生态环境学报 ›› 2021, Vol. 30 ›› Issue (7): 1393-1403.DOI: 10.16258/j.cnki.1674-5906.2021.07.008
王宇姝1,2(), 盛海彦3, 罗莎莎4, 胡月明2,5,*(
), 余玲玲1,2,*(
)
收稿日期:
2021-02-22
出版日期:
2021-07-18
发布日期:
2021-10-09
通讯作者:
*余玲玲,E-mail: lingling2013@scau.edu.cn;胡月明,E-mail: ymhu@scau.edu.cn作者简介:
王宇姝(1994年生),女,硕士研究生,主要研究方向为土壤微生物群落和分子生态网络结构。E-mail: 1210582646@qq.com
基金资助:
WANG Yushu1,2(), SHENG Haiyan3, LUO Shasha4, HU Yueming2,5,*(
), YU Lingling1,2,*(
)
Received:
2021-02-22
Online:
2021-07-18
Published:
2021-10-09
摘要:
为了探明高寒土壤原核微生物在不同生境中群落结构差异,该研究选择了环青海湖地区牧场、农田、山地和草场4种不同土地利用类型,利用16S rRNA Illumina高通量测序技术和分子生态网络的方法,比较4种不同土壤生境中原核微生物群落结构和组成差异,以及原核生物物种间的相互作用关系。结果表明,不同生境下土壤理化性质存在显著差异,人为干扰会引起土壤矿化,有机养分含量降低,同时影响土壤中速效养分的含量。土壤中原核微生物的丰富度和多样性随着土壤生境的不同而变化,在细菌门水平上,变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和芽单胞菌门(Gemmatimonadetes)在4种不同生境土壤细菌群落中均占主导地位,拟杆菌门(Bacteroidetes)是农田土壤中的独有优势种,而山地和草场中硝化螺旋菌门(Nitrospirae)为特有优势菌种。在古菌门水平上,广古菌门(Euryarchaeota)和奇古菌门(Thaumarchaeota)是牧场、山地古菌群落中的优势菌种,农田和草场土壤中奇古菌门(Thaumarchaeota)是唯一优势菌种。整体而言,在4种不同生境土壤中细菌群落的丰富度和多样性均高于古菌群落,环境因子中pH、SOC、TN、AN、AK、C/N和Olsen-P显著影响了土壤原核微生物群落结构。分子网络结构分析表明细菌网络的节点数和连接数更多,联系复杂系统更加稳定,古菌网络的平均路径长较小,平均连通度和聚类系数较高,但对环境响应迅速,说明古菌群落的生态位较细菌更加狭窄。
中图分类号:
王宇姝, 盛海彦, 罗莎莎, 胡月明, 余玲玲. 环青海湖4种生境土壤中原核微生物群落结构及分子网络特征[J]. 生态环境学报, 2021, 30(7): 1393-1403.
WANG Yushu, SHENG Haiyan, LUO Shasha, HU Yueming, YU Lingling. Characteristics of Prokaryotic Microbial Community Structure and Molecular Ecological Network in Four Habitat Soils around Lake Qinghai[J]. Ecology and Environment, 2021, 30(7): 1393-1403.
