生态环境学报 ›› 2023, Vol. 32 ›› Issue (12): 2141-2153.DOI: 10.16258/j.cnki.1674-5906.2023.12.006
袁佳宝1,2(), 宋艳宇1,*(
), 刘桢迪1,2, 朱梦圆1,2, 程小峰1, 马秀艳1, 陈宁1, 李晓宇1
收稿日期:
2022-12-13
出版日期:
2023-12-18
发布日期:
2024-02-05
通讯作者:
*宋艳宇。E-mail: songyanyu@iga.ac.cn作者简介:
袁佳宝(1998年生),女,硕士研究生,从事湿地土壤生态研究。Email: yuanjiabao21@mails.ucas.ac.cn
基金资助:
YUAN Jiabao1,2(), SONG Yanyu1,*(
), LIU Zhendi1,2, ZHU Mengyuan1,2, CHENG Xiaofeng1, MA Xiuyan1, CHEN Ning1, LI Xiaoyu1
Received:
2022-12-13
Online:
2023-12-18
Published:
2024-02-05
摘要:
土壤酶的催化作用是土壤有机质分解的限制性步骤,控制着湿地生态系统的物质循环。为揭示松嫩平原芦苇湿地土壤酶活性剖面分布特征,于2021年8月采集扎龙、莫莫格、牛心套保和向海芦苇湿地0-15、15-30、30-45、45-60、60-75 cm土壤样品,分析土壤碳、氮、磷循环相关的酶活性剖面分布特征及其主要影响因子。结果表明:不同湿地土壤β-1,4-葡萄糖苷酶(BG)、纤维二糖水解酶(CBH)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)、酸性磷酸酶(AP)和多酚氧化酶活性(PPO)均随土壤深度增加逐渐降低,表层(0-15、15-30 cm)土壤酶活性均显著高于深层(45-60、60-75 cm)。随着土壤深度的增加,各湿地土壤C꞉N酶化学计量比整体呈现逐渐升高的趋势,而土壤N꞉P酶化学计量比呈逐渐降低的趋势。冗余分析发现,土壤总磷、含水率、总碳和溶解性有机碳是影响松嫩平原芦苇湿地土壤酶活性及酶化学计量比的关键因子。通过皮尔森相关性分析,进一步验证得知土壤C꞉N、N꞉P与土壤C꞉N和N꞉P酶化学计量比呈显著正相关,然而,土壤pH与BG、NAG和PPO活性显著负相关。土壤酶化学计量比的矢量分析和土壤碳、氮、磷化学计量比的阈值分析均表明松嫩平原芦苇湿地土壤氮元素含量相对较低,微生物存在一定程度的氮限制,且随土壤深度增加,氮限制逐渐加剧。该研究明确了松嫩平原芦苇湿地土壤酶活性剖面分布特征及酶化学计量比对微生物养分限制的指示作用,为明确湿地土壤碳、氮、磷循环过程及养分调控提供了重要的科学依据。
中图分类号:
袁佳宝, 宋艳宇, 刘桢迪, 朱梦圆, 程小峰, 马秀艳, 陈宁, 李晓宇. 松嫩平原芦苇湿地土壤酶活性剖面分布特征及其微生物养分限制指示作用[J]. 生态环境学报, 2023, 32(12): 2141-2153.
YUAN Jiabao, SONG Yanyu, LIU Zhendi, ZHU Mengyuan, CHENG Xiaofeng, MA Xiuyan, CHEN Ning, LI Xiaoyu. Profile Distribution Characteristics of Soil Enzyme Activity and Its Indicative Function of Microbial Nutrient Restriction in Reed Wetlands of Songnen Plain[J]. Ecology and Environment, 2023, 32(12): 2141-2153.
