生态环境学报 ›› 2022, Vol. 31 ›› Issue (1): 52-61.DOI: 10.16258/j.cnki.1674-5906.2022.01.007
陈双双1,2(), 朱宁华1,*(), 周光益2,*(), 袁星明1,2, 尚海3, 王迤翾1
收稿日期:
2021-08-10
出版日期:
2022-01-18
发布日期:
2022-03-10
通讯作者:
周光益,男,研究员,博士,研究方向为森林生态学。E-mail: cheersritf@163.com作者简介:
陈双双(1996年生),女,硕士研究生,研究方向为石漠化生态治理。E-mail: csuft100004@126.com
基金资助:
CHEN Shuangshuang1,2(), ZHU Ninghua1,*(), ZHOU Guangyi2,*(), YUAN Xingming1,2, SHANG Hai3, WANG Yixuan1
Received:
2021-08-10
Online:
2022-01-18
Published:
2022-03-10
摘要:
目前石漠化地区的植被恢复是生态系统研究的一大难题。以武陵山石漠化综合治理国家长期科研基地人工林为研究区,通过野外踏查选定樟树-马尾松人工林为研究对象,采用单因素方差分析、相关性分析和主成分分析相结合的方法,研究该地区樟树Cinnamomum camphora-马尾松Pinus massoniana林在无石漠化、轻度石漠化、中度石漠化和强度石漠化4种等级石漠化环境下的植被特征、土壤物理特征以及两者之间的关系,以期探寻不同等级石漠化环境下人工林植被和土壤物理性质的变化规律,为该地区生态恢复和石漠化治理提供理论依据。结果显示,(1)4种等级石漠化环境的物种多样性指数存在显著差异,均匀度与丰富度指数随石漠化等级的增加而逐渐减小。(2)草本层植物共有24科35属36种,以禾本科、菊科为主;灌木层植物共有28科43属47种,以蔷薇科为主;乔木层植物共有13科13属13种,以樟科为主,物种相对丰富。同一物种对不同等级石漠化环境的适应性差异显著,蔷薇科植物可作为石漠化等级的区分指标。(3)同一石漠化环境下,除土壤容重外,土壤自然含水量、田间持水量、最大持水量、毛管持水量、毛管孔隙度、非毛管孔隙度、总孔隙度、土壤通气度等土壤物理指标随土层的加深呈减小趋势。不同石漠化环境下土壤物理特征(土壤容重、最大持水量、毛管持水量、田间持水量)存在显著差异(P<0.05),除土壤容重以外,其他指标随着石漠化等级的增加呈现先减小后增加的趋势。(4)相关性分析表明,土壤物理特征与石漠化等级、植物多样性指数间存在显著的相关性(P<0.05)。主成分分析表明,土壤容重、土壤自然含水量、田间持水量、最大持水量、毛管持水量、毛管孔隙度和总孔隙度是影响不同等级石漠化环境下植物群落特征的主要土壤因子,累积解释量为82.486%。综上,在人工造林一定时间后,该区域不同等级石漠化环境下的物种数量逐渐增加,土壤物理结构有所改善,植被和土壤之间存在相互作用,但距离恢复成理想的群落结构还有一定的差距。建议在后期植被恢复时不仅要考虑植物的多样性,还要考虑不同石漠化等级的适生植物物种。
中图分类号:
陈双双, 朱宁华, 周光益, 袁星明, 尚海, 王迤翾. 不同等级石漠化环境下人工乔木林的植被与土壤物理特征[J]. 生态环境学报, 2022, 31(1): 52-61.
CHEN Shuangshuang, ZHU Ninghua, ZHOU Guangyi, YUAN Xingming, SHANG Hai, WANG Yixuan. Vegetation and Soil Physical Characteristics of Artificial Arbor Forests under Different Grades of Rocky Desertification[J]. Ecology and Environment, 2022, 31(1): 52-61.
石漠化等级 Degree of rocky desertification | 岩石裸露率 Percentage of exposed rock/% | 样地植被+土壤覆盖率/% Vegetation+Soil coverage/ % | 土壤类型 Soil type | 平均海拔 Average altitude/ m | 平均坡度 Average slope angle/(°) | 中心点坐标 Latitude and longitude |
---|---|---|---|---|---|---|
无石漠化 Nil | <20 | >80 | 黄壤 | 470 | 8 | 29°3′9.02″N, 110°13′37″E |
轻度石漠化 Low | 31-50 | 69-50 | 黄壤 | 480 | 15 | 29°3′11.96″N, 110°13′36.83″E |
中度石漠化 Middle | 51-70 | 49-30 | 黄壤 | 482 | 25 | 29°3′10.19″N, 110°13′36.10″E |
强度石漠化 High | >70 | <30 | 黄壤 | 455 | 33 | 29°3′12.98″N, 110°13′38.92″E |
表1 研究区样地基本概况
Table1 Basic information of sample plots in the study
石漠化等级 Degree of rocky desertification | 岩石裸露率 Percentage of exposed rock/% | 样地植被+土壤覆盖率/% Vegetation+Soil coverage/ % | 土壤类型 Soil type | 平均海拔 Average altitude/ m | 平均坡度 Average slope angle/(°) | 中心点坐标 Latitude and longitude |
---|---|---|---|---|---|---|
无石漠化 Nil | <20 | >80 | 黄壤 | 470 | 8 | 29°3′9.02″N, 110°13′37″E |
轻度石漠化 Low | 31-50 | 69-50 | 黄壤 | 480 | 15 | 29°3′11.96″N, 110°13′36.83″E |
中度石漠化 Middle | 51-70 | 49-30 | 黄壤 | 482 | 25 | 29°3′10.19″N, 110°13′36.10″E |
强度石漠化 High | >70 | <30 | 黄壤 | 455 | 33 | 29°3′12.98″N, 110°13′38.92″E |
层次 Layer | 科名 Family | 属名 Genus | 种名 Species | 重要值 Importance value | |||
---|---|---|---|---|---|---|---|
无石漠化 Nil/% | 轻度石漠化 Low/% | 中度石漠化 Middle/% | 强度石漠化 High/% | ||||
草本层 Herb layer | 唇形科 Lamiaceae | 黄芩属 Scutellaria | 韩信草 Scutellaria indica | 2.12 | 3.23 | 1.74 | 0.73 |
豆科 Fabaceae | 两型豆属 Amphicarpaea | 两型豆 Amphicarpaea edgeworthii | 11.71 | 19.91 | 14.43 | 11.63 | |
凤尾蕨科 Pteridaceae | 凤尾蕨属 Pteris | 岩凤尾蕨 Pteris deltodon | 0.86 | 1.36 | 1.84 | 2.54 | |
禾本科 Poaceae | 甘蔗属 Saccharum | 斑茅 Saccharum arundinaceum | 2.12 | 2.91 | 2.17 | 7.74 | |
荩草属 Arthraxon | 荩草 Arthraxon hispidus | 4.1 | 6.43 | 3.46 | 5.48 | ||
画眉草属 Eragrostis | 知风草 Eragrostis ferruginea | 2.64 | 4.46 | 6.77 | 2.63 | ||
金星蕨科 Thelypteridaceae | 毛蕨属 Cyclosorus | 毛蕨 Cyclosorus interruptus | 33.16 | 15.04 | 15.86 | 26.3 | |
鳞毛蕨科 Dryopteridaceae | 鳞毛蕨属 Dryopteris | 高鳞毛蕨 Dryopteris simasakii | 0.39 | 1.62 | 4.6 | 4.87 | |
贯众属 Cyrtomium | 贯众 Cyrtomium fortunei | 1.49 | 3.48 | 4.31 | 4.32 | ||
耳蕨属 Polystichum | 对马耳蕨 Polystichum tsus-simense | 0.53 | 2.91 | 2.56 | 0.49 | ||
龙胆科 Gentianaceae | 双蝴蝶属 Tripterospermum | 双蝴蝶 Tripterospermum chinense | 3.38 | 0.33 | 3.12 | 1.86 | |
茜草科 Rubiaceae | 茜草属 Rubia | 茜草 Rubia cordifolia | 2.85 | 2.69 | 3.05 | 4.62 | |
蔷薇科 Rosaceae | 龙牙草属 Agrimonia | 龙芽草 Agrimonia pilosa | 4.95 | 7.01 | 6.96 | 3.39 | |
蛇莓属 Duchesnea | 蛇莓 Duchesnea indica | 3.56 | 1.98 | 2.09 | 0.63 | ||
莎草科Cyperaceae | 莎草属 Cyperus | 莎草 Cyperus rotundus | 12.19 | 13.85 | 12.67 | 9.05 | |
灌木层 Shrub layer | 菝葜科 Smilacaceae | 菝葜属 Smilax | 小叶菝葜 Smilax microphylla | 5.89 | 11.71 | 5.83 | 10.66 |
