体当中垂直领域微塑料分布特征的理解,对其他水体流域开展微塑料的相关调研具有指导意义。
中图分类号:
何艺, 秦欣欣, 张翔, 孙楠, 杨雅淋, 连军锋. 微塑料断面分布的不均一性——以赣江水域赣州段为例[J]. 生态环境学报, 2024, 33(4): 626-632.
HE Yi, QIN Xinxin, ZHANG Xiang, SUN Nan, YANG Yalin, LIAN Junfeng. Heterogeneity of Microplastics Section Distribution: A Case Study of Ganzhou Section of the Ganjiang River[J]. Ecology and Environment, 2024, 33(4): 626-632.
点位 | 取样水深/m | ||
---|---|---|---|
表层水样 | 中层水样 | 底层水样 | |
A | 0.2 | 1.5 | 2.9 |
B | 0.2 | 2.8 | 5.5 |
C | 0.2 | 2.8 | 5.6 |
D | 0.2 | 2.2 | 4.4 |
E | 0.2 | 2.0 | 4.2 |
F | 0.2 | 2.0 | 4.2 |
G | 0.2 | ‒ | 3.4 |
表1 断面不同点位取样深度
Table 1 Particle size distribution of microplastics at different points and depths in cross section water
点位 | 取样水深/m | ||
---|---|---|---|
表层水样 | 中层水样 | 底层水样 | |
A | 0.2 | 1.5 | 2.9 |
B | 0.2 | 2.8 | 5.5 |
C | 0.2 | 2.8 | 5.6 |
D | 0.2 | 2.2 | 4.4 |
E | 0.2 | 2.0 | 4.2 |
F | 0.2 | 2.0 | 4.2 |
G | 0.2 | ‒ | 3.4 |
断面及不同水深处 各聚合物占比 | 聚丙烯 (PP) | 聚乙烯 (PE) | 乙烯-醋酸乙烯共聚物(EVA) | 聚苯乙烯 (PS) | 聚酰胺 (PA) | 聚碳酸酯(PC) | 聚对苯二甲酸乙二醇酯 (PET) | 聚氯乙烯(PVC) |
---|---|---|---|---|---|---|---|---|
断面整体 | 22 | 24 | 5 | 14 | 11 | 3 | 19 | 2 |
上层水 | 33 | 25 | 17 | 17 | 8 | - | - | - |
中层水 | 28 | 27 | - | 18 | 9 | - | 18 | - |
底层水 | 15 | 14 | - | 7 | 14 | 7 | 36 | 7 |
表2 断面及不同水深部分微塑料聚合物成分占比
Table 2 Microplastic polymer composition proportion in cross section and different water depth %
断面及不同水深处 各聚合物占比 | 聚丙烯 (PP) | 聚乙烯 (PE) | 乙烯-醋酸乙烯共聚物(EVA) | 聚苯乙烯 (PS) | 聚酰胺 (PA) | 聚碳酸酯(PC) | 聚对苯二甲酸乙二醇酯 (PET) | 聚氯乙烯(PVC) |
---|---|---|---|---|---|---|---|---|
断面整体 | 22 | 24 | 5 | 14 | 11 | 3 | 19 | 2 |
上层水 | 33 | 25 | 17 | 17 | 8 | - | - | - |
中层水 | 28 | 27 | - | 18 | 9 | - | 18 | - |
底层水 | 15 | 14 | - | 7 | 14 | 7 | 36 | 7 |
风险指数类型 | 计算结果 | 风险等级 | |
---|---|---|---|
单一种微塑料生态 风险指数 | PP | 0.061 | Ⅰ级 |
PE | 0.74 | Ⅰ级 | |
EVA | 0.14 | Ⅰ级 | |
PC | 8.83 | Ⅰ级 | |
PVC | 37.5 | Ⅱ级 | |
单一种微塑料生态 风险指数 | PS | 1.13 | Ⅰ级 |
PET | 0.21 | Ⅰ级 | |
PA | 1.89 | Ⅰ级 | |
聚合物风险指数 | 182 | Ⅲ级 | |
潜在生态风险指数 | 50.5 | Ⅱ级 |
表3 污染程度计算结果及风险等级
Table 3 Calculation result of pollution degree and risk level
风险指数类型 | 计算结果 | 风险等级 | |
---|---|---|---|
单一种微塑料生态 风险指数 | PP | 0.061 | Ⅰ级 |
PE | 0.74 | Ⅰ级 | |
EVA | 0.14 | Ⅰ级 | |
PC | 8.83 | Ⅰ级 | |
PVC | 37.5 | Ⅱ级 | |
单一种微塑料生态 风险指数 | PS | 1.13 | Ⅰ级 |
PET | 0.21 | Ⅰ级 | |
PA | 1.89 | Ⅰ级 | |
聚合物风险指数 | 182 | Ⅲ级 | |
潜在生态风险指数 | 50.5 | Ⅱ级 |
[1] |
ANDRADY L A, 2011. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 62(8): 1596-1605.