样点 Sites | pH | w(SOC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(Olsen-P)/(mg∙kg-1) | w(AN)/(mg∙kg-1) | w(AK)/(mg∙kg-1) | w(C)/w(N) |
---|---|---|---|---|---|---|---|
DSo(牧场) | 8.74±0.02a | 23.07±0.31d | 2.29±0.01d | 293.71±13.09c | 123.82±0.81d | 403.33±3.33b | 10.06±0.08b |
QSo(农田) | 8.07±0.01c | 27.72±0.50c | 2.90±0.01c | 870.23±67.96a | 230.76±2.26c | 290.00±0c | 9.57±0.20b |
XSo(山地) | 7.57±0.02d | 87.10±1.29a | 7.12±0.07a | 716.09±47.77b | 569.39±2.04a | 716.67±3.33a | 12.24±0.30a |
LSo(草场) | 8.19±0.00b | 39.92±0.29b | 4.21±0.01b | 14.69±0.02d | 267.52±3.36b | 399.22±0.00b | 9.47±0.05b |
表1 不同生境土壤化学性质及养分状况
Table 1 Soil chemical properties and nutrient status in different habitats
样点 Sites | pH | w(SOC)/(g∙kg-1) | w(TN)/(g∙kg-1) | w(Olsen-P)/(mg∙kg-1) | w(AN)/(mg∙kg-1) | w(AK)/(mg∙kg-1) | w(C)/w(N) |
---|---|---|---|---|---|---|---|
DSo(牧场) | 8.74±0.02a | 23.07±0.31d | 2.29±0.01d | 293.71±13.09c | 123.82±0.81d | 403.33±3.33b | 10.06±0.08b |
QSo(农田) | 8.07±0.01c | 27.72±0.50c | 2.90±0.01c | 870.23±67.96a | 230.76±2.26c | 290.00±0c | 9.57±0.20b |
XSo(山地) | 7.57±0.02d | 87.10±1.29a | 7.12±0.07a | 716.09±47.77b | 569.39±2.04a | 716.67±3.33a | 12.24±0.30a |
LSo(草场) | 8.19±0.00b | 39.92±0.29b | 4.21±0.01b | 14.69±0.02d | 267.52±3.36b | 399.22±0.00b | 9.47±0.05b |
Indices | 细菌 Bacteria | 古菌 Archaea | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mantel test | Redundancy Analysis | Mantel test | Redundancy Analysis | ||||||||
r | P | r² | P | r | P | r² | P | ||||
pH | 0.80529 | 0.001*** | 0.9761 | 0.001*** | 0.81008 | 0.001*** | 0.9089 | 0.002** | |||
SOC | 0.65538 | 0.001*** | 0.967 | 0.001*** | 0.74936 | 0.001*** | 0.9454 | 0.001*** | |||
TN | 0.72921 | 0.001*** | 0.9444 | 0.001*** | 0.77899 | 0.001*** | 0.9393 | 0.001*** | |||
Olsen_P | 0.39758 | 0.006** | 0.1721 | 0.402 | 0.23821 | 0.049* | 0.1338 | 0.481 | |||
AN | 0.73416 | 0.001*** | 0.9846 | 0.001*** | 0.82594 | 0.001*** | 0.9596 | 0.001*** | |||
AK | 0.61918 | 0.001*** | 0.9487 | 0.001*** | 0.71558 | 0.002** | 0.8958 | 0.003** | |||
C/N | 0.51921 | 0.002** | 0.903 | 0.009** | 0.68662 | 0.001*** | 0.8652 | 0.005** |
表2 土壤化学性质与微生物群落结构的Mantel检验和冗余分析
Table 2 The Mantel test and Redundancy Analysis between soil chemical properties and nutrient status and microbial communities
Indices | 细菌 Bacteria | 古菌 Archaea | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mantel test | Redundancy Analysis | Mantel test | Redundancy Analysis | ||||||||
r | P | r² | P | r | P | r² | P | ||||
pH | 0.80529 | 0.001*** | 0.9761 | 0.001*** | 0.81008 | 0.001*** | 0.9089 | 0.002** | |||
SOC | 0.65538 | 0.001*** | 0.967 | 0.001*** | 0.74936 | 0.001*** | 0.9454 | 0.001*** | |||
TN | 0.72921 | 0.001*** | 0.9444 | 0.001*** | 0.77899 | 0.001*** | 0.9393 | 0.001*** | |||
Olsen_P | 0.39758 | 0.006** | 0.1721 | 0.402 | 0.23821 | 0.049* | 0.1338 | 0.481 | |||
AN | 0.73416 | 0.001*** | 0.9846 | 0.001*** | 0.82594 | 0.001*** | 0.9596 | 0.001*** | |||
AK | 0.61918 | 0.001*** | 0.9487 | 0.001*** | 0.71558 | 0.002** | 0.8958 | 0.003** | |||
