生态环境学报 ›› 2023, Vol. 32 ›› Issue (1): 139-149.DOI: 10.16258/j.cnki.1674-5906.2023.01.015
王全超1(), 吉恒宽1, 李思敏1, 李财生1, 侯正伟1, 邓万刚1, 吴治澎1,*(
), 王登峰2,*(
)
收稿日期:
2022-11-01
出版日期:
2023-01-18
发布日期:
2023-04-06
通讯作者:
王登峰,E-mail: dfwang@vip.163.com作者简介:
王全超(1999年生),男,硕士研究生,主要研究方向为土地利用变化与生态环境效应。E-mail: 1473561136@qq.com
基金资助:
WANG Quanchao1(), JI Hengkuan1, LI Simin1, LI Caisheng1, HOU Zhengwei1, DENG Wangang1, WU Zhipeng1,*(
), WANG Dengfeng2,*(
)
Received:
2022-11-01
Online:
2023-01-18
Published:
2023-04-06
摘要:
研究不同土地利用背景下土壤-溪流连续体溶解态黑碳(DBC)分子特征及其界面转化规律对调控溪流温室气体排放具有重要的指导意义。以海南东寨港3个典型热带流域为研究区,对流域内3种土地利用类型(农田、林地、湿地)的土壤、溪流进行监测,通过超滤技术、苯多羧酸法与傅里叶变换离子回旋共振质谱技术(FT-ICR-MS)对DBC粒径分布、结构组成进行表征,进一步揭示不同土地利用背景下土壤-溪流界面中DBC转化机制。结果表明,从土壤到溪流环境DBC质量浓度逐渐变小;土壤DBC平均质量浓度、DBC/DOC比值大小顺序为湿地>农田>林地,而在溪流中湿地最低,分别为0.14 mg·L-1、6.61%;林地、农田、湿地的土壤DBC分别主要分布在>10 kDa、<10 kDa、<1 kDa的粒径中,质量浓度范围为1.21—4.01 mg·L-1,所有溪流DBC在不同粒径中的分布更为均匀;所有土壤与溪流的DBC稠环结构以B4CAs和B5CAs为主,其中农田溪流B4CAs占比超过60%;DBC中CHO化合物的占比最高为73.56%,土壤DBC的CHOS/CHONS化合物在湿地中占比最高为21.84%,但在溪流DBC中湿地占比最低为6.73%;不同地类土壤-溪流界面中DBC含量平均损失率大小顺序为农田>林地>湿地,而林地、农田、湿地水土界面中具有最大损失率的DBC组分分别为>0.2 μm、1—10 kDa、<1 kDa,而农田溪流中B3CAs、B4CAs和B5CAs平均损失率显著高于地类溪流。土壤-溪流界面的DBC转化主要受分子特征的影响,其次为界面环境理化性质与微生物组成,流域内不同土地利用方式通过改变土壤-溪流界面输入性DBC结构组成与界面环境因子共同影响DBC的界面转化过程。
中图分类号:
王全超, 吉恒宽, 李思敏, 李财生, 侯正伟, 邓万刚, 吴治澎, 王登峰. 海南东寨港流域土壤-溪流连续体溶解态黑碳分子特征及其界面转化机制[J]. 生态环境学报, 2023, 32(1): 139-149.
WANG Quanchao, JI Hengkuan, LI Simin, LI Caisheng, HOU Zhengwei, DENG Wangang, WU Zhipeng, WANG Dengfeng. Molecular Characteristics and Interfacial Transformation Mechanism of Dissolved Black Carbon in Soil-Stream Continuum in Dongzhai Harbor Watershed of Hainan Province[J]. Ecology and Environment, 2023, 32(1): 139-149.