菝葜 Smilax china | 1.29 | 1.89 | 0.74 | 2.77 | |||
报春花科 Primulaceae | 铁仔属 Myrsine | 铁仔 Myrsine africana | — | — | 1.08 | 7.31 | |
豆科 Fabaceae | 黄檀属 Dalbergia | 黄檀 Dalbergia hupeana | 2.53 | 3.84 | 0.72 | 1.09 | |
防己科 Menispermaceae | 细圆藤属 Pericampylus | 细圆藤 Pericampylus glaucus | 0.49 | 49.13 | 0.79 | 4.25 | |
胡颓子科 Elaeagnaceae | 胡颓子属 Elaeagnus | 胡颓子 Elaeagnus pungens | 3.86 | 3.33 | 0.55 | — | |
锦葵科 Malvaceae | 扁担杆属 Grewia | 扁担杆 Grewia biloba | 2.4 | 0.97 | 1.23 | 1.6 | |
楝科 Meliaceae | 香椿属 Toona | 香椿 Toona sinensis | 1.79 | — | 1.39 | 4.25 | |
葡萄科 Vitaceae | 蛇葡萄属 Ampelopsis | 蓝果蛇葡萄 Ampelopsis bodinieri | 2.97 | 2.27 | 9.29 | 3.09 | |
地锦属 Parthenocissus | 地锦 Parthenocissus tricuspidata | 0.51 | 0.78 | 2.75 | 2.23 | ||
茜草科 Rubiaceae | 白马骨属 Serissa | 六月雪 Serissa japonica | 18.73 | 11.16 | 16.48 | 0.82 | |
蔷薇科 Rosaceae | 悬钩子属 Rubus | 寒莓 Rubus buergeri | 2.73 | 1.4 | 1.05 | 0.99 | |
忍冬科 Caprifoliaceae | 忍冬属 Lonicera | 忍冬 Lonicera japonica | 6.94 | 7.55 | 2.91 | 4.72 | |
荚蒾属 Viburnum | 桦叶荚迷 Viburnum betulifolium | 1.74 | 0.47 | 1.67 | 2.41 | ||
桑科 Moraceae | 榕属 Ficus | 地果 Ficus tikoua | 5.81 | 10.07 | 3.9 | 9.71 | |
山茶科 Theaceae | 山茶属 Camellia | 油茶 Camellia oleifera | 3.73 | 1.75 | 9.01 | 4.9 | |
鼠李科 Rhamnaceae | 鼠李属 Rhamnus | 圆叶鼠李 Rhamnus globosa | 6.69 | 10.65 | 6.77 | 6.18 | |
勾儿茶属 Berchemia | 勾儿茶 Berchemia sinica | 6.4 | — | 1.38 | 3.36 | ||
无患子科 Sapindaceae | 槭属 Acer | 青榨槭 Acer davidii | 2.31 | 1.34 | 2.99 | 1.83 | |
五加科 Araliaceae | 常春藤属 Hedera | 常春藤 Hedera helix | 0.94 | 1.63 | 1.86 | 5.24 | |
五味子科 Schisandraceae | 五味子属 Schisandra | 铁箍散 Schisandra propinqua | 0.79 | 3.07 | 1.59 | 1.33 | |
芸香科 Rutaceae | 花椒属 Zanthoxylum | 岭南花椒 Zanthoxylum austrosinense | 4.55 | 3.24 | 3.58 | 2.02 | |
乔木层 Tree layer | 樟科 Lauraceae | 樟属Cinnamomum | 樟树 Cinnamomum camphora | 52.18 | 59.53 | 52.17 | 65.21 |
松科 Pinaceae | 松属 Pinus | 马尾松 Pinus massoniana | 23.80 | 20.34 | 25.20 | 25.53 | |
木兰科 Magnoliaceae | 鹅掌楸属 Liriodendron | 马褂木 Liriodendron chinense | 4.06 | 4.30 | 1.64 | — | |
山茱萸科 Cornaceae | 山茱萸属 Cornus | 光皮徕木Cornus wilsoniana | 3.94 | — | 3.09 | — | |
桦木科 Betulaceae | 榛属 Corylus | 华榛 Corylus chinensis | 2.37 | 6.73 | 6.19 | 9.26 | |
大戟科 Euphorbiaceae | 油桐属 Vernicia | 油桐 Vernicia fordii | 2.31 | 1.93 | 1.31 | — | |
楝科 Meliaceae | 香椿属 Toona | 香椿 Toona sinensis | 2.16 | 1.45 | 2.66 | — | |
冬青科 Aquifoliaceae | 冬青属 Ilex | 冬青 Ilex chinensis | — | 5.72 | — | — | |
漆树科 Anacardiaceae | 南酸枣属 Choerospondias | 南酸枣 Choerospondias axillaris | — | — | 5.24 | — |
表2 不同等级石漠化环境下植物群落物种统计表
Table 2 Species statistics of plant communities in different grades of rocky desertification
层次 Layer | 科名 Family | 属名 Genus | 种名 Species | 重要值 Importance value | |||
---|---|---|---|---|---|---|---|
无石漠化 Nil/% | 轻度石漠化 Low/% | 中度石漠化 Middle/% | 强度石漠化 High/% | ||||
草本层 Herb layer | 唇形科 Lamiaceae | 黄芩属 Scutellaria | 韩信草 Scutellaria indica | 2.12 | 3.23 | 1.74 | 0.73 |
豆科 Fabaceae | 两型豆属 Amphicarpaea | 两型豆 Amphicarpaea edgeworthii | 11.71 | 19.91 | 14.43 | 11.63 | |
凤尾蕨科 Pteridaceae | 凤尾蕨属 Pteris | 岩凤尾蕨 Pteris deltodon | 0.86 | 1.36 | 1.84 | 2.54 | |
禾本科 Poaceae | 甘蔗属 Saccharum | 斑茅 Saccharum arundinaceum | 2.12 | 2.91 | 2.17 | 7.74 | |
荩草属 Arthraxon | 荩草 Arthraxon hispidus | 4.1 | 6.43 | 3.46 | 5.48 | ||
画眉草属 Eragrostis | 知风草 Eragrostis ferruginea | 2.64 | 4.46 | 6.77 | 2.63 | ||
金星蕨科 Thelypteridaceae | 毛蕨属 Cyclosorus | 毛蕨 Cyclosorus interruptus | 33.16 | 15.04 | 15.86 | 26.3 | |
鳞毛蕨科 Dryopteridaceae | 鳞毛蕨属 Dryopteris | 高鳞毛蕨 Dryopteris simasakii | 0.39 | 1.62 | 4.6 | 4.87 | |
贯众属 Cyrtomium | 贯众 Cyrtomium fortunei | 1.49 | 3.48 | 4.31 | 4.32 | ||
耳蕨属 Polystichum | 对马耳蕨 Polystichum tsus-simense | 0.53 | 2.91 | 2.56 | 0.49 | ||
龙胆科 Gentianaceae | 双蝴蝶属 Tripterospermum | 双蝴蝶 Tripterospermum chinense | 3.38 | 0.33 | 3.12 | 1.86 | |
茜草科 Rubiaceae | 茜草属 Rubia | 茜草 Rubia cordifolia | 2.85 | 2.69 | 3.05 | 4.62 | |
蔷薇科 Rosaceae | 龙牙草属 Agrimonia | 龙芽草 Agrimonia pilosa | 4.95 | 7.01 | 6.96 | 3.39 | |
蛇莓属 Duchesnea | 蛇莓 Duchesnea indica | 3.56 | 1.98 | 2.09 | 0.63 | ||
莎草科Cyperaceae | 莎草属 Cyperus | 莎草 Cyperus rotundus | 12.19 | 13.85 | 12.67 | 9.05 | |
灌木层 Shrub layer | 菝葜科 Smilacaceae | 菝葜属 Smilax | 小叶菝葜 Smilax microphylla | 5.89 | 11.71 | 5.83 | 10.66 |
菝葜 Smilax china | 1.29 | 1.89 | 0.74 | 2.77 | |||
报春花科 Primulaceae | 铁仔属 Myrsine | 铁仔 Myrsine africana | — | — | 1.08 | 7.31 | |
豆科 Fabaceae | 黄檀属 Dalbergia | 黄檀 Dalbergia hupeana | 2.53 | 3.84 | 0.72 | 1.09 | |
