生态环境学报 ›› 2022, Vol. 31 ›› Issue (9): 1745-1753.DOI: 10.16258/j.cnki.1674-5906.2022.09.004
收稿日期:
2022-04-02
出版日期:
2022-09-18
发布日期:
2022-11-07
通讯作者:
*徐少君(1975年生),男,讲师,博士,主要从事植被生态系统研究。E-mail: xushaojun@126.com作者简介:
秦艳培(1978年生),女,副教授,主要从事生态与旅游、区域地理等方面的研究工作。E-mail: nancky@126.com
基金资助:
QIN Yanpei1(), XU Shaojun2,*(
), TIAN Yaowu2
Received:
2022-04-02
Online:
2022-09-18
Published:
2022-11-07
摘要:
黄河流域河南段是黄河流域地形地貌特征最特殊的地区,估算和量化本区域植被和土壤有机碳储量、有机碳密度及其空间分异特征,对于准确评估黄河流域碳收支平衡、促进黄河流域生态保护和高质量发展均具有重要的意义。利用河南省第六次森林资源调查成果、第二次土壤普查数据、数字高程模型和其他文献资料,对黄河流域河南段(行政区域)的植被和土壤类型、有机碳贮量和有机碳密度及其空间分异特征进行综合分析,并探讨其成因和增碳策略。结果表明,(1)研究区以栽培植被为主,面积为3.28×104 km2,占比74.59%,主要分布于研究区的中部、东部和伊洛河两岸谷地;其次为落叶阔叶林,面积为6.80×103 km2,占比15.57%,主要分布于研究区域的西南部,优势种包括栓皮栎(Quercus variabilis Bl.)、麻栎(Quercus acutissima Carruth.)和槲栎(Quercus aliena Bl.)等。(2)土壤以潮土和褐土为主,面积分别为1.55×104 km2和1.54×104 km2,占比分别为35.23%和35.12%,潮土集中于东部,褐土分布在西部;其次为棕壤,占比11.61%,主要分布在西南部。(3)研究区植被有机碳贮量为53.24 Tg,其中落叶阔叶林有机碳贮量为24.88 Tg,占比46.73%,栽培植被有机碳贮量23.71 Tg,占比44.54%;土壤有机碳贮量(土层100 cm)为294.92 Tg,其中褐土和潮土有机碳贮量分别为108.04 Tg和91.54 Tg,占比分别为36.63%和31.04%。(4)植被有机碳密度在5.70-36.37 Mg∙hm-2之间,平均有机碳密度为12.12 Mg∙hm-2;土壤有机碳密度(土层100 cm)在14.9-151.2 Mg∙hm-2之间,平均有机碳密度为67.12 Mg∙hm-2;总有机碳密度(植被和100 cm土层)在15.09-187.57 Mg∙hm-2之间,呈西南和中北部高而中部和东部低的分布特征;在海拔梯度上,植被、土壤及总有机碳密度表现为平原 (<200 m)<丘陵 (200-500 m)<低山 (500-1000 m)<中山Ⅰ (1000-1500 m)<中山Ⅱ (>1500 m)。综上所述,黄河流域河南段的植被、土壤及其有机碳密度在水平方向和海拔梯度上呈现空间分异特征。中部和东部有机碳密度相对较低,植被主要为栽培作物,土壤以潮土为主;西部(尤其是西南部)有机碳密度高,是森林植被和灌丛的主要分布区,土壤以褐土和棕壤等相对高有机碳密度的土类为主。保护好西部(尤其是西南部)良好的植被资源,改进中部和东部栽培作物的耕作和管理方式,是稳定和增加黄河流域河南段碳贮量的关键举措。
中图分类号:
秦艳培, 徐少君, 田耀武. 黄河流域河南段植被和土壤及其碳密度空间分异研究[J]. 生态环境学报, 2022, 31(9): 1745-1753.
QIN Yanpei, XU Shaojun, TIAN Yaowu. The Spatial Differentiation of Vegetation and Soil Carbon Density in Henan Section of the Yellow River Basin[J]. Ecology and Environment, 2022, 31(9): 1745-1753.