图2 松嫩平原湿地土壤水解酶活性的垂直分布特征 图中ZL表示扎龙湿地;MMG表示莫莫格湿地;NXTB表示牛心套保湿地;XH表示向海湿地。图中误差棒表示标准误差(Mean±SE)
Figure 2 Vertical distribution of soil hydrolytic enzyme activities in Songnen Plain wetlands
图3 松嫩平原湿地土壤氧化酶活性的垂直分布特征 图中ZL表示扎龙湿地;MMG表示莫莫格湿地;NXTB表示牛心套保湿地;XH表示向海湿地。图中误差棒表示标准误差(Mean±SE)。U?g?1:以每天每克土样中产生1 mg催化产物定义为一个酶活力单位
Figure 3 Vertical distribution of soil oxidase enzyme activities in Songnen Plain wetlands
因子 | 土壤酶 | df | F | P |
---|---|---|---|---|
采样地点 | 酸性磷酸酶 (AP) β-1,4-葡萄糖苷酶 (BG) 乙酰氨基葡萄糖苷酶 (NAG) 纤维二糖水解酶 (CBH) 多酚氧化酶 (PPO) | 3 3 3 3 3 | 1.62×103 0.111×103 0.313×103 20.4 0.870×103 | P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 |
土壤深度 | 酸性磷酸酶 (AP) β-1,4-葡萄糖苷酶 (BG) 乙酰氨基葡萄糖苷酶 (NAG) 纤维二糖水解酶 (CBH) 多酚氧化酶 (PPO) | 4 4 4 4 4 | 1.270×103 0.201×103 0.375×103 0.205×103 0.631×103 | P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 |
采样地点× 土壤深度 | 酸性磷酸酶 (AP) β-1,4-葡萄糖苷酶 (BG) 乙酰氨基葡萄糖苷酶 (NAG) 纤维二糖水解酶 (CBH) 多酚氧化酶 (PPO) | 12 12 12 12 12 | 83.3 63.8 10.8 3.93 30.9 | P<0.001 P<0.001 P<0.001 P=0.001 P<0.001 |
表1 土壤深度和采样地点对土壤酶活性的双因素方差分析结果
Table 1 Results of two-way analysis of variance on soil enzyme activities by soil depths and sampling sites
因子 | 土壤酶 | df | F | P |
---|---|---|---|---|
采样地点 | 酸性磷酸酶 (AP) β-1,4-葡萄糖苷酶 (BG) 乙酰氨基葡萄糖苷酶 (NAG) 纤维二糖水解酶 (CBH) 多酚氧化酶 (PPO) | 3 3 3 3 3 | 1.62×103 0.111×103 0.313×103 20.4 0.870×103 | P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 |
土壤深度 | 酸性磷酸酶 (AP) β-1,4-葡萄糖苷酶 (BG) 乙酰氨基葡萄糖苷酶 (NAG) 纤维二糖水解酶 (CBH) 多酚氧化酶 (PPO) | 4 4 4 4 4 | 1.270×103 0.201×103 0.375×103 0.205×103 0.631×103 | P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 |
采样地点× 土壤深度 | 酸性磷酸酶 (AP) β-1,4-葡萄糖苷酶 (BG) 乙酰氨基葡萄糖苷酶 (NAG) 纤维二糖水解酶 (CBH) 多酚氧化酶 (PPO) | 12 12 12 12 12 | 83.3 63.8 10.8 3.93 30.9 | P<0.001 P<0.001 P<0.001 P=0.001 P<0.001 |
图5 松嫩平原湿地土壤酶化学计量比剖面分布特征 图中ZL表示扎龙湿地;MMG表示莫莫格湿地;NXTB表示牛心套保湿地;XH表示向海湿地;b表示BG+CBH活性;n表示NAG活性;a表示AP活性。图中不同字母表示具有显著性差异(P<0.05)。图中误差棒表示标准误差(Mean±SE)
Figure 5 Profile distribution characteristics of soil enzyme stoichiometry ratio in Songnen Plain wetlands
图6 松嫩平原湿地土壤酶矢量分析 图中ZL表示扎龙湿地;MMG表示莫莫格湿地;NXTB表示牛心套保湿地;XH表示向海湿地。图中不同字母表示具有显著性差异(P<0.05)。图中误差棒表示标准误差(Mean±SE)
Figure 6 Soil enzyme vector analysis in Songnen Plain wetlands
采样点 | 剖面深度/cm | w(TC)/ (g∙kg−1) | w(DOC)/ (mg∙kg−1) | w(SON)/ (mg∙kg−1) | w(TP)/ (g∙kg−1) | SWC | pH | C꞉N | C꞉P | N꞉P |
---|---|---|---|---|---|---|---|---|---|---|
ZL | 0-15 15-30 30-45 45-60 60-75 | 31.3±0.52a 29.4±0.71b 22.3±0.75c 21.4±0.69c 18.1±0.49d | 103.4±6.61a 69.7±6.22b 38.2±0.09c 39.1±5.23c 47.1±1.31c | 1.49×103±3.72a 1.15×103±118.7b 0.957×103±28.6c 0.778×103±47.3d 0.454×103±13.1e | 0.411×103±7.50a 0.329×103±32.6b 0.272×103±36.1c 0.232×103±9.62c 0.109×103±18.1d | 0.17±0.02a 0.15±0.01a 0.18±0.04a 0.15±0.00a 0.14±0.00a | 9.70±0.09a 9.56±0.13a 9.72±0.07a 9.57±0.07a 9.60±0.04a | 21.0±0.23d 25.6±1.81bc 23.2±0.80cd 27.4±0.46bc 39.7±1.19a | 76.1±0.99b 90.1±6.65b 82.9±6.21b 92.5±0.79b 170.7±19.4a | 3.63±0.07ab 3.52±0.22b 3.57±0.39ab 3.37±0.07b 4.28±0.63a |