防己科 Menispermaceae | 细圆藤属 Pericampylus | 细圆藤 Pericampylus glaucus | 0.49 | 49.13 | 0.79 | 4.25 | |
胡颓子科 Elaeagnaceae | 胡颓子属 Elaeagnus | 胡颓子 Elaeagnus pungens | 3.86 | 3.33 | 0.55 | — | |
锦葵科 Malvaceae | 扁担杆属 Grewia | 扁担杆 Grewia biloba | 2.4 | 0.97 | 1.23 | 1.6 | |
楝科 Meliaceae | 香椿属 Toona | 香椿 Toona sinensis | 1.79 | — | 1.39 | 4.25 | |
葡萄科 Vitaceae | 蛇葡萄属 Ampelopsis | 蓝果蛇葡萄 Ampelopsis bodinieri | 2.97 | 2.27 | 9.29 | 3.09 | |
地锦属 Parthenocissus | 地锦 Parthenocissus tricuspidata | 0.51 | 0.78 | 2.75 | 2.23 | ||
茜草科 Rubiaceae | 白马骨属 Serissa | 六月雪 Serissa japonica | 18.73 | 11.16 | 16.48 | 0.82 | |
蔷薇科 Rosaceae | 悬钩子属 Rubus | 寒莓 Rubus buergeri | 2.73 | 1.4 | 1.05 | 0.99 | |
忍冬科 Caprifoliaceae | 忍冬属 Lonicera | 忍冬 Lonicera japonica | 6.94 | 7.55 | 2.91 | 4.72 | |
荚蒾属 Viburnum | 桦叶荚迷 Viburnum betulifolium | 1.74 | 0.47 | 1.67 | 2.41 | ||
桑科 Moraceae | 榕属 Ficus | 地果 Ficus tikoua | 5.81 | 10.07 | 3.9 | 9.71 | |
山茶科 Theaceae | 山茶属 Camellia | 油茶 Camellia oleifera | 3.73 | 1.75 | 9.01 | 4.9 | |
鼠李科 Rhamnaceae | 鼠李属 Rhamnus | 圆叶鼠李 Rhamnus globosa | 6.69 | 10.65 | 6.77 | 6.18 | |
勾儿茶属 Berchemia | 勾儿茶 Berchemia sinica | 6.4 | — | 1.38 | 3.36 | ||
无患子科 Sapindaceae | 槭属 Acer | 青榨槭 Acer davidii | 2.31 | 1.34 | 2.99 | 1.83 | |
五加科 Araliaceae | 常春藤属 Hedera | 常春藤 Hedera helix | 0.94 | 1.63 | 1.86 | 5.24 | |
五味子科 Schisandraceae | 五味子属 Schisandra | 铁箍散 Schisandra propinqua | 0.79 | 3.07 | 1.59 | 1.33 | |
芸香科 Rutaceae | 花椒属 Zanthoxylum | 岭南花椒 Zanthoxylum austrosinense | 4.55 | 3.24 | 3.58 | 2.02 | |
乔木层 Tree layer | 樟科 Lauraceae | 樟属Cinnamomum | 樟树 Cinnamomum camphora | 52.18 | 59.53 | 52.17 | 65.21 |
松科 Pinaceae | 松属 Pinus | 马尾松 Pinus massoniana | 23.80 | 20.34 | 25.20 | 25.53 | |
木兰科 Magnoliaceae | 鹅掌楸属 Liriodendron | 马褂木 Liriodendron chinense | 4.06 | 4.30 | 1.64 | — | |
山茱萸科 Cornaceae | 山茱萸属 Cornus | 光皮徕木Cornus wilsoniana | 3.94 | — | 3.09 | — | |
桦木科 Betulaceae | 榛属 Corylus | 华榛 Corylus chinensis | 2.37 | 6.73 | 6.19 | 9.26 | |
大戟科 Euphorbiaceae | 油桐属 Vernicia | 油桐 Vernicia fordii | 2.31 | 1.93 | 1.31 | — | |
楝科 Meliaceae | 香椿属 Toona | 香椿 Toona sinensis | 2.16 | 1.45 | 2.66 | — | |
冬青科 Aquifoliaceae | 冬青属 Ilex | 冬青 Ilex chinensis | — | 5.72 | — | — | |
漆树科 Anacardiaceae | 南酸枣属 Choerospondias | 南酸枣 Choerospondias axillaris | — | — | 5.24 | — |
石漠化等级 Degrees of rocky desertification | 多样性指数 Shannon-Wiener index | 优势度指数 Simpson index | 均匀度指数 Evenness index | 丰富度指数 Richness index |
---|---|---|---|---|
无石漠化 Nil | 2.80±0.27a | 0.82±0.12b | 0.78±0.07a | 44.33±6.66a |
轻度石漠化 Low | 2.85±0.09a | 0.89±0.07a | 0.77±0.03a | 43.00±5.30a |
中度石漠化 Middle | 2.85±0.05a | 0.88±0.01a | 0.75±0.02b | 41.67±0.08ab |
强度石漠化 High | 2.56±0.40b | 0.90±0.01a | 0.68±0.13c | 38.67±2.52c |
表3 不同等级石漠化环境植物多样性指数
Table 3 Plant diversity indices of different degrees of rocky desertification surroundings
石漠化等级 Degrees of rocky desertification | 多样性指数 Shannon-Wiener index | 优势度指数 Simpson index | 均匀度指数 Evenness index | 丰富度指数 Richness index |
---|---|---|---|---|
无石漠化 Nil | 2.80±0.27a | 0.82±0.12b | 0.78±0.07a | 44.33±6.66a |
轻度石漠化 Low | 2.85±0.09a | 0.89±0.07a | 0.77±0.03a | 43.00±5.30a |
中度石漠化 Middle | 2.85±0.05a | 0.88±0.01a | 0.75±0.02b | 41.67±0.08ab |
强度石漠化 High | 2.56±0.40b | 0.90±0.01a | 0.68±0.13c | 38.67±2.52c |
土壤物理特征 Soil physical characteristics | 土层深度 Soil depth/cm | 石漠化等级 Degrees of rocky desertification | |||
---|---|---|---|---|---|
无石漠化 Nil | 轻度石漠化 Low | 中度石漠化 Middle | 强度石漠化 High | ||
土壤容重 Bulk density/(g∙cm-3) | 0-15 | 1.24±0.13a | 1.26±0.11a | 1.31±0.08a | 1.30±0.07a |
15-30 | 1.29±0.09a | 1.3±0.09a | 1.36±0.09a | 1.37±0.08a | |
30-45 | 1.28±0.1a | 1.33±0.11a | 1.38±0.1a | 1.37±0.08a | |
Mean | 1.27±0.11B | 1.29±0.1AB | 1.34±0.09A | 1.34±0.08A | |
土壤自然含水量 Natural water content/% | 0-15 | 0.32±0.05a | 0.34±0.05a | 0.37±0.08a | 0.35±0.12a |
15-30 | 0.29±0.04a | 0.29±0.04b | 0.30±0.06b | 0.33±0.09a | |
30-45 | 0.28±0.05a | 0.29±0.03b | 0.30±0.05b | 0.34±0.09a | |
Mean | 0.30±0.05A | 0.31±0.04A | 0.32±0.07A | 0.34±0.1A | |
最大持水量 Maximal water capacity/(g∙kg-1) | 0-15 | 402.21±52.47a | 408.25±47.44a | 453.59±85.67a | 444.53±111.13a |
15-30 | 362.83±54.7a | 357.09±41.67b | 386.13±49.28b | 411.9±83.51a | |
30-45 | 348.54±49.35a | 350.8±41.27b | 366.41±59.88b | 416.14±86.97a | |
Mean | 377.81±55.69B | 372.05±49.69B | 402.04±75.04AB | 424.19±93.09A | |
毛管持水量 Capillary water content/(g∙kg-1) | 0-15 | 380.57±49.43a | 387.44±47.66a | 432.43±84.49a | 420.17±110.63a |