植被类型 Vegetation type | 面积 Area/ (104 km2) | 有机碳密度 Organic carbon density/ (Mg∙hm-2) | 有机碳贮量 Organic carbon storage/ Tg | 有机碳贮量占比 Proportion of organic carbon storage/% |
---|---|---|---|---|
针叶林 Coniferous forest | 0.05 | 25.77 | 1.18 | 2.21 |
落叶阔叶林 Deciduous broadleaved forest | 0.68 | 36.37 | 24.88 | 46.73 |
其他杂阔林 Other broad-leaved forests | 0.06 | 13.04 | 0.76 | 1.43 |
竹林 bamboo forest | 0.001 | 26.5 | 0.03 | 0.06 |
栽培植物Ⅰ (经济作物) Economic crops | 0.93 | 11.12 | 10.32 | 19.39 |
栽培植物Ⅱ (粮食作物) Food crop | 2.35 | 5.7 | 13.39 | 25.15 |
灌丛 Shrub | 0.27 | 8.26 | 2.26 | 4.24 |
草甸 Meadow | 0.01 | 6.94 | 0.06 | 0.12 |
草丛 Herbosa | 0.04 | 5.74 | 0.21 | 0.39 |
沼泽 wamp | 0.01 | 17.4 | 0.16 | 0.29 |
合计 Sum | 4.39 | 53.24 | 100.00 |
表1 研究区植被的面积、有机碳密度、有机碳贮量和占比
Table 1 Area, organic carbon storage and density and its proportion of vegetation in the study area
植被类型 Vegetation type | 面积 Area/ (104 km2) | 有机碳密度 Organic carbon density/ (Mg∙hm-2) | 有机碳贮量 Organic carbon storage/ Tg | 有机碳贮量占比 Proportion of organic carbon storage/% |
---|---|---|---|---|
针叶林 Coniferous forest | 0.05 | 25.77 | 1.18 | 2.21 |
落叶阔叶林 Deciduous broadleaved forest | 0.68 | 36.37 | 24.88 | 46.73 |
其他杂阔林 Other broad-leaved forests | 0.06 | 13.04 | 0.76 | 1.43 |
竹林 bamboo forest | 0.001 | 26.5 | 0.03 | 0.06 |
栽培植物Ⅰ (经济作物) Economic crops | 0.93 | 11.12 | 10.32 | 19.39 |
栽培植物Ⅱ (粮食作物) Food crop | 2.35 | 5.7 | 13.39 | 25.15 |
灌丛 Shrub | 0.27 | 8.26 | 2.26 | 4.24 |
草甸 Meadow | 0.01 | 6.94 | 0.06 | 0.12 |
草丛 Herbosa | 0.04 | 5.74 | 0.21 | 0.39 |
沼泽 wamp | 0.01 | 17.4 | 0.16 | 0.29 |
合计 Sum | 4.39 | 53.24 | 100.00 |
土壤类别 Soil category | 面积 Area/ (104 km2) | 有机碳密度 Organic carbon density/ (Mg∙hm-2) | 有机碳贮量 Organic carbon storage/ Tg | 有机碳贮量占比 Proportion of organic carbon storage/% |
---|---|---|---|---|
褐土 Cinnamon soils | 1.54 | 7 | 108.04 | 36.63 |
潮土 Fluvo-aquic soils | 1.55 | 5.81 | 91.54 | 31.04 |
棕壤 Brown earths | 0.51 | 8.46 | 43.16 | 14.63 |
新积土 Alluvial soils | 0.27 | 6.51 | 17.38 | 5.89 |
黄绵土 Cultivated loessial soils | 0.25 | 4.51 | 11.25 | 3.82 |
黄棕壤 Yellow-brown earths | 0.07 | 8.46 | 7.30 | 2.47 |
赤红壤 Lateritic red earths | 0.04 | 9.47 | 3.78 | 1.28 |
石质土 Litho soils | 0.03 | 11.71 | 3.25 | 1.10 |
红粘土 Red clay soils | 0.04 | 8.25 | 3.04 | 1.03 |
暗棕壤 Dark-brown earths | 0.02 | 15.12 | 2.24 | 0.76 |
栗褐土 Castano-cinnamon soils | 0.01 | 10.27 | 1.36 | 0.46 |
水稻土 Paddy soils | 0.01 | 9.79 | 0.99 | 0.33 |
风沙土 Aeolian soils | 0.05 | 1.49 | 0.81 | 0.27 |
寒钙土 Frigid calcic soils | 0.003 | 12.88 | 0.39 | 0.13 |
黄褐土 Yellow-cinnamon soils | 0.01 | 5 | 0.35 | 0.12 |
碱土 Solonetzs | 0.002 | 2.99 | 0.05 | 0.02 |
合计 Sum | 4.39 | 294.92 | 100.00 |