DOI PMID |
[2] |
AUTA H S, EMENIKE C U, FAUZIAH S H, 2017. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions[J]. Environment International, 102: 165-176.
DOI PMID |
[3] | ÇOBANOĞLU H, BELIVERMIŞ M, SIKDOKUR E, et al., 2021. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes[J]. Chemosphere, 272: 129805. |
[4] | DĄBROWSKA A, MIELAŃCZUK M, SYCZEWSKI M, 2022. The Raman spectroscopy and SEM/EDS investigation of the primary sources of microplastics from cosmetics available in Poland[J]. Chemosphere, 308(Part 3): 136407. |
[5] |
DOWARAH K, DEVIPRIYA S P, 2019. Microplastic prevalence in the beaches of Puducherry, India and its correlation with fishing and tourism/recreational activities[J]. Marine Pollution Bulletin, 148: 123-133.
DOI PMID |
[6] | DRUMMOND J D, NEL H A, PACKMAN A I, et al., 2020. Significance of hyporheic exchange for predicting microplastic fate in rivers[J]. Environmental Science & Technology Letters, 7(10): 727-732. |
[7] | EVERAERT G, VAN CAUWENBERGHE L, DE RIJCKE M, et al., 2018. Risk assessment of microplastics in the ocean: Modelling approach and first conclusion[J]. Environmental Pollution, 242(Part B): 1930-1938. |
[8] | GEYER R, JAMBECK J R, LAW K L, 2022. Production, use, and fate of all plastics ever made[J]. Science Advances, 3(7): e1700782. |
[9] | GARCÉS-ORDÓÑEZ O, MEJÍA-ESQUIVIA K A, SIERRA- ABASTIDAS T, et al., 2020. Prevalence of microplastic contamination in the digestive tract of fishes from mangrove ecosystem in Cispata, Colombian Caribbean[J]. Marine Pollution Bulletin, 154: 111085. |
[10] | GOLWALA H, ZHANG X, ISKANDER S M, et al., 2021. Solid waste: An overlooked source of microplastics to the environment[J]. Science of The Total Environment, 769: 144581. |
[11] | GRBIĆ J, HELM P, ATHEY S, et al., 2020. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources[J]. Water Research, 174: 115623. |
[12] | HAO T W, MIAO M H, CHENG X H, et al., 2022. The effects of polypropylene microplastics on the DBP formation under the chlorination and chloramination processes[J]. Chemosphere, 303(Part 2): 135102. |
[13] | HAKANSON L, 1980. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 14(8): 975-1001. |
[14] | JANG M, SHIM W J, CHO Y et al., 2020. A close relationship between microplastic contamination and coastal area use pattern[J]. Water Research, 171: 115400. |
[15] | LENAKER P L, BALDWIN A K, CORSI S R, et al., 2019. Vertical distribution of microplastics in the water column and surficial sediment from the Milwaukee river basin to lake Michigan[J]. Environmental Science & Technology, 53(21): 12227-12237. |
[16] | LI S Q, WANG H, LIANG D F, et al., 2022. How the Yangtze River transports microplastic to the east China sea[J]. Chemosphere, 307(Part 4): 136112. |
[17] |
LI Y, WANG X J, FU W Y, et al., 2019. Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling[J]. Water Research, 161: 486-495.