15-30 | 344.54±47.24a | 339.95±36.34b | 360.14±47.34b | 389.91±85.76a | |
30-45 | 332.06±48.33a | 332.83±37.63b | 348.38±57.43b | 396.38±86.82a | |
Mean | 358.72±51.37B | 353.41±46.67B | 380.31±73.51AB | 402.16±93.28A | |
田间持水量 Field water content/(g∙kg-1) | 0-15 | 348.45±42.18a | 356.38±38.68a | 396.24±76.38a | 380.75±102.69a |
15-30 | 313.88±42.46ab | 311.04±32.62b | 319.69±53.19b | 352.88±82.71a | |
30-45 | 299.16±48.16b | 305.59±33.51b | 316.8±53.47b | 356.8±82.18a | |
Mean | 327.80±47.89B | 324.33±41.12AB | 344.24±70.81AB | 363.48±87.99A | |
毛管孔隙度 Capillary porosity/% | 0-15 | 49.51±3.93a | 49.98±3.63a | 53.42±6.29a | 50.84±7.57a |
15-30 | 46.53±3.4ab | 46.25±2.71b | 46.42±4.29b | 49.7±7.27a | |
30-45 | 45.25±3.43b | 45.21±2.73b | 45.76±3.83b | 49.93±7.24a | |
Mean | 47.79±3.93A | 47.15±3.62A | 48.53±5.93A | 50.16±7.17A | |
非毛管孔隙度 Non-capillary porosity/% | 0-15 | 2.81±1.13a | 2.69±1.84a | 2.65±0.85a | 2.98±1.34a |
15-30 | 2.43±1.05a | 2.3±1.04a | 3.31±1.98a | 2.83±1.16a | |
30-45 | 2.25±0.83a | 2.43±0.84a | 2.37±1.11a | 2.5±1.03a | |
Mean | 2.53±1.01A | 2.47±1.29A | 2.78±1.42A | 2.77±1.17A | |
总孔隙度 Total porosity/% | 0-15 | 52.32±4.13a | 52.67±3.48a | 56.06±6.23a | 53.83±7.46a |
15-30 | 48.96±4.16ab | 48.55±3.16b | 49.73±3.68b | 52.53±6.69a | |
30-45 | 47.5±3.39b | 47.64±3.07b | 48.14±4.04b | 52.42±6.94a | |
Mean | 50.32±4.31A | 49.62±3.85A | 51.31±5.8A | 52.93±6.87A | |
土壤通气度 Soil permeability/% | 0-15 | 10.91±2.76a | 9.4±3.68a | 10.96±3.19a | 11.59±3.58a |
15-30 | 9.8±3.42a | 8.63±3.52a | 11.65±6.39a | 10.43±4.16a | |
30-45 | 9.09±3.84a | 8.13±3.34a | 9.1±4.14a | 10.14±4.55a | |
Mean | 10.16±3.36A | 8.72±3.45A | 10.57±4.76A | 10.72±4.05A |
表4 不同石漠化等级下土壤物理特征多重分析
Table 4 The multiple analysis of soil physical characteristics in different rocky desertification degrees
土壤物理特征 Soil physical characteristics | 土层深度 Soil depth/cm | 石漠化等级 Degrees of rocky desertification | |||
---|---|---|---|---|---|
无石漠化 Nil | 轻度石漠化 Low | 中度石漠化 Middle | 强度石漠化 High | ||
土壤容重 Bulk density/(g∙cm-3) | 0-15 | 1.24±0.13a | 1.26±0.11a | 1.31±0.08a | 1.30±0.07a |
15-30 | 1.29±0.09a | 1.3±0.09a | 1.36±0.09a | 1.37±0.08a | |
30-45 | 1.28±0.1a | 1.33±0.11a | 1.38±0.1a | 1.37±0.08a | |
Mean | 1.27±0.11B | 1.29±0.1AB | 1.34±0.09A | 1.34±0.08A | |
土壤自然含水量 Natural water content/% | 0-15 | 0.32±0.05a | 0.34±0.05a | 0.37±0.08a | 0.35±0.12a |
15-30 | 0.29±0.04a | 0.29±0.04b | 0.30±0.06b | 0.33±0.09a | |
30-45 | 0.28±0.05a | 0.29±0.03b | 0.30±0.05b | 0.34±0.09a | |
Mean | 0.30±0.05A | 0.31±0.04A | 0.32±0.07A | 0.34±0.1A | |
最大持水量 Maximal water capacity/(g∙kg-1) | 0-15 | 402.21±52.47a | 408.25±47.44a | 453.59±85.67a | 444.53±111.13a |
15-30 | 362.83±54.7a | 357.09±41.67b | 386.13±49.28b | 411.9±83.51a | |
30-45 | 348.54±49.35a | 350.8±41.27b | 366.41±59.88b | 416.14±86.97a | |
Mean | 377.81±55.69B | 372.05±49.69B | 402.04±75.04AB | 424.19±93.09A | |
毛管持水量 Capillary water content/(g∙kg-1) | 0-15 | 380.57±49.43a | 387.44±47.66a | 432.43±84.49a | 420.17±110.63a |
15-30 | 344.54±47.24a | 339.95±36.34b | 360.14±47.34b | 389.91±85.76a | |
30-45 | 332.06±48.33a | 332.83±37.63b | 348.38±57.43b | 396.38±86.82a | |
Mean | 358.72±51.37B | 353.41±46.67B | 380.31±73.51AB | 402.16±93.28A | |
田间持水量 Field water content/(g∙kg-1) | 0-15 | 348.45±42.18a | 356.38±38.68a | 396.24±76.38a | 380.75±102.69a |
15-30 | 313.88±42.46ab | 311.04±32.62b | 319.69±53.19b | 352.88±82.71a | |
30-45 | 299.16±48.16b | 305.59±33.51b | 316.8±53.47b | 356.8±82.18a | |
Mean | 327.80±47.89B | 324.33±41.12AB | 344.24±70.81AB | 363.48±87.99A | |
毛管孔隙度 Capillary porosity/% | 0-15 | 49.51±3.93a | 49.98±3.63a | 53.42±6.29a | 50.84±7.57a |
15-30 | 46.53±3.4ab | 46.25±2.71b | 46.42±4.29b | 49.7±7.27a | |
30-45 | 45.25±3.43b | 45.21±2.73b | 45.76±3.83b | 49.93±7.24a | |
Mean | 47.79±3.93A | 47.15±3.62A | 48.53±5.93A | 50.16±7.17A | |
非毛管孔隙度 Non-capillary porosity/% | 0-15 | 2.81±1.13a | 2.69±1.84a | 2.65±0.85a | 2.98±1.34a |
15-30 | 2.43±1.05a | 2.3±1.04a | 3.31±1.98a | 2.83±1.16a | |
30-45 | 2.25±0.83a | 2.43±0.84a | 2.37±1.11a | 2.5±1.03a | |
Mean | 2.53±1.01A | 2.47±1.29A | 2.78±1.42A | 2.77±1.17A | |
总孔隙度 Total porosity/% | 0-15 | 52.32±4.13a | 52.67±3.48a | 56.06±6.23a | 53.83±7.46a |
15-30 | 48.96±4.16ab | 48.55±3.16b | 49.73±3.68b | 52.53±6.69a | |
30-45 | 47.5±3.39b | 47.64±3.07b | 48.14±4.04b | 52.42±6.94a | |
Mean | 50.32±4.31A | 49.62±3.85A | 51.31±5.8A | 52.93±6.87A | |