表2 研究区土壤的面积、有机碳密度、有机碳贮量和占比
Table 2 Area, organic carbon storage and density and proportion of soil in the study area
土壤类别 Soil category | 面积 Area/ (104 km2) | 有机碳密度 Organic carbon density/ (Mg∙hm-2) | 有机碳贮量 Organic carbon storage/ Tg | 有机碳贮量占比 Proportion of organic carbon storage/% |
---|---|---|---|---|
褐土 Cinnamon soils | 1.54 | 7 | 108.04 | 36.63 |
潮土 Fluvo-aquic soils | 1.55 | 5.81 | 91.54 | 31.04 |
棕壤 Brown earths | 0.51 | 8.46 | 43.16 | 14.63 |
新积土 Alluvial soils | 0.27 | 6.51 | 17.38 | 5.89 |
黄绵土 Cultivated loessial soils | 0.25 | 4.51 | 11.25 | 3.82 |
黄棕壤 Yellow-brown earths | 0.07 | 8.46 | 7.30 | 2.47 |
赤红壤 Lateritic red earths | 0.04 | 9.47 | 3.78 | 1.28 |
石质土 Litho soils | 0.03 | 11.71 | 3.25 | 1.10 |
红粘土 Red clay soils | 0.04 | 8.25 | 3.04 | 1.03 |
暗棕壤 Dark-brown earths | 0.02 | 15.12 | 2.24 | 0.76 |
栗褐土 Castano-cinnamon soils | 0.01 | 10.27 | 1.36 | 0.46 |
水稻土 Paddy soils | 0.01 | 9.79 | 0.99 | 0.33 |
风沙土 Aeolian soils | 0.05 | 1.49 | 0.81 | 0.27 |
寒钙土 Frigid calcic soils | 0.003 | 12.88 | 0.39 | 0.13 |
黄褐土 Yellow-cinnamon soils | 0.01 | 5 | 0.35 | 0.12 |
碱土 Solonetzs | 0.002 | 2.99 | 0.05 | 0.02 |
合计 Sum | 4.39 | 294.92 | 100.00 |
高程 Elevation | 有机碳储量 Organic carbon storage/Tg | 面积 Area/ (104 km2) | 占比Proportion/ % | 有机碳密度 Organic carbon density/(Mg∙hm-2) | |||||
---|---|---|---|---|---|---|---|---|---|
植被 Vegetation | 土壤 Soil | 总碳 Total | 植被 Vegetation | 土壤 Soil | 总碳 Total | ||||
平原 (<200 m) Plain | 13.97 | 112.82 | 126.79 | 1.90 | 43.33 | 7.34 | 59.25 | 66.59 | |
丘陵 (200-500 m) Hill | 7.23 | 55.08 | 62.31 | 0.82 | 18.67 | 8.81 | 67.14 | 75.95 | |
低山 (500-1000 m) Low mountain | 15.68 | 76.23 | 91.90 | 1.05 | 23.84 | 14.97 | 72.78 | 87.75 | |
中山Ⅰ (1000-1500 m) Middle Mountain Ⅰ | 14.49 | 46.16 | 60.66 | 0.57 | 12.92 | 25.53 | 81.32 | 106.85 | |
中山Ⅱ (>1500 m) Middle Mountain Ⅱ | 1.87 | 4.62 | 6.49 | 0.05 | 1.24 | 34.35 | 84.73 | 119.08 | |
合计 Sum | 53.24 | 294.92 | 348.16 | 4.39 | 100 | 平均 Mean | 12.12 | 67.12 | 79.23 |
表3 研究区不同高程植被和土壤的有机碳贮量和有机碳密度
Table 3 Organic carbon storage and density of vegetation and soil at different elevations in the study area
高程 Elevation | 有机碳储量 Organic carbon storage/Tg | 面积 Area/ (104 km2) | 占比Proportion/ % | 有机碳密度 Organic carbon density/(Mg∙hm-2) | |||||
---|---|---|---|---|---|---|---|---|---|
植被 Vegetation | 土壤 Soil | 总碳 Total | 植被 Vegetation | 土壤 Soil | 总碳 Total | ||||
平原 (<200 m) Plain | 13.97 | 112.82 | 126.79 | 1.90 | 43.33 | 7.34 | 59.25 | 66.59 | |
丘陵 (200-500 m) Hill | 7.23 | 55.08 | 62.31 | 0.82 | 18.67 | 8.81 | 67.14 | 75.95 | |
低山 (500-1000 m) Low mountain | 15.68 | 76.23 | 91.90 | 1.05 | 23.84 | 14.97 | 72.78 | 87.75 | |