图5 不同土地利用条件下土壤-溪流连续体中DBC的FT-ICR MS分子特征 Van-Krevelen图(v-K图,以n(O)/n(C)为横坐标,n(H)/n(C)为纵坐标)是一种能够阐述和表达复杂有机物化学性质和组成差异的分析方法,本图仅使用代表缩合芳香性结构(原子数比n(H)/n(C)=0.2—0.7,n(O)/n(C)=0—0.67)的区域指代DBC,子图右下角数据指分子数量
Figure 5 Molecular characteristics of DBC based FT-ICR MS in soil-stream continuum under different land use condition
方法 | 数据集组成 | 调整r2 | 解释比例/% | P值 | |
---|---|---|---|---|---|
类别 | 有效指标 | ||||
全变量 | 所有数据集 | 所用指标 | 0.857 | 100 | <0.002 |
变量分割 | 水土界面理化性质 (WH) | TN; NH4+-N; NO3--N; DO | 0.173 | 20.187 | <0.004 |
水土界面微生物组成 (WSW) | Proteobacteria; Actinobacteria; Bacteroidetes; Chloroflexi; Cyanobacteria | 0.115 | 13.419 | <0.001 | |
DBC分子大小 (FD) | DBC (1-10 kDa); DBC (<1 kDa); MW | 0.211 | 24.621 | <0.002 | |
DBC分子结构 (FJ) | B3+4/B5+6; CHON; DBE | 0.327 | 38.156 | <0.005 | |
交互作用 | WH-WSW | 0.015 | 1.750 | <0.003 | |
FD-WSW | 0.011 | 1.284 | <0.001 | ||
FJ-WSW | 0.005 | 0.583 | <0.002 |
表1 所用解释变量与变量分割后的RDA结果
Table 1 Full RDAs and portioned out in partial RDAs by group or combination of group
方法 | 数据集组成 | 调整r2 | 解释比例/% | P值 | |
---|---|---|---|---|---|
类别 | 有效指标 | ||||
全变量 | 所有数据集 | 所用指标 | 0.857 | 100 | <0.002 |
变量分割 | 水土界面理化性质 (WH) | TN; NH4+-N; NO3--N; DO | 0.173 | 20.187 | <0.004 |
水土界面微生物组成 (WSW) | Proteobacteria; Actinobacteria; Bacteroidetes; Chloroflexi; Cyanobacteria | 0.115 | 13.419 | <0.001 | |
DBC分子大小 (FD) | DBC (1-10 kDa); DBC (<1 kDa); MW | 0.211 | 24.621 | <0.002 | |
DBC分子结构 (FJ) | B3+4/B5+6; CHON; DBE | 0.327 | 38.156 | <0.005 | |
交互作用 | WH-WSW | 0.015 | 1.750 | <0.003 | |
FD-WSW | 0.011 | 1.284 | <0.001 | ||
FJ-WSW | 0.005 | 0.583 | <0.002 |
[1] |
ALAN R J, PODGORKSI D C, SASHA W, et al., 2017. Photodissolution of charcoal and fire-impacted soil as a potential source of dissolved black carbon in aquatic environments[J]. Organic Geochemistry, 112: 16-21.
DOI URL |
[2] |
ALAN R J, SEIDEL M, DITTMAR T, et al., 2018. Land use controls on the spatial variability of dissolved black carbon in a subtropical watershed[J]. Environmental Science & Technology, 52(15): 8104-8114.
DOI URL |
[3] |
ANDRILLI J D, FOREMAN C M, MARSHALL A G, et al., 2013. Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy[J]. Organic Geochemistry, 65(6): 19-28.
DOI URL |
[4] |
BRODOWSKI S, RODIONOV A, HAUMAIER L, et al., 2005. Revised black carbon assessment using benzene polycarboxylic acids[J]. Organic Geochemistry, 36(9): 1299-1310.
DOI URL |
[5] |
BIRD M I, WYNN J G, GUSTAVO S, et al., 2015. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 43(1): 273-298.
DOI URL |
[6] |
CHEN Y L, SUN K, WANG Z B, et al., 2022. Analytical methods, molecular structures and biogeochemical behaviors of dissolved black carbon[J]. Carbon Research, 1(1): 23-42.