DOI PMID |
[18] | LITHNER D, LARSSON Å, DAVE G, 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of The Total Environment, 409(18): 3309-3324. |
[19] | LIU W J, ZENG M, LI Y, et al., 2024. Deciphering the research of Micro (nano) plastics: An in-depth bibliometric expedition into ecotoxicological impacts and research trends[J]. TrAC Trends in Analytical Chemistry, 172: 117608. |
[20] | LIU Y X, CAO W G, HU Y, et al., 2022. Horizontal and vertical distribution of microplastics in dam reservoir after impoundment[J]. Science of The Total Environment, 832: 154962. |
[21] | LIU Y, YOU J A, LI Y J, et al., 2021. Insights into the horizontal and vertical profiles of microplastics in a river emptying into the sea affected by intensive anthropogenic activities in Northern China[J]. Science of The Total Environment, 779: 146589. |
[22] | MAGESTER S, BARCELONA A, COLOMER J, et al., 2021. Vertical distribution of microplastics in water bodies causes sublethal effects and changes in Daphnia magna swimming behaviour[J]. Ecotoxicology and Environmental Safety, 228: 113001. |
[23] | MASON R A, KUKULKA T, COHEN J H, 2022. Effects of particle buoyancy, release location, and diel vertical migration on exposure of marine organisms to microplastics in Delaware Bay[J]. Estuarine, Coastal and Shelf Science, 275: 107990. |
[24] | NIU L H, LI Y Y, LI Y, et al., 2021. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments[J]. Water Research, 188: 116449. |
[25] | SONG Y K, HONG S H, EO S, et al., 2018. Horizontal and vertical distribution of microplastics in Korean coastal waters[J]. Environmental Science & Technology, 52(21): 12188-12197. |
[26] |
THOMPSON R C, OLSEN Y, MITCHELL R P, et al., 2004. Lost at sea: Where is all the plastic?[J]. Science, 304(5672): 838.
PMID |
[27] | WALDSCHLÄGER K, SCHÜTTRUMPF H, 2019. Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions[J]. Environmental Science & Technology, 53(4): 1958-1966. |
[28] | WANG W F, NDUNGU A W, LI Z, et al., 2017. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China[J]. Science of The Total Environment, 575: 1369-1374. |
[29] | WEI Y, DOU P, XU D Y, et al., 2022. Microplastic reorganization in urban river before and after rainfall[J]. Environmental Pollution, 314: 120326. |
[30] | WU Y T, WANG S Q, WU L B, et al., 2022. Vertical distribution and river-sea transport of microplastics with tidal fluctuation in a subtropical estuary, China[J]. Science of The Total Environment, 822: 153603. |
[31] | XU Y Y, CHAN F K S, JOHNSON M, et al., 2021. Microplastic pollution in Chinese urban rivers: The influence of urban factors[J]. Resources, Conservation and Recycling, 173: 105686. |
[32] |
XU P, PENG G, SU L, et al., 2018. Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 133: 647-654.
DOI PMID |
[33] | YUAN W K, CHRISTIE-OLEZA J A, XU E G, et al., 2022. Environmental fate of microplastics in the world’s third-largest river: Basin-wide investigation and microplastic community analysis[J]. Water Research, 210: 118002. |
[34] |
YUAN W K, LIU X N, WANG W F, et al., 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 170: 180-187.
DOI PMID |
[35] | ZHANG Y T, PENG Y T, XU S Z, et al., 2022. Distribution characteristics of microplastics in urban rivers in Chengdu city: The influence of land-use type and population and related suggestions[J]. Science of The Total Environment, 846: 157411. |
[36] |
陈瑶, 刘金, 张颖昕, 等, 2022. 环境中的黑色微塑料-轮胎磨损颗粒的来源、迁移扩散及环境风险[J]. 应用生态学报, 33(8): 2260-2270.
DOI |
CHEN Y, LIU J, ZHANG Y X, et al., 2022. Black microplastics in the environment: Origin fransport and risk of tire wear particles[J]. Chinese Journal of Applied Ecology, 33(8): 2260-2270.