C/N | 0.51921 | 0.002** | 0.903 | 0.009** | 0.68662 | 0.001*** | 0.8652 | 0.005** |
参数 Parameters | 阈值 Similarity threshold | 节点数 Nodes | 连接数 Links | r2 | 平均连通度 Average degree | 平均聚集系数 Average clustering coefficient | 平均路径长度 Average Path distance | 模块数 Modules | 模块性 Modularity |
---|---|---|---|---|---|---|---|---|---|
细菌 Bacteria | 0.95 | 576 | 2124 | 0.838 | 7.375 | 0.114 | 4.797 | 58 | 0.706 |
古菌 Archaea | 0.37 | 53 | 693 | 0.306 | 26.151 | 0.591 | 1.498 | 2 | 0.106 |
表3 微生物分子生态网络特征参数
Table 3 Characteristic parameters of the molecular ecological network of soil microorganism
参数 Parameters | 阈值 Similarity threshold | 节点数 Nodes | 连接数 Links | r2 | 平均连通度 Average degree | 平均聚集系数 Average clustering coefficient | 平均路径长度 Average Path distance | 模块数 Modules | 模块性 Modularity |
---|---|---|---|---|---|---|---|---|---|
细菌 Bacteria | 0.95 | 576 | 2124 | 0.838 | 7.375 | 0.114 | 4.797 | 58 | 0.706 |
古菌 Archaea | 0.37 | 53 | 693 | 0.306 | 26.151 | 0.591 | 1.498 | 2 | 0.106 |
[1] |
ALLER J Y, KEMP P F, 2010. Are Archaea inherently less diverse than Bacteria in the same environments?[J]. FEMS Microbiology Ecology, 65(1): 74-87.
DOI URL |
[2] |
BARBERÁN A, BATES ST, CASAMAYOR E, et al., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal, 6(2): 343-351.
DOI URL |
[3] |
BARTRAM A K, JIANG X, LYNCH M D J, et al., 2014. Exploring links between pH and bacterial community composition in soils from the Craibstone experimental farm[J]. FEMS Microbiology Ecology, 87(2): 403-415.
DOI URL |
[4] |
BOSSUYT H, DENEF K, FREY S J, et al., 2001. Influence of microbial populations and residue quality on aggregate stability[J]. Applied Soil Ecology, 16(3): 195-208.
DOI URL |
[5] |
CHAPIN F S, MCFARLAND J, MCGUIRE A D, et al., 2009. The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences[J]. Journal of Ecology, 97(5): 840-850.
DOI URL |
[6] |
CRUZ A F, HAMEL C, HANSON K, et al., 2009. Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem[J]. Plant Soil, 315(1-2): 173-184.
DOI URL |
[7] | FAWAZ N M, 2013. Revealing the Ecological Role of Gemmatimonadetes Through Cultivation and Molecular Analysis of Agricultural Soils[D]. Tennessee: University of Tennessee. |
[8] |
FENG Y Z, GROGAN P, CAPORASO J G, et al., 2014. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils[J]. Soil Biology and Biochemistry, 74(6): 193-200.
DOI URL |
[9] |
HARTMANN M, WIDMER F, 2006. Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices[J]. Applied and Environmental Microbiology, 72(12): 7804-7812.
DOI URL |
[10] | HOLLISTER E B, ENGLEDOW A S, HAMMETT A J M, et al., 2010. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments[J]. The International Society for Microbial Ecology Journal, 4(6): 829-838. |
[11] | JONES R T, ROBESON M S, LAUBER C L, et al., 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The International Society for Microbial Ecology Journal, 3(4): 442-453. |
[12] |
KITANO H, 2004. Biological robustness[J]. Nature Reviews Genetics, 5(11): 826-837.