MMG | 0-15 15-30 30-45 45-60 60-75 | 24.7±2.94a 18.0±0.36b 10.8±0.61c 5.22±1.75d 3.22±0.33d | 140.1±3.59a 40.8±3.55b 55.2±3.81c 95.0±1.93b 83.6±1.04b | 0.975×103±85.6a 0.831×103±40.0b 0.567×103±39.6c 0.429×103±29.4d 0.281×103±22.5e | 0.300×103±10.1a 0.265×103±1.56b 0.229×103±13.9c 0.207×103±10.2d 0.157×103±9.28e | 0.20±0.01a 0.18±0.00bc 0.21±0.01a 0.20±0.01ab 0.18±0.00c | 9.26±0.02a 9.19±0.02a 9.11±0.13a 9.20±0.10a 9.23±0.03a | 25.2±0.52a 21.7±0.81ab 19.0±1.19b 12.0±1.89c 11.5±0.89d | 3.26±0.26a 3.14±0.14a 2.48±0.14b 2.08±0.19c 1.80±0.21c | 3.26±0.26a 3.14±0.14a 2.48±0.14b 2.08±0.19c 1.80±0.21c |
XH | 0-15 15-30 30-45 45-60 60-75 | 22.2±0.31a 20.1±0.75ab 20.0±0.49b 18.1±0.87b 15.5±1.93c | 170.1±28.0a 114.7±7.22b 55.2±3.81c 64.1±4.11c 87.2±0.92bc | 0.643×103±43.2a 0.440×103±14.5b 0.329×103±11.3c 0.347×103±61.5bc 0.214×103±89.2d | 0.195×103±7.96a 0.155×103±2.53b 82.5±5.05c 72.3±3.80d 65.8±1.57d | 0.24±0.00a 0.22±0.01a 0.21±0.01b 0.21±0.01ab 0.18±0.01b | 9.54±0.03a 9.42±0.20a 9.55±0.08a 9.53±0.07a 9.49±0.08a | 34.4±1.27b 45.3±1.25ab 60.3±1.97ab 52.8±5.21ab 85.0±28.3a | 3.32±0.16b 2.86±0.14b 4.04±0.31ab 4.85±0.82a 3.27±1.30b | 3.32±0.16b 2.86±0.14b 4.04±0.31ab 4.85±0.82a 3.27±1.30b |
NXTB | 0-15 15-30 30-45 45-60 60-75 | 12.0±0.34a 5.60±1.14b 4.72±0.24bc 3.71±0.21cd 2.86±0.30d | 126.8±1.15a 81.5±6.90b 65.7±0.58c 81.0±2.74b 57.1±2.42c | 0.640×103±30.5a 0.496×103±14.1b 0.492×103±22.2b 0.475×103±37.8b 0.369×103±41.2c | 0.112×103±6.88a 78.1±6.26b 63.1±7.46c 52.6±1.56cd 48.2±2.81d | 0.20±0.00b 0.20±0.01ab 0.21±0.00ab 0.22±0.01a 0.21±0.01ab | 8.98±0.11c 9.09±0.02bc 9.11±0.04bc 9.15±0.08ab 9.26±0.01a | 18.6±0.53a 11.2±2.08bc 9.55±0.91a 7.82±1.02ab 7.77±1.41c | 5.77±0.59c 6.44±0.70bc 7.95±1.20ab 9.08±0.46a 7.76±1.30ab | 5.77±0.59c 6.44±0.70bc 7.95±1.20ab 9.08±0.46a 7.76±1.30ab |
表2 松嫩平原典型芦苇湿地土壤剖面的理化性质
Table 2 Physical and chemical properties along soil profiles in the typical reed wetlands in Songnen Plain
采样点 | 剖面深度/cm | w(TC)/ (g∙kg−1) | w(DOC)/ (mg∙kg−1) | w(SON)/ (mg∙kg−1) | w(TP)/ (g∙kg−1) | SWC | pH | C꞉N | C꞉P | N꞉P |
---|---|---|---|---|---|---|---|---|---|---|
ZL | 0-15 15-30 30-45 45-60 60-75 | 31.3±0.52a 29.4±0.71b 22.3±0.75c 21.4±0.69c 18.1±0.49d | 103.4±6.61a 69.7±6.22b 38.2±0.09c 39.1±5.23c 47.1±1.31c | 1.49×103±3.72a 1.15×103±118.7b 0.957×103±28.6c 0.778×103±47.3d 0.454×103±13.1e | 0.411×103±7.50a 0.329×103±32.6b 0.272×103±36.1c 0.232×103±9.62c 0.109×103±18.1d | 0.17±0.02a 0.15±0.01a 0.18±0.04a 0.15±0.00a 0.14±0.00a | 9.70±0.09a 9.56±0.13a 9.72±0.07a 9.57±0.07a 9.60±0.04a | 21.0±0.23d 25.6±1.81bc 23.2±0.80cd 27.4±0.46bc 39.7±1.19a | 76.1±0.99b 90.1±6.65b 82.9±6.21b 92.5±0.79b 170.7±19.4a | 3.63±0.07ab 3.52±0.22b 3.57±0.39ab 3.37±0.07b 4.28±0.63a |
MMG | 0-15 15-30 30-45 45-60 60-75 | 24.7±2.94a 18.0±0.36b 10.8±0.61c 5.22±1.75d 3.22±0.33d | 140.1±3.59a 40.8±3.55b 55.2±3.81c 95.0±1.93b 83.6±1.04b | 0.975×103±85.6a 0.831×103±40.0b 0.567×103±39.6c 0.429×103±29.4d 0.281×103±22.5e | 0.300×103±10.1a 0.265×103±1.56b 0.229×103±13.9c 0.207×103±10.2d 0.157×103±9.28e | 0.20±0.01a 0.18±0.00bc 0.21±0.01a 0.20±0.01ab 0.18±0.00c | 9.26±0.02a 9.19±0.02a 9.11±0.13a 9.20±0.10a 9.23±0.03a | 25.2±0.52a 21.7±0.81ab 19.0±1.19b 12.0±1.89c 11.5±0.89d | 3.26±0.26a 3.14±0.14a 2.48±0.14b 2.08±0.19c 1.80±0.21c | 3.26±0.26a 3.14±0.14a 2.48±0.14b 2.08±0.19c 1.80±0.21c |