中山Ⅰ (1000-1500 m) Middle Mountain Ⅰ | 14.49 | 46.16 | 60.66 | 0.57 | 12.92 | 25.53 | 81.32 | 106.85 | |
中山Ⅱ (>1500 m) Middle Mountain Ⅱ | 1.87 | 4.62 | 6.49 | 0.05 | 1.24 | 34.35 | 84.73 | 119.08 | |
合计 Sum | 53.24 | 294.92 | 348.16 | 4.39 | 100 | 平均 Mean | 12.12 | 67.12 | 79.23 |
[1] | BALESDENT J, CHENU C, BALABANE M, 2000. Relationship of soil organic matter dynamics to physical protection and tillage[J]. Soil & Tillage Research, 53(3-4): 215-230. |
[2] |
DIXON R K, SOLOMON A M, BROWN S, et al., 1994. Carbon pools and flux of global forest ecosystems[ J]. Science, 263(5144): 185-190.
PMID |
[3] |
FANG J Y, YU G R, LIU L L, et al., 2018. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4015-4020.
DOI PMID |
[4] |
HEIMANN M, REICHSTEIN M., 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature, 451(7176): 289-292.
DOI URL |
[5] |
LU F, HU H, SUN W, et al., 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4039-4044.
DOI PMID |
[6] |
PAN Y, BIRDSEY R A, FANG J, et al., 2011. A large and persistent carbon sink in the world’s forests[J]. Science, 333(6045): 988-993.
DOI URL |
[7] | FANG J Y, SONG Y C, LIU H Y, et al., 2002. Vegetation-climate relationship and its application in the division of vegetation zone in China[J]. Acta Botanica Sinica, 44(9): 1105-1122. |
[8] | 崔凯凯, 刘德林, 李翔海, 2021. 黄河河南段流域洪灾的社会脆弱性评价[J]. 水土保持通报, 41(5): 304-310. |
CUI K K, LIU D L, LI X H, 2021. Evaluation on vulnerability to flood hazards in Henan section of Yellow River Basion[J]. Bulletin of Soil and Water Conservation, 41(5): 304-310. | |
[9] | 方精云, 郭兆迪, 2007a. 寻找失去的陆地碳汇[J]. 自然杂志, 29(1): 1-6. |
FANG J Y, GUO Z D, 2007a. Looking for missing carbon sinks from terrestrial ecosystem[J]. Chinese Journal of Nature, 29(1): 1-6. | |
[10] | 方精云, 郭兆迪, 朴世龙, 等, 2007b. 1981-2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 37(6): 1-9. |
FANG J Y, GUO Z D, PIAO S L, et al., 2007b. Estimation of terrestrial vegetation carbon sequestration in China from 1981 to 2000[J]. Science in China (Series D), 37(6): 1-9. | |
[11] |
傅伯杰, 牛栋, 赵士洞, 2005. 全球变化与陆地生态系统研究: 回顾与展望[J]. 地球科学进展, 20(5): 556-560.
DOI |
FU B J, NIU D, ZHAO S D, 2005. Study on global change and terrestrial ecosystems: history and prospect[J]. Advances in Earth Science, 20(5): 556-560. | |
[12] |
辜翔, 张仕吉, 刘兆丹, 等, 2018. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 42(5): 595-608.
DOI |
GU X, ZHANG S J, LIU Z D, et al., 2018. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China[J]. Chinese Journal of Plant Ecology, 42(5): 595-608.
DOI |
|
[13] |
何林倩, 刘倩, 王德彩, 等, 2021. 基于数字土壤制图技术的土壤有机碳储量估算[J]. 应用生态学报, 32(2): 591-600.