DOI URL |
[13] |
KOYAMA A, WALLENSTEIN M D, SIMPSON R T, et al., 2014. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils[J]. Frontiers in microbiology, DOI: 10.3389/fmicb.2014.00516.
DOI |
[14] |
LAYEGHIFARD M, HWANG D M, GUTTMAN D S, 2017. Disentangling interactions in the microbiome: A network perspective[J]. Trends in Microbiology, 25(3): 217-228.
DOI URL |
[15] |
LIU J, CHEN H Q, YANG X M, et al., 2017. Annual methane uptake from different land uses in an agro-pastoral ecotone of northern China[J]. Agricultural and Forest Meteorology, 236: 67-77.
DOI URL |
[16] |
SHEN C C, XIONG J B, ZHANG H Y, et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 57: 204-211.
DOI URL |
[17] |
SINGH B K, BARDGETT R D, SMITH P, et al., 2010. Microorganisms and climate change: Terrestrial feedbacks and mitigation options[J]. Nature Reviews. Microbiology, 8(11): 779-790.
DOI URL |
[18] |
WANG X Y, LI Y Q, GONG X W, et al., 2020. Changes of soil organic carbon stocks from the 1980s to 2018 in northern China’s agro-pastoral ecotone[J]. Catena, DOI: 10.1016/j.catena.2020. 104722.
DOI |
[19] |
WANG Y, ZHANG R, ZHENG Q, et al., 2016. Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis[J]. ICES Journal of Marine Science, 73(3): 865-875.
DOI URL |
[20] |
WEI D, YANG Q, ZHANG J Z, et al., 2008. Bacterial communities structure and diversity in a black soil as affected by long-term fertilization[J]. Pedosphere, 18(5): 582-592.
DOI URL |
[21] |
WILL C, THÜRMER A, WOLLHERR A, et al., 2010. Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes[J]. Applied and Environmental Microbiology, 76(20): 6751-6759.
DOI URL |
[22] |
ZHENG W, XUE D M, LI X Z, et al., 2017. The responses and adaptations of microbial communities to salinity in farmland soils: a molecular ecological network analysis[J]. Applied Soil Ecology, 120: 239-246.
DOI URL |
[23] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社: 49-83. |
BAO S D, 2000. Soil agrochemical analysis[M]. Beijing: China Agriculture Press: 49-83. | |
[24] | 褚海燕, 2013. 高寒生态系统微生物群落研究进展[J]. 微生物学通报, 40(1): 123-136. |
CHU H Y, 2013. Microbial communities in high latitudes and high altitudes ecosystems[J]. Microbiology China, 40(1): 123-136. | |
[25] | 党宁, 2020. 三江源区高寒草地土壤微生物群落多样性与环境因子关系的研究[D]. 西宁: 青海大学. |
DANG N, 2020. Study on the Relationship between Soil Microbial Community Diversity and Environmental Factors in Alpine Grassland in the Three-Rivers Headwaters Region. Master Thesis[D]. Xining: Qinghai University. | |
[26] | 冯慧琳, 徐辰生, 何欢辉, 等, 2021. 生物炭对土壤酶活和细菌群落的影响及其作用机制[J]. 环境科学, 42(1): 422-432. |
FENG H L, XU C S, HE H H, et al., 2021. Effect of Biochar on Soil Enzyme Activity & the Bacterial Community and Its Mechanism[J]. Environmental Science, 42(1): 422-432.