XH | 0-15 15-30 30-45 45-60 60-75 | 22.2±0.31a 20.1±0.75ab 20.0±0.49b 18.1±0.87b 15.5±1.93c | 170.1±28.0a 114.7±7.22b 55.2±3.81c 64.1±4.11c 87.2±0.92bc | 0.643×103±43.2a 0.440×103±14.5b 0.329×103±11.3c 0.347×103±61.5bc 0.214×103±89.2d | 0.195×103±7.96a 0.155×103±2.53b 82.5±5.05c 72.3±3.80d 65.8±1.57d | 0.24±0.00a 0.22±0.01a 0.21±0.01b 0.21±0.01ab 0.18±0.01b | 9.54±0.03a 9.42±0.20a 9.55±0.08a 9.53±0.07a 9.49±0.08a | 34.4±1.27b 45.3±1.25ab 60.3±1.97ab 52.8±5.21ab 85.0±28.3a | 3.32±0.16b 2.86±0.14b 4.04±0.31ab 4.85±0.82a 3.27±1.30b | 3.32±0.16b 2.86±0.14b 4.04±0.31ab 4.85±0.82a 3.27±1.30b |
NXTB | 0-15 15-30 30-45 45-60 60-75 | 12.0±0.34a 5.60±1.14b 4.72±0.24bc 3.71±0.21cd 2.86±0.30d | 126.8±1.15a 81.5±6.90b 65.7±0.58c 81.0±2.74b 57.1±2.42c | 0.640×103±30.5a 0.496×103±14.1b 0.492×103±22.2b 0.475×103±37.8b 0.369×103±41.2c | 0.112×103±6.88a 78.1±6.26b 63.1±7.46c 52.6±1.56cd 48.2±2.81d | 0.20±0.00b 0.20±0.01ab 0.21±0.00ab 0.22±0.01a 0.21±0.01ab | 8.98±0.11c 9.09±0.02bc 9.11±0.04bc 9.15±0.08ab 9.26±0.01a | 18.6±0.53a 11.2±2.08bc 9.55±0.91a 7.82±1.02ab 7.77±1.41c | 5.77±0.59c 6.44±0.70bc 7.95±1.20ab 9.08±0.46a 7.76±1.30ab | 5.77±0.59c 6.44±0.70bc 7.95±1.20ab 9.08±0.46a 7.76±1.30ab |
图7 土壤酶活性及酶化学计量比与土壤理化因子的RDA排序图 图中b表示BG+CBH活性;n表示NAG活性;a表示AP活性
Figure 7 RDA ranking map of soil enzyme activities and its stoichiometric ratio and physicochemical factors
图8 土壤理化性质与土壤酶活性及酶化学计量比的相关性 表中*表示显著性P<0.05,**表示显著性P<0.01;b表示BG+CBH活性;n表示NAG活性;a表示AP活性
Figure 8 Correlation between soil physicochemical properties and soil enzyme activities and enzyme stoichiometric ratio
[1] |
BALDRIAN P, TROGL J, FROUZ J, et al., 2008. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining[J]. Soil Biology & Biochemistry, 40(9): 2107-2115.
DOI URL |
[2] |
BARBER N A, FARRELL A K, BLACKBURN R C, et al., 2019. Grassland restoration characteristics influence phylogenetic and taxonomic structure of plant communities and suggest assembly mechanisms[J]. Journal of Ecology, 107(5): 2105-2120.
DOI URL |
[3] |
CHEN H, LI D J, XIAO K C, et al., 2018b. Soil microbial processes and resource limitation in karst and non-karst forests[J]. Functional Ecology, 32(5): 1400-1409.
DOI URL |
[4] |
CHEN Y M, XU X, JIAO X G, et al., 2018a. Responses of labile organic nitrogen fractions and enzyme activities in eroded mollisols after 8-year manure amendment[J]. Scientific Reports, 8(1): 14179.
DOI |
[5] |
CUI Y X, FANG L C, DENG L, et al., 2019a. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region[J]. Science of the Total Environment, 658: 1440-1451.
DOI URL |
[6] |
CUI Y X, FANG L C, GUO X B, et al., 2018. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China[J]. Soil Biology & Biochemistry, 116: 11-21.