DOI |
HE L Q, LIU Q, WANG D C, et al., 2021. Estimation of soil organic carbon storage based on digital soil mapping technique[J]. Chinese Journal of Applied Ecology, 32(2): 591-600. | |
[14] | 胡会峰, 刘国华, 2006. 森林管理在全球CO2减排中的作用[J]. 应用生态学报, 17(4): 709-714. |
HU H F, LIU G H, 2006. Roles of forest management in global carbon dioxide mitigation[J]. Chinese Journal of Applied Ecology, 17(4): 709-714. | |
[15] | 解宪丽, 孙波, 周慧珍, 等, 2004. 中国土壤有机碳密度和储量的估算与空间分布分析[J]. 土壤学报, 41(1): 35-43. |
XIE X L, SUN B, ZHOU H Z, et al., 2004. Organic carbon density and storage in soils of China and spatial analysis[J]. Acta Pedologica Sinica, 28(10): 1927-1935. | |
[16] | 金彪, 曾掌权, 彭湃, 等, 2017. 中亚热带常绿阔叶林不同演替阶段乔木层生物量特征[J]. 湖南林业科技, 44(5): 42-45. |
JIN B, ZENG Z Q, PENG P, et al., 2017. Tree biomass of evergreen broad-leaf forest in mid-subtropical region of China at three succession stages[J]. Hunan Forestry Science & Technology, 44(5): 42-45. | |
[17] | 李克让, 王绍强, 曹明奎, 2003. 中国植被和土壤碳贮量[J]. 中国科学 (D辑: 地球科学), 33(1): 72-80. |
LI K R, WANG S Q, CAO M K, 2003. Vegetation and carbon storage in China[J]. Science in China (Series D), 33(1): 72-80. | |
[18] | 李琳, 赵威, 2019. 豫西北地区暖性灌草丛类草地生态系统固碳特征[J]. 草业学报, 28(5): 26-35. |
LI L, ZHAO W, 2019. Carbon sequestration characteristics of a warm shrub tussock grassland ecosystem in northwestern Henan[J]. Acta Prataculturae Sinica, 28(5): 26-35. | |
[19] | 刘丽娜, 魏杰, 马云霞, 等, 2021. 基于时空变化的黄河流域河南段生态环境评价研究[J]. 环境科学与管理, 46(2): 169-173. |
LIU L N, WEI J, MA Y X, et al., 2021. Temporal and spacial changes for ecological environment of Yellow River in Henan province[J]. Environmental Science and Management, 46(2): 169-173. | |
[20] | 刘领, 王艳芳, 悦飞雪, 等, 2019. 基于森林清查资料的河南省森林植被碳储量动态变化[J]. 生态学报, 39(3): 864-873. |
LIU L, WANG Y F, YUE F X, et al., 2019. Dynamic of forest vegetation carbon storage in Henan Province based on forest inventory data[J]. Acta Ecologica Sinica, 39(3): 864-873. | |
[21] | 刘小燕, 崔耀平, 董金玮, 等, 2021. 黄河中下游影响区生态空间和生态指数变化评估[J]. 生态学报, 41(20): 8030-8039. |
LIU X Y, CUN Y P, DONG J W, et al., 2021. Assessment of ecological space and ecological index changes in the affected area of the middle and lower reaches of the Yellow River[J]. Acta Ecologica Sinica, 41(20): 8030-8039. | |
[22] |
刘洋, 毕军, 吕建树, 2019. 生态系统服务分类综述与流域尺度重分类研究[J]. 资源科学, 41(7): 1189-1200.
DOI |
LIU Y, BI J, LÜ J S, 2019. Classification of ecosystem services and a reclassification framework of watershed ecosystem services[J]. Resources Science, 41(7): 1189-1200.
DOI |
|
[23] | 刘宗才, 曹振强, 2001. 河南植物区系分区研究[J]. 河南农业大学学报, 35(2): 145-148. |
LIU Z C, CAO Z Q, 2001. Study on the division of the floristic area in Henan[J]. Journal of Henan Agricultural University, 35(2): 145-148. | |
[24] | 罗怀良, 2014. 中国农田作物植被碳储量研究进展[J]. 生态环境学报, 23(4): 692-697. |
LUO H L, 2014. Advances on carbon storage in crops of China[J]. Ecology and Environmental Sciences, 23(4): 692-697. | |
[25] |
吕超群, 孙书存, 2004. 陆地生态系统碳密度格局研究概述[J]. 植物生态学报, 28(5): 692-703.