土壤通气度 Soil permeability/% | 0-15 | 10.91±2.76a | 9.4±3.68a | 10.96±3.19a | 11.59±3.58a |
15-30 | 9.8±3.42a | 8.63±3.52a | 11.65±6.39a | 10.43±4.16a | |
30-45 | 9.09±3.84a | 8.13±3.34a | 9.1±4.14a | 10.14±4.55a | |
Mean | 10.16±3.36A | 8.72±3.45A | 10.57±4.76A | 10.72±4.05A |
物理特征 Physical characteristics | 石漠化等级 Degrees of rocky desertification | 丰富度指数 Richness index | 多样性指数 Shannon-Wiener index | 均匀度指数 Evenness index | 优势度指数 Simpson index |
---|---|---|---|---|---|
土壤容重 Bulk density | 0.781** | -0.355* | -0.422** | -0.369 | 0.263 |
毛管孔隙度 Capillary porosity | -0.507 | 0.115 | 0.052 | -0.164 | -0.362* |
非毛管孔隙度Non-capillary porosity | -0.313 | 0.369* | 0.007 | 0.231 | 0.520** |
总孔隙度 Total porosity | -0.601* | 0.286* | 0.254* | 0.219 | -0.069 |
土壤自然含水量 Natural water content | -0.501 | 0.135 | -0.059 | 0.155 | 0.015 |
田间持水量 Field water content | -0.594* | 0.484** | 0.341* | 0.241 | -0.349* |
毛管持水量 Capillary water content | -0.630* | 0.362* | 0.296* | -0.285 | -0.103 |
最大持水量 Maximal water capacity | -0.684* | 0.079 | 0.007 | 0.319 | -0.164 |
土壤通气度 Soil permeability | -0.33 | 0.163 | 0.094 | 0.325 | -0.310 |
表5 不同等级石漠化样地土壤物理特征与植物多样性指数间的相关性
Table 5 Correlation between soil physical characteristics and plant diversity indices in different degrees of rocky desertification
物理特征 Physical characteristics | 石漠化等级 Degrees of rocky desertification | 丰富度指数 Richness index | 多样性指数 Shannon-Wiener index | 均匀度指数 Evenness index | 优势度指数 Simpson index |
---|---|---|---|---|---|
土壤容重 Bulk density | 0.781** | -0.355* | -0.422** | -0.369 | 0.263 |
毛管孔隙度 Capillary porosity | -0.507 | 0.115 | 0.052 | -0.164 | -0.362* |
非毛管孔隙度Non-capillary porosity | -0.313 | 0.369* | 0.007 | 0.231 | 0.520** |
总孔隙度 Total porosity | -0.601* | 0.286* | 0.254* | 0.219 | -0.069 |
土壤自然含水量 Natural water content | -0.501 | 0.135 | -0.059 | 0.155 | 0.015 |
田间持水量 Field water content | -0.594* | 0.484** | 0.341* | 0.241 | -0.349* |
毛管持水量 Capillary water content | -0.630* | 0.362* | 0.296* | -0.285 | -0.103 |
最大持水量 Maximal water capacity | -0.684* | 0.079 | 0.007 | 0.319 | -0.164 |
土壤通气度 Soil permeability | -0.33 | 0.163 | 0.094 | 0.325 | -0.310 |
指标Index | 成分 Component | ||
---|---|---|---|
PCA1 | PCA2 | PCA3 | |
容重 Bulk density | -0.310 | 0.085 | -0.055 |
土壤自然含水量 Natural water content | 0.321 | 0.061 | -0.055 |
最大持水量 Maximal water capacity | 0.329 | -0.003 | 0.052 |
毛管持水量 Capillary water content | 0.331 | 0.021 | 0.031 |
田间持水量 Field water content | 0.328 | 0.037 | -0.002 |
毛管孔隙度 Capillary porosity | 0.321 | 0.081 | 0.017 |
总孔隙度 Total porosity | 0.324 | 0.047 | 0.055 |
非毛管孔隙度 Non-capillary porosity | -0.106 | -0.219 | 0.195 |
土壤通气度 Soil permeability | -0.026 | -0.139 | 0.288 |
多样性 Shannon-Wiener index | -0.101 | 0.292 | 0.083 |
优势度 Simpson index | -0.041 | 0.306 | 0.090 |
均匀度 Evenness index | -0.096 | 0.308 | 0.080 |
丰富度 Richness index | 0.032 | -0.250 | -0.040 |
初始特征值 Initial eigenvalue/% | 6.896 | 3.827 | 1.411 |
贡献率 Contribution/% | 53.044 | 29.442 | 10.857 |
累积贡献率 Cumulative contribution rate/% | 53.044 | 82.486 | 93.343 |
表6 基于植物多样性与土壤物理特征的主成分分析
Table 6 Principal component analysis based on plant diversity and soil physical characteristics
指标Index | 成分 Component | ||
---|---|---|---|
PCA1 | PCA2 | PCA3 | |
容重 Bulk density | -0.310 | 0.085 | -0.055 |
土壤自然含水量 Natural water content | 0.321 | 0.061 | -0.055 |
最大持水量 Maximal water capacity | 0.329 | -0.003 | 0.052 |
毛管持水量 Capillary water content | 0.331 | 0.021 | 0.031 |
田间持水量 Field water content | 0.328 | 0.037 | -0.002 |
毛管孔隙度 Capillary porosity | 0.321 | 0.081 | 0.017 |
总孔隙度 Total porosity | 0.324 | 0.047 | 0.055 |
非毛管孔隙度 Non-capillary porosity | -0.106 | -0.219 | 0.195 |
土壤通气度 Soil permeability | -0.026 | -0.139 | 0.288 |
多样性 Shannon-Wiener index | -0.101 | 0.292 | 0.083 |
优势度 Simpson index | -0.041 | 0.306 | 0.090 |
均匀度 Evenness index | -0.096 | 0.308 | 0.080 |
丰富度 Richness index | 0.032 | -0.250 | -0.040 |
初始特征值 Initial eigenvalue/% | 6.896 | 3.827 | 1.411 |
贡献率 Contribution/% | 53.044 | 29.442 | 10.857 |
累积贡献率 Cumulative contribution rate/% | 53.044 | 82.486 | 93.343 |
[1] |
BEVER J D, 1994. Feedback between plants and their soil communities in an old field community[J]. Ecology, 75(7): 1965-1977.
DOI URL |
[2] |
BEVER J D, MANGAN S, ALEXANDER H M, 2015. Maintenance of plant species diversity by pathogens[J]. Annual Review of Ecology Evolution, and Systematics, 46(1): 305-325.
DOI URL |
[3] |