DOI URL |
[7] |
CUI Y X, FANG L C, GUO X B, et al., 2019b. Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes[J]. Science of the Total Environment, 648: 388-397.
DOI URL |
[8] |
DONG W Y, ZHANG X Y, LIU X Y, et al., 2015. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China[J]. Biogeosciences, 12(18): 5537-5546.
DOI URL |
[9] |
FIERER N, SCHIMEL J P, HOLDEN P A, et al., 2003. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology & Biochemistry, 35(1): 167-176.
DOI URL |
[10] | FREEMAN C, OSTLE N, KANG H, et al., 2001. An enzymic ‘latch’ on a global carbon store-shortage of oxygen locks up carbon in peatlands by restraining a single enzyme[J]. Nature, 409(6817): 149-149. |
[11] | HAMIDO S A, KPOMBLEKOU A K, 2009. Cover crop and tillage effects on soil enzyme activities following tomato[J]. Soil & Tillage Research, 105(2): 269-274. |
[12] |
JOBBAGY E G, JACKSON R B, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 10(2): 423-436.
DOI URL |
[13] |
KIVLIN S N, TRESEDER K K, 2014. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition[J]. Biogeochemistry, 117: 23-37.
DOI URL |
[14] |
KNIGHT T R, DICK R P, 2004. Differentiating microbial and stabilized beta-glucosidase activity relative to soil quality[J]. Soil Biology & Biochemistry, 36(12): 2089-2096.
DOI URL |
[15] |
MARX M C, WOOD M, JARVIS S C, et al., 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology & Biochemistry, 33 (12-13): 1633-1640.
DOI URL |
[16] |
MORI T, AOYAGI R, KITAYAMA K, et al., 2021. Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition[J]. Soil Biology & Biochemistry, 160: 108363.
DOI URL |
[17] |
PENG X Q, WANG W, 2016. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J]. Soil Biology & Biochemistry, 98: 74-84.
DOI URL |
[18] |
QASWAR M, JING H, AHMED W, et al., 2021. Linkages between ecoenzymatic stoichiometry and microbial community structure under long-term fertilization in paddy soil: A case study in China[J]. Applied Soil Ecology, 161: 103860.
DOI URL |
[19] |
QU W D, HAN G X, ELLER F, et al., 2020. Nitrogen input in different chemical forms and levels stimulates soil organic carbon decomposition in a coastal wetland[J]. Catena, 194(11): 104672.
DOI URL |
[20] |
SINSABAUGH R L, 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology & Biochemistry, 42(3): 391-404.
DOI URL |
[21] |
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al., 2008. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 11(11): 1252-1264.
DOI PMID |
[22] |
SINSABAUGH R L, MOORHEAD D L, 1994. Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition[J]. Soil Biology & Biochemistry, 26(10): 1305-1311.
DOI URL |
[23] |
SINSABAUGH R L, SHAH J J F, 2012. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 43(1): 313-343.
DOI URL |
[24] |
SONG X D, YANG F, JU B, et al., 2018. The influence of the conversion of grassland to cropland on changes in soil organic carbon and total nitrogen stocks in the Songnen Plain of Northeast China[J]. Catena 171: 588-601.
DOI URL |
[25] |
STOCK S C, KÖSTER M, DIPPOLD M A, et al., 2019. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale[J]. Geoderma, 337: 973-982.
DOI URL |
[26] |
Taiki M, 2023. Effects of tropical forest conversion into oil palm plantations on nitrous oxide emissions: A meta-analysis[J]. Journal of Forestry Research, 34(3): 865-869.
DOI |
[27] |
TIAN H Q, CHEN G S, ZHANG C, et al., 2010. Pattern and variation of C꞉N꞉P ratios in China’s soil: A synthesis of observational data[J]. Biogeochemistry, 98(1-3): 139-151.
DOI URL |
[28] |
TURNER B L, 2010. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils[J]. Applied and Environmental Microbiology, 76(19): 6485-6493.
DOI PMID |
[29] |
WARING B G, WEINTRAUB S R, SINSABAUGH R L, 2014. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils[J]. Biogeochemistry, 117(1): 101-113.
DOI URL |
[30] |
WEI L, RAZAVI B S, WANG W Q, et al., 2019. Labile carbon matters more than temperature for enzyme activity in paddy soil[J]. Soil Biology & Biochemistry, 135: 134-143.
DOI URL |
[31] | XU X F, SONG C C, SONG X, et al., 2004. Carbon mineralization and the related enzyme activity of soil in wetland[J]. Ecology and Environment, 13(1): 40-42. |
[32] |
ZHANG W, GAO D X, CHEN Z X, et al., 2018. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China[J]. Geoderma, 325: 152-161.
DOI URL |
[33] | 白军红, 丁秋档, 高海峰, 等, 2009. 向海湿地不同植被群落下土壤氮素的分布特征[J]. 地理科学, 29(3): 381-384. |
BAI J H, DING Q D, GAO H F, et al., 2009. Spatial distribution of nitrogen in marsh soils with different plant communities in Xianghai wetland[J]. Scientia Geographica Sinica, 29(3): 381-384.