DOI |
LÜ C Q, SUN S C, 2004. A review on the distribution patterns of carbon density in terrestrial ecosystems[J]. Acta Phytoecologic Sinica, 28(5): 692-703. | |
[26] | 聂桐, 董国涛, 蒋晓辉, 等, 2022. 榆林地区植被时空分异特征及其影响因素研究[J]. 生态环境学报, 31(1): 26-36. |
NIE T, DONG G T, JIANG X H, et al., 2022. Spatio-temporal variations and influencing factors of vegetation in Yulin[J]. Ecology and Environmental Sciences, 31(1): 26-36. | |
[27] | 任圆圆, 张学雷, 李笑莹, 2020. 河南省土壤与植被空间分布的多样性特征研究[J]. 土壤通报, 51(4): 757-766. |
REN Y Y, ZHANG X L, LI X Y, 2020. Diversity Characteristics of Spatial Distribution of Soil and Vegetation in Henan Province[J]. Chinese Journal of Soil Science, 51(4): 757-766. | |
[28] | 石丽丽, 谷建才, 于景金, 等, 2008. 塞罕坝国家级自然保护区土壤类型分布与演变[J]. 安徽农业科学, 36(10): 4185-4186. |
SHI L L, GU J C, YU J J, et al., 2008. Soil types distribution and evolution of Saihanba National Nature Reserve[J]. Journal of Anhui Agricultural Science, 36(10): 4185-4186. | |
[29] | 孙丽娜, 范晓辉, 王孟本, 2018. 山西森林植被碳储量空间分布格局[J]. 山西大学学报: 自然科学版, 41(1): 226-232. |
SUN L N, FANG X H, WANG M B, 2018. Spatial patterns of forest vegetation carbon stock in Shanxi[J]. Journal of Shanxi University (Natural Science Edition), 41(1): 226-232. | |
[30] | 田耀武, 刘谊锋, 刘杨, 等, 2019. 河南森林碳汇与碳汇造林[M]. 北京: 中国林业出版社: 59-70. |
TIAN Y W, LIU Y F, LIU Y, et al., 2019. Forest carbon sink and afforestation in Henan Province[M]. Beijing: Chinese Forestry Publishing House: 59-70. | |
[31] | 习近平, 2019. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 中国水利 (20): 1-3. |
XI J P, 2019. Speech at symposium on ecological protection and high quality development in the Yellow River Basin[J]. China Water Resources (20): 1-3. | |
[32] | 肖东洋, 牛海鹏, 闫弘轩, 等, 2020. 1990-2018年黄河流域 (河南段) 土地利用格局时空演变[J]. 农业工程学报, 36(15): 271-281. |
XIAO D Y, NIU H P, YAN H X, et al., 2020. Spatiotemperal evolution of land use pattern in the Yellow River Basin (Henan section) from 1990 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(15): 271-281. | |
[33] | 肖军仓, 袁彩凤, 张晓果, 2017. 河南省生态系统水源涵养功能及其空间分布格局[J]. 环境与可持续发展, 42(5): 160-162. |
XIAO J C, YUANG C F, ZHANG X G, 2017. Water conservation function of the ecosystem in Henan Province and its spatial distribution patterns[J]. Enviroment and Sustainble Development, 42(5): 160-162. | |
[34] |
徐丽, 何念鹏, 于贵瑞, 2018. 2010s中国陆地生态系统碳密度数据集[DB/OL]. Science Data Bank, DOI: 10.11922/sciencedb.603:10.11922/sciencedb.603.
DOI |
XU L, HE N P, YU G R, 2018. A dataset of carbon density in Chinese terrestrial ecosystems (2010s)[DB/OL]. Science Data Bank, DOI: 10.11922/sciencedb.603:10.11922/sciencedb.603.
DOI |
|
[35] |
徐新良, 2017. 中国人口空间分布公里网格数据集(http://www.resdc.cn/DOI)[J/OL]. DOI: 10.12078/2017121101.
DOI |
XU X L, 2017. Kilometer grid dataset of population spatial distribution in China (http://www.resdc.cn/DOI)[J/OL]. DOI: 10.12078/2017121101.