BEZEMER T M, FOUNTAIN M T, BAREA J M, et al., 2010. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects[J]. Ecology, 91(10): 3027-3036.
DOI URL |
[4] | BOCKHEIM J G, HARTEMINK A E, 2017. The soils of wisconsin[M]. Cham: Springer: 23-54. |
[5] |
FUKAMI T, NAKAJIMA M, HUTCHINGS M, 2013. Complex plant-soil interactions enhance plant species diversity by delaying community convergence[J]. Journal of Ecology, 101(2): 316-324.
DOI URL |
[6] |
IRL S, HARTER D, STEINBAUER M J, et al., 2015. Climate vs. topography-spatial patterns of plant species diversity and endemism on a high-elevation island[J]. Journal of Ecology, 103(6): 1621-1633.
DOI URL |
[7] |
LIU C C, LIU Y G, GUO K, et al., 2014. Concentrations and resorption patterns of 13 nutrients in different plant functional types in the karst region of southwestern China[J]. Annals of Botany, 113(5): 873-885.
DOI URL |
[8] |
QI D, WIENEKE X, ZHOU X, et al., 2017. Succession of plant community composition and leaf functional traits in responding to karst rocky desertification in the Wushan County in Chongqing, China[J]. Community Ecology, 18(2): 157-168.
DOI URL |
[9] | WEI X C, DENG X W, XIANG W H, et al., 2017. Calcium content and high calcium adaptation of plants in karst areas of southwestern Hunan, China[J]. Biogeosciences Discussions, 15(9): 1-29. |
[10] |
WUBS E, BEZEMER M T, 2018. Plant community evenness responds to spatial plant-soil feedback heterogeneity primarily through the diversity of soil conditioning[J]. Functional Ecology, 32(2): 509-521.
DOI URL |
[11] | ZHANG J Y, ZHAO H L, CUI J Y, et al., 2005. Effects of clonal plants on community structure and function along a restorational gradient in horqin sandy land[J]. Scientia Silvae Sinicae, 41(1): 5-9. |
[12] |
ZHU H H, HE X Y, WANG K L, et al., 2012. Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem[J]. European Journal of Soil Biology, 51: 1-7.
DOI URL |
[13] | ZHU N H, SHANG H, LIU L L, et al., 2020. Afforestation in karst area. Silviculture[M]. London: IntechOpen. |
[14] | 程才, 李玉杰, 张远东, 等, 2020. 石漠化地区苔藓结皮对土壤养分及生态化学计量特征的影响[J]. 生态学报, 40(24): 9234-9244. |
CHENG C, LI Y J, ZHANG Y D, et al., 2020. Effects of moss crusts on soil nutrients and ecological stoichiometry characteristics in karst rocky desertification region[J]. Acta Ecologica Sinica, 40(24): 9234-9244. | |
[15] | 崔高仰, 容丽, 李晓东, 等, 2017. 喀斯特高原峡谷石漠化治理过程中土壤理化性质的变化[J]. 生态学杂志, 36(5): 1188-1197. |
CUI G Y, RONG L, LI X D, et al., 2017. Changes of soil physicochemical properties during rocky desertification control in karst mountain-canyon region[J]. Chinese Journal of Ecology, 36(5): 1188-1197. | |
[16] | 戴全厚, 严友进, 2018. 西南喀斯特石漠化与水土流失研究进展[J]. 水土保持学报, 32(2): 1-10. |
DAI Q H, YAN Y J, 2018. Research progress of karst rocky desertification and soil erosion in Southwest China[J]. Journal of Soil and Water Conservation, 32(2): 1-10. | |
[17] | 杜家颖, 王霖娇, 盛茂银, 等, 2017. 喀斯特高原峡谷石漠化生态系统土壤C、N、P生态化学计量学特征[J]. 四川农业大学学报, 35(1): 45-51. |
DU J Y, WANG L J, SHENG M Y, et al., 2017. Soil C, N and P stoichiometry of rocky desertification ecosystems in the Karst Plateau canyon area[J]. Journal of Sichuan Agricultural University, 35(1): 45-51. | |
[18] | 杜文鹏, 闫慧敏, 甄霖, 等, 2019. 西南岩溶地区石漠化综合治理研究[J]. 生态学报, 39(16): 5798-5808. |
DU W P, YAN H M, ZHEN L, et al., 2019. The experience and practice of desertification control in karst region of southwest China[J]. Acta Ecologica Sinica, 39(16): 5798-5808. | |
[19] | 傅伯杰, 刘国华, 陈利顶, 等, 2001. 中国生态区划方案[J]. 生态学报, 21(1): 1-6. |
FU B J, LIU G H, CHEN L D, et al., 2001. Scheme of ecological regionalization in China[J]. Acta Ecologica Sinica, 21(1): 1-6. | |
[20] | 伏文兵, 严友进, 李华林, 等, 2021. 岩溶槽谷石漠化综合治理区治理生态效益评价[J]. 西南大学学报(自然科学版), 43(7): 146-156. |
FU W B, YAN Y J, LI H L, et al., 2021. Evaluation of ecological benefits of comprehensive mangement of rocky desertification in karst trough valleys[J]. Journal of Southwest University (Natural Science Edition), 43(7): 146-156. | |
[21] | 巩书华, 朱丽芬, 2021. 湘西北地质地貌特征对岩溶石漠化影响研究-以张家界市为例[EB/OL]. 中国岩溶:[2021-11-01]http://kns.cnki.net/kcms/detail/45.1157.P.20210426.0953.002.html. |
GONG S H, ZHU L F, 2021. Research on influence of geological and geomorphologic features on karst rocky desertification in the northeast areas of Hunan Province[EB/OL]. Carsologica Sinica,[2021-11-01]http://kns.cnki.net/kcms/detail/45.1157.P.20210426.0953.002.html. | |
[22] | 国家林业和草原局, 2018. 中国岩溶地区石漠化状况公报 (简版)[N]. 人民日报, 2018-12-14(12). |