DOI |
|
[34] | 陈利军, 武志杰, 姜勇, 等, 2002. 与氮转化有关的土壤酶活性对抑制剂施用的响应[J]. 应用生态学报, 13(9): 1099-1103. |
CHEN L J, WU Z J, JIANG Y, et al., 2002. Response of soil enzyme activity related to nitrogen conversion to inhibitor application[J]. Journal of Applied Ecology, 13(9): 1099-1103. | |
[35] | 褚洪龙, 李莎, 唐明, 等, 2015. 黄土高原油松根际土壤酶活性及真菌群落多样性研究——以黄龙山林场为例[J]. 土壤学报, 52(1): 154-161. |
CHU H L, LI S, TANG M, et al., 2015. Soil enzyme activity and fungal community diversity in rhizosphere of Pinus tabulaeformis carr. Growing on Loess Plateau-a case study of Huanglongshan forest farm[J]. Acta Pedologica Sinica, 52(1): 154-161. | |
[36] | 崔雯雯, 宋全昊, 高小丽, 等, 2015. 糜子不同种植方式对土壤酶活性及养分的影响[J]. 植物营养与肥料学报, 21(1): 234-240. |
CUI W W, SONG Q H, GAO X L, et al., 2015. Influence of different cropping patterns on soil enzyme activities and yield of Broomcorn millet [J]. Plant Nutrition and Fertilizer Science, 21(1): 234-240. | |
[37] | 陈泓硕, 马大龙, 姜雪薇, 等, 2020. 季节性冻融对扎龙湿地土壤微生物群落结构和胞外酶活性的影响[J]. 环境科学学报, 40(4): 1443-1451. |
CHEN H S, MA D L, JIANG X W, et al., 2020. Effects of seasonal freeze-thaw on soil microbial community structures and extracellular enzyme activities in Zhalong wetland[J]. Acta Scientiae Circumstantiae, 40(4): 1443-1451. | |
[38] | 韩勤, 赵岭, 刘新宇, 等, 2010. 松嫩平原湿地退化特征及平原内陆盐碱类型湿地的恢复[J]. 防护林科技, 99(6): 80-82. |
HAN Q, ZHAO L, LIU X Y, et al., 2010. Wetland degradation characteristics and restoration of inland saline-alkali type wetlands in Songnen Plain[J]. Protection Forest Science and Technology, 99(6): 80-82. | |
[39] | 哈文秀, 周金星, 庞丹波, 等, 2019. 岩溶区不同恢复方式下土壤有机碳组分及酶活性研究[J]. 北京林业大学学报, 41(2): 1-11. |
HA W X, ZHOU J X, PANG D B, et al., 2019. Study on soil organic carbon components and enzyme activities under different restoration methods in karst area[J]. Journal of Beijing Forestry University, 41(2): 1-11. | |
[40] | 和润莲, 闫帮国, 孙毅, 等, 2021. 植物种和氮添加对元谋干热河谷草地土壤有机碳分解的影响[J]. 应用与环境生物学报, 27(6): 1547-1553. |
HE R L, YAN B G, SUN Y, et al., 2021. Effects of plant species and nitrogen addition on soil organic carbon decomposition in Yuanmou dry-hot river Valley grassland[J]. Journal of Applied and Environmental Biology, 27(6): 1547-1553. | |
[41] | 郝建朝, 吴沿友, 连宾, 等, 2006. 土壤多酚氧化酶性质研究及意义[J]. 土壤通报, 37(3): 470-474. |
HAO J Z, WU Y Y, LIAN B, et al., 2006. Properties of polyphenol oxidase in soil and its significance[J]. Chinese Journal of Soil Science, 37(3): 470-474. | |
[42] | 黄幸运, 温秀婷, 张研, 等, 2022. 鄱阳湖苔草洲滩湿地土壤胞外酶活性和化学计量比的高程变化特征[J]. 湖泊科学, 34(3): 894-905. |
HUANG X Y, WEN X T, ZAHNG Y, et al., 2022. Variations in the activities and stoichiometry of soil extracellular enzyme along the elevation gradient at the Carex lakeshore of Lake Poyang wetland[J]. Journal of Lake Sciences, 34(3): 894-905.