DOI URL |
|
[27] | 何馨竹, 唐明, 张习敏, 等, 2021. 基于加权共变化网络分析水稻根系微生物群落间的差异[J/OL]. 基因组学与应用生物学, http://kns.cnki.net/kcms/detail/45.1369.Q.20200921.1057.002.html . |
HE X Z, TANG M, ZHANG X M, et al., 2021. Analysis of Differences in Rice delavayi Root Microbial communities Based on Weighted Co-expression Network[J/OL]. Genomics and Applied Biology, http://kns.cnki.net/kcms/detail/45.1369.Q.20200921.1057.002.html . | |
[28] | 候晓翠, 2014. 青藏高原冻土区微生物的研究及菌株D40PT新种分类鉴定[D]. 北京: 北京化工大学. |
HOU X C, 2014. The study of microorganisms in Qinghai-Tibet plateau permafrost regions and identification of a new species D40PT[D]. Beijing: Beijing University of Chemical Technology. | |
[29] | 李冰, 李玉双, 魏建兵, 等, 2020. 不同土地利用方式对土壤细菌分子生态网络的影响[J]. 环境科学, 41(3): 1456-1465. |
LI B, LI Y S, WEI J B, et al., 2020. Effects of Different Land Use Types on the Molecular Ecological Network of Soil Bacteria[J]. Environmental Science, 41(3): 1456-1465. | |
[30] |
李娟, 赵秉强, 李秀英, 等, 2008. 长期不同施肥制度下几种土壤微生物学特征变化[J]. 植物生态学报, 32(4): 891-899.
DOI |
LI J, ZHAO B Q, LI X Y, et al., 2008. Changes of soil microbial properties affected by different long-term fertilization regimes[J]. Journal of Plant Ecology, 32(4): 891-899. | |
[31] | 李月娇, 苏新, 祝有海, 等, 2015. 祁连山水合物分布区不同高寒生态类型冬季表层土壤中古菌群落及变化特征[J]. 现代地质, 29(5): 1047-1060. |
LI Y J, SU X, ZHU Y H, et al., 2015. Winter Seasonal Characteristics of the Archaeal Communities in Different Alpine Ecosystem Topsoils Collected from the Gas Hydrate Drilling Area, Qilian Mountains[J]. Geoscience, 29(5): 1047-1060. | |
[32] | 秦杰, 姜昕, 周晶, 等, 2015. 长期不同施肥黑土细菌和古菌群落结构及主效影响因子分析[J]. 植物营养与肥料学报, 21(6): 1590-1598. |
QIN J, JIANG X, ZHOU J, et al., 2015. Characteristics and driving factors of soil bacterial and archaeal communities under long-term fertilization regimes in black soil[J]. Journal of Plant Nutrition and Fertilizer, 21(6): 1590-1598. | |
[33] | 石文莉, 蒋如东, 马天海, 等, 2018. 太湖不同营养水平湖区沉积环境微生物分子生态网络特征及其环境响应分析[J]. 南京大学学报(自然科学), 54(5): 1045-1056. |
SHI W L, JIANG R D, MA T H, et al., 2018. Molecular ecological network analysis of sedimental microbial community and its response to environmental factors in different trophic status areas of Taihu Lake[J]. Journal of Nanjing University (Natural Science), 54(5): 1045-1056. | |
[34] | 孙怀博, 2013. 青藏高原阿里地区土壤细菌群落多样性及其分布的研究[D]. 南京: 南京农业大学. |
SUN H B, 2013. Soil bacterial communities diversity and distribution in Alidiqu of Tibetan Plateau[D]. Nanjing: Nanjing Agricultural University. | |
[35] | 孙小丽, 康萨如拉, 张庆, 等, 2015. 荒漠草原物种多样性、生产力与气候因子和土壤养分之间关系的研究[J]. 草业学报, 24(12): 10-19. |
SUN X L, KANG S R L, ZHANG Q, et al., 2015. Relationship between species diversity, productivity, climatic factors and soil nutrients in the desert steppe[J]. Acta Prataculturae Sinica, 24(12): 10-19. | |
[36] | 汪峰, ZHOU J Z, 孙波, 2014. 我国东部土壤氮转化微生物的功能分子生态网络结构及其对作物的响应[J]. 科学通报, 59(Z1): 387-396. |
WANG F, ZHOU J Z, SUN B, 2014. Functional molecular ecological network structure of soil nitrogen transforming microorganisms and their response to crops in eastern China[J]. Chinese Science Bulletin, 59(Z1): 387-396. | |
[37] | 吴尊凤, 史应武, 娄恺, 等, 2012. 天山北坡垂直自然带土壤古菌多样性分析[J]. 新疆农业科学, 49(3): 488-495. |