National Forestry and Grassland Administration, 2018. Bulletin on the status of rocky desertification in karst areas of China (Simplified Version)[N]. The People's Daily, 2018-12-14(12). | |
[23] | 康秀琴, 魏小丛, 李颜斐, 等, 2019. 湘西南喀斯特石漠化地区植物多样性研究[J]. 中南林业科技大学学报, 39(1): 100-107. |
KANG X Q, WEI X C, LI Y F, et al., 2019. Study on species diversity of plant communities in karst rocky desertification ecosystem of southwestern Hunan[J]. Journal of Central South University of Forestry & Technology, 39(1): 100-107. | |
[24] | 蓝芙宁, 李衍青, 赵一, 等, 2018. 放牧对峰丛洼地植物-土壤C、N、P化学计量特征的影响[J]. 中国岩溶, 37(5): 742-751. |
LAN F N, LI Y Q, ZHAO Y, et al., 2018. Influence of grazing on characteristics of chemical metrology for C, N and P in plants and soil of peak-cluster depressions[J]. Carsologica Sinica, 37(5): 742-751. | |
[25] | 兰斯安, 宋敏, 曾馥平, 等, 2016. 木论喀斯特森林木本植物多样性垂直格局[J]. 生态学报, 36(22): 7374-7383. |
LAN S A, SONG M, ZENG F P, et al., 2016. Altitudinal pattern of woody plant species diversity in the karst forest in Mulun, China[J]. Acta Ecologica Sinica, 36(22): 7374-7383. | |
[26] | 李瑞, 王霖娇, 盛茂银, 等, 2016. 喀斯特石漠化演替中植物多样性及其与土壤理化性质的关系[J]. 水土保持研究, 23(5): 111-119. |
LI R, WANG L J, SHENG M Y, et al., 2016. Plant species diversity and its relationship with soil properties in karst rocky desertification succession[J]. Research of Soil and Water Conservation, 23(5): 111-119. | |
[27] | 刘雯雯, 喻理飞, 严令斌, 等, 2019. 喀斯特石漠化区植被恢复不同阶段土壤真菌群落组成分析[J]. 生态环境学报, 28(4): 669-675. |
LIU W W, YU L F, YAN L B, et al., 2019. Composition of soil fungi communities in different stages of vegetation restoration in karst rocky desertification area[J]. Ecology and Environment Sciences, 28(4): 669-675. | |
[28] | 刘兴锋, 刘思凡, 蒋龙, 等, 2019. 湘西北石漠化区不同植被类型土壤C、N、P的化学计量特征[J]. 中南林业科技大学学报, 39(2): 72-78. |
LIU X F, LIU S F, JIANG L, et al., 2019. Stoichiometric characteristics of soil C, N and P in different vegetation types in the rocky desertification area of northwestern Hunan province[J]. Journal of Central South University of Forestry & Technology, 39(2): 72-78. | |
[29] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2020. Methods of agricultural chemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press. | |
[30] | 罗征鹏, 熊康宁, 许留兴, 2020. 生物土壤结皮生态修复功能研究及对石漠化治理的启示[J]. 水土保持研究, 27(1): 394-404. |
LUO Z P, XIONG K N, XU L X, 2020. Study on the role of biological soil crust in ecological restoration and its enlightenment to the control of rocky desertification[J]. Research of Soil and Water Conservation, 27(1): 394-404. | |
[31] | 国家林业局, 1999. 森林土壤水分-物理性质的测定: LY/T 1215-1999[S]. |
State Forestry Administration, 1999. Determination of forest soil water-physical properties: LY/T 1215-1999[S]. | |
[32] | 尚海, 2021. 茅山坡的蝶变--湘西州青坪国有林场开展石漠化治理纪实[J]. 林业与生态 (6): 4-5. |
SHANG H, 2021. Changes in the slopes of Maoshan mountains: Records of rocky desertification control in Qingping State forest Farm, Xiangxi Autonomous Prefecture[J]. HUNAN LINYE (6): 4-5. | |
[33] | 盛茂银, 刘洋, 熊康宁, 2013. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报, 33(19): 6303-6313. |
SHENG M Y, LIU Y, XIONG K N, et al., 2013. Response of soil physical-chemical properties to rocky desertification succession in South China Karst[J]. Acta Ecologica Sinica, 33(19): 6303-6313.
DOI URL |
|
[34] | 盛茂银, 熊康宁, 崔高仰, 等, 2015. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J]. 生态学报, 35(2): 434-448. |
SHENG M Y, XIONG K N, CUI G Y, et al., 2015. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou, China[J]. Acta Ecologica Sinica, 35(2): 434-448. | |
[35] | 宋同清, 彭晚霞, 杜虎, 等, 2014. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J]. 生态学报, 34(18): 5328-5341. |
SONG T Q, PENG W X, DU H, et al., 2014. Occurrence, spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China[J]. Acta Ecologica Sinica, 34(18): 5328-5341. | |
[36] | 汤茜, 丁访军, 朱四喜, 等, 2020. 茂兰喀斯特地区不同植被演替阶段对土壤化学性质与酶活性的影响[J]. 生态环境学报, 29(10): 1943-1952. |
TANG Q, DING F J, ZHU S X, et al., 2020. Effects of different vegetative succession stages on soil chemical properties and enzyme activities in Karst region of Maolan[J]. Ecology and Environmental Sciences, 29(10): 1943-1952. | |
[37] | 王光州, 贾吉玉, 张俊伶, 2021. 植物-土壤反馈理论及其在自然和农田生态系统中的应用研究进展[J/OL]. 生态学报, 41(23): 1-14. |
WANG G Z, JIA J Y, ZHANG J L, et al., 2021. Plant soil feedback theory and its applications and prospects innatural and agricultural ecosystems[J/OL]. Acta Ecologica Sinica, 41(23): 1-14.