DOI |
[7] |
DENG X Q, MAO L J, WU Y L, et al., 2022. Distribution and source of black carbon in coastal river sediments around Haizhou Bay, Eastern China: implications for anthropogenic inputs[J]. Environmental Science and Pollution Research International, 30: 21092-21103.
DOI |
[8] |
DITTMAR T, 2008. The molecular level determination of black carbon in marine dissolved organic matter[J]. Organic Geochemistry, 39(4): 396-407.
DOI URL |
[9] |
DITTMAR T, BORIS K, NORBERT H, et al., 2008. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater[J]. Limnology and Oceanography: Methods, 6(6): 230-235.
DOI URL |
[10] |
HUTCHINS R H, AUKES P, SCHIFF S L, et al., 2017. The optical, chemical, and molecular dissolved organic matter succession along a boreal Soil-Stream-River Continuum[J]. Journal of Geophysical Research: Biogeosciences, 122(11): 2892-2908.
DOI URL |
[11] |
KHAN A L, SASHA W, RUDOLF J, et al., 2017. Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures[J]. Geophysical Research Letters, 44(12): 6226-6234.
DOI URL |
[12] |
KUREK M R, POULIN B A, MCKENNA A M, et al., 2020. Deciphering dissolved organic matter: Ionization, dopant, and fragmentation insights via fourier transform-ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology, 54(24): 16249-16259.
DOI URL |
[13] | MARQUES J S, DITTMAR T, NIGGEMANN J, et al., 2017. Dissolved black carbon in the Headwaters-to-Ocean Continuum of Paraíba Do Sul River, Brazil[J]. Frontiers in Earth Science, 5(11): 1-12. |
[14] |
MARX A, DUSEK J, JANKOVEC J, et al., 2017. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[J]. Reviews of Geophysics, 55(2): 560-585.
DOI URL |
[15] |
MASIELLO C A, 2004. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 92(1): 201-213.
DOI URL |
[16] |
OHNO T, HE Z Q, SLEIGHTER R L, et al., 2010. Ultrahigh resolution mass spectrometry and indicator species analysis to identify marker components of soil and plant biomass derived organic matter fractions[J]. Environmental Science & Technology, 44(22): 8594-8600.
DOI URL |
[17] |
RUDOLF J, YAN D, JUTTA N, et al., 2013. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 340(6130): 345-347.
DOI PMID |
[18] | SASHA W, YAN D, RUDOLF J, 2017. A new perspective on the apparent solubility of dissolved black carbon[J]. Frontiers in Earth Science, 5(75): 1-16. |
[19] |
STENSON A C, MARSHALL A G, COOPER W T, 2003. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra[J]. Analytical Chemistry, 75(6): 1275-1284.
PMID |
[20] |
THIBAULT L, TEODORU C R, NYONI F C, et al., 2016. Along-stream transport and transformation of dissolved organic matter in alarge tropical river[J]. Biogeosciences, 13(9): 2727-2741.
DOI URL |
[21] | TRILLA P N, VILA C M, CASAS G, et al., 2021. Dissolved black carbon and semivolatile aromatic hydrocarbons in the ocean: Two entangled biogeochemical cycles?[J]. Environmental Science & Technology Letters, 8(10): 918-923. |
[22] |
WANG M, SUN Y X, ZENG H X, et al., 2022. Distribution of black carbon in sediments from mangrove wetlands in China[J]. Frontiers in Forests and Global Change, 5: 989329.
DOI URL |
[23] |
WANG W J, KHANNA N, LIN J, et al., 2022. Black carbon emissions and reduction potential in China: 2015-2050[J]. Journal of Environmental Management, 329: 117087-117087.
DOI URL |
[24] |
YAN D, YOUHEI Y, DODDS W K, et al., 2013. Dissolved black carbon in grassland streams: Is there an effect of recent fire history?[J]. Chemosphere, 90(10): 2557-2562.
DOI PMID |
[25] | ZIOLKOWSKI L A, DRUFFEL E R, 2010. Aged black carbon identified in marine dissolved organic carbon[J]. Geophysical Research Letters, 37(16): L16601-1-L16601-4. |
[26] |
卜文圣, 臧润国, 丁易, 等, 2013. 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化[J]. 生物多样性, 21(3): 278-287.