WU Z F, SHI Y W, LOU K, et al., 2012. Archaeal Diversity along Vertical Natural Belt in the Northern Slope of Tianshan Mountain[J]. Xinjiang Agricultural Sciences, 49(3): 488-495. | |
[38] | 鲜文东, 张潇橦, 李文均, 2020. 绿弯菌的研究现状及展望[J]. 微生物学报, 60(9): 1801-1820. |
XIAN W D, ZHANG X T, LI W J, 2020. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 60(9): 1801-1820. | |
[39] | 杨玉盛, 何宗明, 邹双全, 等, 1998. 格氏栲天然林与人工林根际土壤微生物及其生化特性的研究[J]. 生态学报, 18(2): 88-92. |
YANG Y S, HE Z M, ZOU S Q, et al., 1998. A study on the soil microbes and biochemistry of rhizopheric and total soil in natural forest and plantation of Castanopsis kauakamii[J]. Acta Ecologica Sinica, 18(2): 88-92. | |
[40] | 杨媛媛, 2019. 藏东南高寒山区土壤微生物地理格局及空间分布预测[D]. 杭州: 浙江大学. |
YANG Y Y, 2019. Geographical patterns and spatial distribution prediction of soil microorganisms in alpine ecosystem of Southeast Tibet[D]. Hangzhou: Zhejiang University. | |
[41] | 张宝贵, 张威, 刘光琇, 等, 2012. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 34(6): 1499-1507. |
ZHANG B G, ZHANG W, LIU G X, et al., 2012. Effects of freeze-thaw cycles on soil bacterial community structure in different ecosystems in the hinterland of the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 34(6): 1499-1507. | |
[42] | 赵卉琳, 来航线, 冯昌增, 等, 2008. 新疆部分地区盐碱荒漠化土壤养分及放线菌区系组成[J]. 西北农业学报, 17(1): 161-166. |
ZHAO H L, LAI H X, FENG C Z, et al., 2008. Nutrient Contents and Actinomycetes Populations of Desert Saline-alkali Soil in Parts Regions of Xinjiang[J]. Acta Agriculturae Boreali-occidentalis Sinica, 17(1): 161-166. | |
[43] | 朱平, 陈仁升, 宋耀选, 等, 2017. 祁连山中部4种典型植被类型土壤细菌群落结构差异[J]. 生态学报, 37(10): 3505-3514. |
ZHU P, CHEN R S, SONG Y X, et al., 2017. Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China[J]. Acta Ecologica Sinica, 37(10): 3505-3514. | |
[44] | 朱瑞芬, 刘杰淋, 王建丽, 等, 2020. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 53(13): 2637-2646. |
ZHU R F, LIU J L, WANG J L, et al., 2020. Molecular Ecological Network Analyses Revealing the Effects of Nitrogen Application on Soil Microbial Community in the Degraded Grasslands[J]. Scientia Agricultura Sinica, 53(13): 2637-2646. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[3] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[4] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[5] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
[6] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[7] | 于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765. |
[8] | 宋孝帅, 丁武泉, 刘新敏, 李廷真. 离子特异性效应对紫色土孔隙状况的影响机制研究[J]. 生态环境学报, 2023, 32(2): 292-298. |
[9] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[10] | 陈金凤, 余世钦, 符加方, 徐国良, 于波, 赖晓群, 胡思源, 张开渠, 刘家华. 华南红层地貌区不同利用方式土壤质量特征及其影响因素——以南雄盆地为例[J]. 生态环境学报, 2022, 31(5): 918-930. |
[11] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
[12] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[13] | 杨贤房, 陈朝, 郑林, 万智巍, 陈永林, 王远东. 稀土矿区不同土地利用类型土壤细菌群落特征及网络分析[J]. 生态环境学报, 2022, 31(4): 793-801. |
[14] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[15] | 宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||