DOI URL |
|
[38] | 王凯博, 陈美玲, 秦娟, 等, 2007. 子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系[J]. 西北植物学报, 27(10): 2089-2096. |
WANG K B, CHEN M L, QIN J, et al., 2007. Plant species diversity and the relation with soil properties in natural succession process in Ziwuling Area[J]. Acta Botanica Boreall-occidentalia Sinica, 27(10): 2089-2096. | |
[39] | 文丽, 宋同清, 杜虎, 等, 2015. 中国西南喀斯特植物群落演替特征及驱动机制[J]. 生态学报, 35(17): 5822-5833. |
WEN L, SONG T Q, DU H, et al., 2015. The succession characteristics and its driving mechanism of plant community in karst region, Southwest China[J]. Acta Ecologica Sinica, 35(17): 5822-5833. | |
[40] | 文林琴, 栗忠飞, 黎明钰, 等, 2020. 黔西南石漠化演变过程中植被与土壤物理特征[J]. 西北农林科技大学学报(自然科学版), 48(12): 97-106. |
WEN L Q, LI Z F, LI M Y, et al., 2020. Characteristics of vegetation and soil physical properties in evolution processes of rocky desertification in Southwest Guizhou[J]. Journal of Northwest A & F University (Natural Science Edition), 48(12): 97-106. | |
[41] | 温培才, 王霖娇, 盛茂银, 2018. 西南喀斯特高原峡谷石漠化生态系统植物群落特征及其与土壤理化性质的关系[J]. 四川农业大学学报, 36(2): 175-184. |
WEN P C, WANG L J, SHENG M Y, et al., 2018. Characteristics of plant community and its relationships with soil physic-chemical properties in the rocky desertification ecosystem of Karst Plateau Canyon, Southwest China[J]. Journal of Sichuan Agricultural University, 36(2): 175-184. | |
[42] | 吴丽芳, 王妍, 刘云根, 等, 2021. 岩溶石漠化区人工植被类型对土壤团聚体生态化学计量特征的影响[J]. 东北林业大学学报, 49(6): 63-69. |
WU L F, WANG Y, LIU Y G, et al., 2021. Effects of artificial vegetation type on the ecological stoichiometric characteristics of soil aggregates in karst rocky desertification areas[J]. Journal of Northeast Forestry University, 49(6): 63-69. | |
[43] | 熊康宁, 2002. 喀斯特石漠化的遥感: GIS典型研究[M]. 北京: 地质出版社. |
XIONG K N, 2002. Remote Sensing of Karst Desertification: Typical GIS Study[M]. Beijing: Geological Press | |
[44] | 闫玮明, 孙冰, 裴男才, 等, 2019. 粤北阔叶人工林和次生林植物多样性与土壤理化性质相关性研究[J]. 生态环境学报, 28(5): 898-907. |
YAN W M, SUN B, PEI N C, et al., 2019. Correlation analyses on plant diversity and soil physical-chemical properties between evergreen broad-leaved plantations and natural secondary forests in North Guangdong, China[J]. Ecology and Environmental Sciences, 28(5): 898-907. | |
[45] | 杨佳伟, 刘学全, 彭晓宏, 等, 2020. 鄂北不同程度石漠化环境植物多样性与土壤物理性质[J]. 水土保持研究, 27(6): 100-106, 115. |
YANG J W, LIU X Q, PENG X H, et al., 2020. Plant diversity and soil physical properties in different degree of rocky desertification in northern Hubei Province[J]. Research of Soil and Water Conservation, 27(6): 100-106, 115. | |
[46] | 袁成军, 熊康宁, 容丽, 等, 2021. 喀斯特石漠化生态恢复中的生物多样性研究进展[J]. 地球与环境, 49(3): 336-345. |
YUAN C J, XIONG K N, RONG L, et al., 2021. Research progress on the biodiversity during the ecological restoration of karst rocky desertification[J]. Earth and Environment, 49(3): 336-345. | |
[47] | 张军以, 戴明宏, 王腊春, 等, 2015. 西南喀斯特石漠化治理植物选择与生态适应性[J]. 地球与环境, 43(3): 269-278. |
ZHANG J Y, DAI M H, WANG L C, et al., 2015. Plant selection and their ecological adaptation for rocky desertification control in karst region in the southwest of China[J]. Earth and Environment, 43(3): 269-278. | |
[48] | 张荣, 李婷婷, 金锁, 等, 2020. 不同海拔高度对周公山柳杉人工林植物多样性及土壤养分的影响[J]. 中南林业科技大学学报, 40(5): 38-46. |
ZHANG R, LI T T, JIN S, et al., 2020. Effects of different altitude on plant diversity and soil nutrients of Cryptomeria fortunei plantation in Zhougong mountain[J]. Journal of Central South University of Forestry & Technology, 40(5): 38-46. |
[1] | 李阳, 侯志勇, 陈薇, 于晓英, 谢永宏, 黄鑫, 谭佩阳, 李继承, 黎尚林, 杨辉. 大围山高山湿地植物多样性与区系组成研究[J]. 生态环境学报, 2023, 32(4): 643-650. |
[2] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[3] | 王哲, 田胜尼, 张永梅, 张和禹, 周忠泽. 巢湖派河口滩涂植物群落特征研究[J]. 生态环境学报, 2022, 31(9): 1823-1831. |
[4] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[5] | 张博文, 秦娟, 任忠明, 陈子齐, 姚舜佳, 刘烨, 宋炎玉. 坡向对北亚热带区马尾松纯林及不同针阔混交林型林下植物多样性的影响[J]. 生态环境学报, 2022, 31(6): 1091-1100. |
[6] | 段文军, 李达, 李冲. 5种不同林龄尾巨桉人工林林下植物多样性及其影响因素分析[J]. 生态环境学报, 2022, 31(5): 857-864. |
[7] | 陈金凤, 余世钦, 符加方, 徐国良, 于波, 赖晓群, 胡思源, 张开渠, 刘家华. 华南红层地貌区不同利用方式土壤质量特征及其影响因素——以南雄盆地为例[J]. 生态环境学报, 2022, 31(5): 918-930. |
[8] | 胡靓达, 周海菊, 黄永珍, 姚贤宇, 叶绍明, 喻素芳. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 2022, 31(3): 451-459. |
[9] | 玄锦, 李祖婵, 邹诚, 秦子博, 吴雅华, 黄柳菁. 江心洲景观类型和格局对植物多样性的多尺度影响——以闽江流域福州段为例[J]. 生态环境学报, 2022, 31(12): 2320-2330. |
[10] | 赵丽, 郭春燕, 张文军, 王晓江, 刘平生. 扎兰屯地区典型天然林群落特征及其相关性分析[J]. 生态环境学报, 2021, 30(7): 1353-1359. |
[11] | 孙文泰, 马明, 董铁, 牛军强, 尹晓宁, 刘兴禄. 西北旱地苹果细根分布及水力特征对长期覆膜的响应[J]. 生态环境学报, 2021, 30(7): 1375-1385. |
[12] | 郑智恒, 熊康宁, 容丽, 池永宽. 两种等级喀斯特石漠化地区生物结皮对土壤养分恢复的影响[J]. 生态环境学报, 2021, 30(6): 1202-1212. |
[13] | 张鹏, 刘玮, 王铁杆, 钟晨辉, 陶月良. 无机砷短期胁迫对铜藻幼苗氧化损伤、抗氧化酶及抗氧化物的影响[J]. 生态环境学报, 2021, 30(5): 1034-1041. |
[14] | 林丽, 代磊, 林泽北, 吴际通, 颜伟, 王志杰. 黔中城市森林群落植物多样性及其与土壤理化性质的关系[J]. 生态环境学报, 2021, 30(11): 2130-2141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||