DOI |
BU W S, ZANG R G, DING Y, et al., 2013. Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China[J]. Biodiversity Science, 21(3): 278-287.
DOI |
|
[27] | 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社: 22-162. |
BAO S D, 2000. Soil analysis in agricultural chemistry[M]. third edition. Beijing: China Agricultural Press: 22-162. | |
[28] | 董迪, 魏征, 王刚, 等, 2020. 广东、广西和海南滨海湿地遥感制图与分析[J]. 海洋开发与管理, 37(6): 95-99. |
DONG D, WEI Z, WANG G, et al., 2020. Analysis on the mapping of remote sensing for coastal wetlands in Guangdong, Guangxi and Hainan[J]. Ocean Development and Management, 37(6): 95-99. | |
[29] |
吉恒宽, 吴月颖, 符佩娇, 等, 2020. 热带滨海区不同土地利用背景下土壤溶解性有机氮的组成与粒径分布特征[J]. 生态环境学报, 29(3): 525-535.
DOI URL |
JI H K, WU Y Y, FU P J, et al., 2020. Composition and size distribution characteristics of soil dissolved organic nitrogen under different land use types in tropical coastal areas[J]. Ecology and Environmental Sciences, 29(3): 525-535. | |
[30] | 江家彬, 祝贞科, 林森, 等, 2021. 针铁矿吸附态和包裹态有机碳在稻田土壤中的矿化及其激发效应[J]. 土壤学报, 58(6): 1530-1539. |
JIANG J B, ZHU Z K, LIN S, et al., 2021. Mineralization of goethite-adsorbed and -encapsulated organic carbon and its priming effect in paddy soil[J]. Acta Pedologica Sinica, 58(6): 1530-1539. | |
[31] | 刘金良, 2019. 刺槐人工林林木-土壤-微生物互作关系及机制[D]. 杨凌: 西北农林科技大学. |
LIU J L, 2019. Interaction relationship and mechanism of forest-soil-microbes of robinia pseudoacacia in the loess plateau[D]. Yangling: Northwest A & F University. | |
[32] | 马巧丽, 杜欢, 刘杨, 等, 2022. 红树林湿地硫酸盐还原菌的多样性及其参与驱动的元素耦合机制[J]. 微生物学报, 62(12): 4606-4627. |
MA Q L, DU H, LIU Y, et al., 2022. Sulfate-reducing prokaryotes in mangrove wetlands: diversity and role in driving element coupling[J]. Acta Microbiologica Sinica, 62(12): 4606-4627. | |
[33] | 邱敬, 高人, 杨玉盛, 等, 2009. 土壤黑碳的研究进展[J]. 亚热带资源与环境学报, 4(1): 88-94. |
QIU J, GAO R, YANG Y S, et al., 2009. Advances on research of black carbon in soil[J]. Journal of Subtropical Resources and Environment, 4(1): 88-94. | |
[34] |
王钊, 张曼胤, 胡宇坤, 等, 2022. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 31(9): 1876-1884.