DOI |
|
[37] | 何健龙, 靳洋, 张超, 等, 2022. 山东近岸海洋垃圾赋存及黄河口表层微塑料分布[J]. 环境科学与技术, 45(2): 84-89. |
HE J L, JIN Y, ZHANG C, et al., 2022. Storage of marine refuse in coastal waters of Shandong Province and distribution characteristics of microplastics in the surface layer of the Yellow River Estuary[J]. Environmental Science & Technology, 45(2): 84-89. | |
[38] | 刘淑丽, 简敏菲, 周隆胤, 等, 2020. 鄱阳湖-赣江各支入湖段沉积物中微塑料分布及其组成特征[J]. 土壤学报, 57(4): 908-916. |
LIU S L, JIAN M F, ZHOU L Y, et al., 2020. Distribution and composition of microplastics in sediments in the estuaries of the Ganjiang River leading into lake Poyang[J]. Acta Pedologica Sinica, 57(4): 908-916. | |
[39] |
李天翠, 黄小龙, 吴辰熙, 等, 2021. 长江流域水体微塑料污染现状及防控措施[J]. 长江科学院院报, 38(6): 143-150.
DOI |
LI T C, HUANG X L, WU C X, et al., 2021. Microplastic pollution in the Yangtze river basin: status quo and control measures[J]. Journal of Yangtze River Scientific Research Institute, 38(6): 143-150. | |
[40] | 王高亮, 2020. 玛纳斯河流域微塑料污染特征研究与生态风险评估[D]. 新疆: 石河子大学. |
WANG G L, 2020. Study on microplastic pollution characteristics and ecological risk assessment in manas river basin[D]. Xinjiang: Shihezi University. | |
[41] | 文晓凤, 尹令实, 蒋昌波, 等, 2022. 典型城市湖泊岳阳南湖表层水体中的微塑料污染特征[J]. 环境化学, 41(11): 3579-3588. |
WEN X F, YI L S, JIANG C B, et al., 2022, Microplastics in surface water of a typical urban lake: A case study from Nanhu Lake, Yueyang City[J]. Environmental Chemistry, 41(11): 3579-3588. | |
[42] | 徐沛, 2019. 长江口邻近海域微塑料时空分布特征及生态风险评估初步研究[D]. 上海: 华东师范大学. |
XU P, 2019. Spatial and temporal distribution of microplastics and a preliminary study on ecological risk assessment of microplastics in the Changjiang Estuary and East China Sea[D]. Shanghai: East China Normal University. | |
[43] | 叶秋霞, 2020. 南京城市典型水体中微塑料污染特征分析[J]. 能源环境保护, 34(5): 79-83. |
YE Q X, 2020. Characteristics of micro-plastic pollution in Nanjing urban waters[J]. Energy Environmental Protection, 34(5): 79-83. | |
[44] | 张胜, 林莉, 潘雄, 等, 2022. 汉江 (丹江口坝下-兴隆段) 水体中微塑料的赋存特征[J]. 环境科学研究, 35(5): 1203-1210. |
ZHANG S, LIN L, PAN X, et al., 2022. Characteristics of Microplastics in Water of the Hanjiang River (Below the Danjiangkou Dam-Xinglong Section)[J]. Research of Environmental Sciences, 35(5): 1203-1210. |
[1] | 蒋皓, 吴启堂. 石油烃污染敏感场地健康风险筛选误差的概率方法分析[J]. 生态环境学报, 2024, 33(4): 645-654. |
[2] | 张瑞东, 吴富勤, 李坤冀, 金彦杉, 刘程霞, 申仕康. 云南九大高原湖泊湖滨带入侵植物物种组成与分布特征[J]. 生态环境学报, 2024, 33(3): 351-361. |
[3] | 林健晖, 李萍萍, 刘敏, 邓希, 康子歆, 杨涛, 展舒悦, 曾映旭. 不同生物膜附着微塑料对文蛤鳃的毒性效应[J]. 生态环境学报, 2024, 33(1): 111-118. |
[4] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[5] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[6] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[7] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
[8] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[9] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[10] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[11] | 李双双, 蔡铭灿, 汪庆, 齐丽英, 魏贺红, 王纯. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 2023, 32(11): 2041-2049. |
[12] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[13] | 樊珂宇, 高原, 赖子尼, 曾艳艺, 刘乾甫, 李海燕, 麦永湛, 杨婉玲, 魏敬欣, 孙金辉, 王超. 珠三角河网鱼类微塑料污染特征研究[J]. 生态环境学报, 2022, 31(8): 1590-1598. |
[14] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[15] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||