DOI URL |
|
[43] | 黄昌勇, 谢正苗, 2000. 铜和铅对红壤土壤微生物量碳氮影响的比较[J]. 浙江大学学报, 1(2): 79-84. |
HUANG C Y, XIE Z M, 2000. Comparision of the effects of copper and lead on soil microbial biomass carbon and nitrogen in red soil[J]. Journal of Zhejiang University Science, 1(2): 79-84. | |
[44] | 刘骞, 郭博雅, 伍秀瑜, 等, 2021. 松嫩平原盐碱土区不同土地利用方式对土壤碳、氮及酶活性的影响[J]. 福建农业学报, 36(8): 956-963. |
LIU Q, GUO B Y, WU X Y, et al., 2021. Carbon, nitrogen, and enzyme activity in saline-alkali soil on Songnen Plain as affected by land use[J]. Fujian Journal of Agricultural Sciences, 36(8): 956-963. | |
[45] | 陆琴, 李冬琴, 2020. 土壤酶及其生态指示作用研究进展[J]. 安徽农业科学, 48(18): 14-17. |
LU Q, LI D Q, 2020. Research progress on soil enzymes and their functioning as ecosystem indicators[J]. Journal of Anhui Agricultural Sciences, 48(18): 14-17. | |
[46] | 刘强, 马宏伟, 田辉, 等, 2010. 松嫩平原湿地分布变化与影响因素分析[J]. 地质与资源, 19(1): 76-80. |
LIU Q, MA H W, TIAN H, et al., 2010. Analysis on the distribution change and influencing factors of the wetlands in Songnen Plain[J]. Geology and Resources, 19(1): 76-80. | |
[47] | 刘西军, 蔡天培, 杜杰, 等, 2022. 氮添加和采脂对湿地松林土壤酶活性及酶化学计量比的影响[J]. 生态学杂志, 41(2): 227-235. |
LIU X J, CAI T P, DU J, et al., 2021. Effects of nitrogen addition and resin tapping on soil enzyme activities and their stoichiometry in a slash pine plantation[J]. Chinese Journal of Ecology, 41(2): 227-235. | |
[48] |
马维伟, 孙文颖, 2020. 尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征[J]. 自然资源学报, 35(5): 1250-1260.
DOI |
MA W W, SUN W Y, 2020. Changes of organic carbon and related soil enzyme activities during vegetation degradation in Gahai wetland[J]. Journal of Natural Resources, 35(5): 1250-1260.
DOI URL |
|
[49] | 欧伟, 李琪, 梁文举, 等, 2004. 不同水分管理方式对稻田土壤生物学特性的影响[J]. 生态学杂志, 23(5): 53-56. |
OU W, LI Q, LIANG W J, et al., 2004. Effects of different water management methods on soil biological characteristics in paddy field[J]. Journal of ecology, 23(5): 53-56. | |
[50] |
孙毅, 和润莲, 何光熊, 等, 2021. 滇西并流河谷区土壤酶活性化学计量学特征与环境因子的关系[J]. 应用生态学报, 32(4): 1269-1278.
DOI |
SUN Y, HE R L, HE G X, et al., 2021. Relationships between stoichiometric characteristics of soil enzymatic activities and environmental factors in parallel valleys of western Yunnan, China[J]. Chinese Journal of Applied Ecology, 32(4): 1269-1278.
DOI |
|
[51] | 唐明, 向金友, 袁茜, 等, 2015. 酸性土壤施石灰对土壤理化性质、微生物数量及烟叶产质量的影响[J]. 安徽农业科学, 43(12): 91-93. |
TANG M, XIANG J Y, YUAN Q, et al., 2015 Effects of lime application on soil physical and chemical properties, microbial quantity and tobacco yield and quality in acidic soil[J]. Journal of Anhui Agricultural Sciences, 43(12): 91-93. | |
[52] | 佟守正, 吕宪国, 杨青, 等, 2005. 三江平原湿地研究发展与展望[J]. 资源科学, 27(6): 180-187. |
TONG S Z, LV X G, YANG Q, et al., 2006. Research development and prospect of Sanjiang Plain wetland[J]. Resource Science, 27(6): 180-187. | |
[53] | 吴春笃, 沈明霞, 储金宇, 等, 2006. 北固山湿地虉草氮磷积累和转移能力的研究[J]. 环境科学学报, 26(4): 674-678. |
WU C D, SHEN M X, CHU J Y, et al., 2006. Study on nitrogen accumulation and phosphorus transfer ability of Phalaris Arundinacea in Beigushan wetland[J]. Journal of Environmental Science, 26(4): 674-678. | |
[54] | 万忠娟, 于少鹏, 王海霞, 等, 2003. 松嫩平原内陆盐碱湿地的类型特征及分布规律[J]. 湿地科学, 1(2): 141-146. |
WANG Z J, YU S P, WANG H X, et al., 2003. Type characteristics and distribution of inland saline-alkali wetlands in Songnen Plain[J]. Wetland Science, 1(2): 141-146. | |
[55] | 王博, 周志勇, 张欢, 等, 2020. 针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响[J]. 浙江农林大学学报, 37(4): 611-622. |
WANG B, ZHOU Z Y, ZHANG H, et al., 2020. Effect of Larix gmelinii proportion on soil chemical properties and enzymatic stoichiometry in mixed coniferous and broad-leaved forest[J]. Journal of Zhejiang A & F University, 37(4): 611-622. | |