DOI URL |
WANG Z, ZHANG M Y, HU Y K, et al., 2022. Effect of salinity on mercury methylation in sediments of a typical coastal wetland[J]. Ecology and Environmental Sciences, 31(9): 1876-1884. | |
[35] | 吴月颖, 吉恒宽, 吴蔚东, 等, 2020. 海南北部滨海区不同土地利用模式下土壤DOM粒径分布与光谱特性[J]. 农业资源与环境学报, 37(5): 654-665. |
WU Y Y, JI H K, WU W D, et al., 2020. Size fractionation and optical properties of DOM under different land use types in the coastal area of northern Hainan Island[J]. Journal of Agricultural Resources and Environment, 37(5): 654-665. | |
[36] | 鲜文东, 张潇橦, 李文均, 2020. 绿弯菌的研究现状及展望[J]. 微生物学报, 60(9): 1801-1820. |
XIAN W D, ZHANG X T, LI W J, 2020. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 60(9): 1801-1820. | |
[37] | 杨鸿儒, 袁博, 赵霞, 等, 2016. 三种荒漠灌木根际可培养固氮细菌类群及其固氮和产铁载体能力[J]. 微生物学通报, 43(11): 2366-2373. |
YANG H R, YUAN B, ZHAO X, et al., 2016. Cultivable diazotrophic community in the rhizosphere of three desert shrubs and their nitrogen-fixation and siderophore-producing capabilities[J]. Microbiology China, 43(11): 2366-2373. | |
[38] | 张履勤, 章明奎, 2006. 土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响[J]. 土壤通报, 9(4): 662-665. |
ZHANG L Q, ZHANG M K, 2006. Effects of land use on particulate organic carbon and black carbon accumulation in red and yellow soils[J]. Chinese Journal of Soil Science, 9(4): 662-665. |
[1] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[2] | 刘霞, 郭澍, 王琳. 区域一体化地区的土地利用与生态服务价值研究——以双莱先行区为例[J]. 生态环境学报, 2023, 32(6): 1163-1172. |
[3] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[4] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
[5] | 李语诗, 夏志业, 张蕾. 基于SSPs多情景目标的2030年成渝经济圈土地利用碳排放预测及其空间优化[J]. 生态环境学报, 2023, 32(3): 535-544. |
[6] | 盛美君, 李胜君, 杨昕玥, 王蕊, 李洁, 李刚, 修伟明. 华北潮土农田土壤酶活性对土地利用强度的响应特征探讨[J]. 生态环境学报, 2023, 32(2): 299-308. |
[7] | 陈乐, 卫伟. 西北旱区典型流域土地利用与生境质量的时空演变特征[J]. 生态环境学报, 2022, 31(9): 1909-1918. |
[8] | 王超越, 郭先华, 郭莉, 白丽芳, 夏利林, 王春博, 李廷真. 基于FLUS-InVEST的西北地区土地利用变化及其对碳储量的影响——以呼包鄂榆城市群为例[J]. 生态环境学报, 2022, 31(8): 1667-1679. |
[9] | 王超, 杨倩楠, 张池, 李祥东, 陈静, 张晓龙, 陈金洁, 刘科学. 东南湿润区典型丹霞地貌土壤有机碳组分及其敏感性研究[J]. 生态环境学报, 2022, 31(6): 1132-1140. |
[10] | 李美娇, 何凡能, 赵彩杉, 杨帆. 全球历史LUCC数据集新疆地区耕地数据可靠性评估[J]. 生态环境学报, 2022, 31(6): 1215-1224. |
[11] | 陈金凤, 余世钦, 符加方, 徐国良, 于波, 赖晓群, 胡思源, 张开渠, 刘家华. 华南红层地貌区不同利用方式土壤质量特征及其影响因素——以南雄盆地为例[J]. 生态环境学报, 2022, 31(5): 918-930. |
[12] | 杨贤房, 陈朝, 郑林, 万智巍, 陈永林, 王远东. 稀土矿区不同土地利用类型土壤细菌群落特征及网络分析[J]. 生态环境学报, 2022, 31(4): 793-801. |
[13] | 李平星, 邹露. 基于土地利用变化的生态廊道识别和建设成本研究——以南京东郊地区为例[J]. 生态环境学报, 2022, 31(2): 277-285. |
[14] | 付乐, 迟妍妍, 于洋, 张丽苹, 刘斯洋, 王夏晖, 许开鹏, 王晶晶, 张信. 2000—2020年黄河流域土地利用变化特征及影响因素分析[J]. 生态环境学报, 2022, 31(10): 1927-1938. |
[15] | 王宇姝, 盛海彦, 罗莎莎, 胡月明, 余玲玲. 环青海湖4种生境土壤中原核微生物群落结构及分子网络特征[J]. 生态环境学报, 2021, 30(7): 1393-1403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||