DOI |
|
[36] | 杨元合, 石岳, 孙文娟, 等, 2022. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 52(4): 534-574. |
YANG Y H, SHI Y, SUN W J, et al., 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Scientia Sinica Vitae, 52(4): 534-574. | |
[37] | 杨媛媛, 佘志鹏, 宋进喜, 等, 2022. 2000年以来浐灞河流域不同地貌区植被变化特征及影响因素研究[J]. 生态环境学报, 31(2): 224-230. |
YANG Y Y, SHE Z P, SONG J X, et al., 2022. Study on vegetation variation characteristics and influencing factors in different geomorphic zones in the Chanbahe River basin since 2000[J]. Ecology and Environmental Sciences, 31(2): 224-230. | |
[38] | 于建军, 杨锋, 吴克宁, 等, 2008. 河南省土壤有机碳储量及空间分布[J]. 应用生态学报, 19(5): 1058-1063. |
YU J J, YANG F, WU K N, et al., 2018. Soil organic carbon storage and its spatial distribution in Henan Province[J]. Chinese Journal Applied Ecology, 19(5): 1058-1063. | |
[39] | 张黛静, 宗洁静, 马建辉, 等, 2019. 小麦-玉米周年耕作方式与增施有机肥对夏玉米土壤有机碳库及温室气体排放的影响[J]. 生态环境学报, 28(10): 1927-1935. |
ZHANG D J, ZONG J J, MA J H, 2019. Effects of wheat-maize rotation system tillage method and enhanced organic fertilizer on soil organic carbon pool and greenhouse gas emission in maize soil[J]. Ecology and Environmental Sciences, 28(10): 1927-1935. | |
[40] | 张静, 杜加强, 盛芝露, 等, 2021. 1982-2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 30(5): 929-937. |
ZHANG J, DU J Q, SHENG Z L, et al., 2021. Spatio-temporal changes of vegetation cover and their influencing factors in the Yellow River Basin from 1982 to 2015[J]. Ecology and Environmental Sciences, 30(5): 929-937. | |
[41] | 张向前, 杨文飞, 徐云姬, 2019. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述[J]. 生态环境学报, 28(12): 2464-2472. |
ZHANG X Q, YANG W F, XU Y J, 2019. Effects of main tillage methods on soil structure, nutrients and micro-ecological environment of upland in China: A review[J]. Ecology and Environmental Sciences, 28(12): 2464-2472. | |
[42] | 张煜星, 王雪军, 2021. 全国森林蓄积生物量模型建立和碳变化研究[J]. 中国科学: 生命科学, 51(2): 199-214. |
ZHANG Y X, WANG X J, 2021. Study on forest volume-to-biomass modeling and carbon storage dynamics in China[J]. Science in China (Series C): 51(2): 199-214.
DOI URL |
|
[43] | 赵广帅, 李运生, 高静, 等, 2014. 黄河下游灌区土壤碳储量及碳密度分布[J]. 生态环境学报, 23(7): 1113-1120. |
ZHAO G S, LI Y S, GAO J, et al., 2014. Storage and Spatial distribution of soils carbon in lower reaches of the Yellow River irrigation district[J]. Ecology and Environmental Sciences, 23(7): 1113-1120. | |
[44] | 钟华平, 樊江文, 于贵瑞, 等, 2005. 草地生态系统碳蓄积的研究进展[J]. 草业科学, 22(1): 4-11. |
ZHONG H P, FAN J W, YU G R, et al., 2005. The research progress of carbon storage in grassland ecosystem[J]. Pratacultural Science, 22(1): 4-11. |
[1] | 王雪梅, 杨雪峰, 赵枫, 安柏耸, 黄晓宇. 基于机器学习算法的干旱区绿洲地上生物量估算[J]. 生态环境学报, 2023, 32(6): 1007-1015. |
[2] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[3] | 巫晨煜, 许帆帆, 魏士博, 樊晶晶, 刘观鹏, 王坤. 渭河流域地表植被覆盖对气候变化的响应研究[J]. 生态环境学报, 2023, 32(5): 835-844. |
[4] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[5] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[6] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[7] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[8] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[9] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[10] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[11] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[12] | 李晖, 李必龙, 葛黎黎, 韩琛惠, 杨倩, 张岳军. 2000-2021年汾河流域植被时空演变特征及地形效应[J]. 生态环境学报, 2023, 32(3): 439-449. |
[13] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[14] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[15] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||