[56] | 徐惠凤, 刘兴土, 白军红, 等, 2004. 长白山沟谷湿地乌拉苔草沼泽湿地土壤微生物动态及环境效应研究[J]. 水土保持学报, 18(3): 115-117, 122. |
XU H F, LIU X T, BAI J H, et al., 2004. Dynamic change and environmental effects of soil microorganism in marsh soils from Carex meyeriana wetlands in Changbai Mountain[J]. Journal of Soil and Water Conservation, 18(3): 115-117, 122. | |
[57] | 于昊天, 黄时豪, 刘亚军, 等, 2017. 鄱阳湖湿地土壤酶及微生物生物量的剖面分布特征[J]. 环境科学研究, 30(11): 1715-1722. |
YU H T, HUANG S H, LIU Y J, et al., 2017. Profile distribution characteristics of soil enzymes and microbial biomass in the Poyang Lake wetland[J]. Research of Environmental Sciences, 30(11): 1715-1722. | |
[58] | 杨文彬, 耿玉清, 王冬梅, 等, 2015. 漓江水陆交错带不同植被类型的土壤酶活性[J]. 生态学报, 35(14): 4604-4612. |
YANG W B, GENG Y Q, WANG D M, et al., 2015. The activities of soil enzyme under different vegetation types in Li River riparian ecotones[J]. Acta Ecologica Sinica, 35(14): 4604-4612. | |
[59] | 于秀丽, 许林书, 2014. 莫莫格湿地土壤酶活性特征及其与土壤铁的相关分析[J]. 东北师大学报(自然科学版), 46(2): 104-109. |
YU X L, XU L S, 2014. Interactions between soil microbial biomass carbon and soil enzyme activities in Momoge National Nature Reserve[J]. Journal of Northeast Normal University (Natural Science Edition), 46(2): 104-109. | |
[60] | 于秀丽, 2020. 莫莫格湿地土壤微生物量碳动态及与酶活性的关系[J]. 东北林业大学学报, 48(4): 59-63. |
YU X L, 2020. Interactions between soil microbial biomass carbon and soil enzyme activities in Momoge National Nature Reserve[J]. Journal of Northeast Forestry University, 48(4): 59-63. | |
[61] |
曾泉鑫, 张秋芳, 林开淼, 等, 2021. 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制[J]. 应用生态学报, 32(2): 521-528.
DOI |
ZENG Q X, ZHANG Q F, LIN K M, et al., 2021. Enzyme stoichiometry evidence revealed that five years nitrogen addition exacerbated the carbon and phosphorus limitation of soil microorganisms in a Phyllostachys pubescens forest[J]. Chinese Journal of Applied Ecology, 32(2): 521-528. | |
[62] | 张静, 马玲, 丁新华, 等, 2014. 扎龙湿地不同生境土壤微生物生物量碳氮的季节变化[J]. 生态学报, 34(3): 3712-3719. |
ZHANG J, MA L, DING X H, et al., 2014. Seasonal dynamics of soil microbial biomass C and N in different habitats in Zhalong wetland[J]. Acta Ecologica Sinica, 34(13): 3712-3719. | |
[63] | 张仕艳, 原海红, 陆梅, 等, 2010. 滇西北不同利用类型土壤酶活性及其与理化性质与微生物的关系[J]. 亚热带水土保持, 22(2): 13-16. |
ZHANG S Y, YUAN H H, LU M, et al., 2010. The soil enzyme activities of different land use types and the relationships between the soil enzyme activities and physical-chemical properties or microorganism in mountainous area of Northwest Yunnan Province[J]. Subtropical Soil and Water Conservation, 22(2): 13-16. |
[1] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[2] | 王玉琴, 宋梅玲, 周睿, 王宏生. 黄帚橐吾扩散对高寒草甸土壤理化特性及酶活性的影响[J]. 生态环境学报, 2023, 32(8): 1384-1391. |
[3] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[4] | 盛美君, 李胜君, 杨昕玥, 王蕊, 李洁, 李刚, 修伟明. 华北潮土农田土壤酶活性对土地利用强度的响应特征探讨[J]. 生态环境学报, 2023, 32(2): 299-308. |
[5] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
[6] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[7] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[8] | 颜明娟, 陈贤玉, 曹榕彬, 林诚, 吴一群, 黄丁一, 吴海玲, 陈子聪. 福建典型白茶产区茶园土壤锰锌形态特征及其影响因素[J]. 生态环境学报, 2022, 31(5): 885-895. |
[9] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
[10] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[11] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[12] | 李春环, 王攀, 韩翠, 许艺馨, 黄菊莹. 硫氮沉降下西北荒漠煤矿区周边土壤性质的变化特点[J]. 生态环境学报, 2022, 31(1): 170-180. |
[13] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
[14] | 李欣, 陈小华, 顾海蓉, 钱晓雍, 沈根祥, 赵庆节, 白玉杰. 典型农田土壤酶活性分布特征及影响因素分析[J]. 生态环境学报, 2021, 30(8): 1634-1641. |
[15] | 郑智恒, 熊康宁, 容丽, 池永宽. 两种等级喀斯特石漠化地区生物结皮对土壤养分恢复的影响[J]. 生态环境学报, 2021, 30(6): 1202-1212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||