生态环境学报 ›› 2026, Vol. 35 ›› Issue (1): 62-74.DOI: 10.16258/j.cnki.1674-5906.2026.01.006
王国琳1,2(
), 刘凯英3, 宋宁宁1, 刘君1, 王芳丽1, 王学霞4, 宗海英1,*(
), 李绍静5,*(
)
收稿日期:2025-04-25
修回日期:2025-08-04
接受日期:2025-08-23
出版日期:2026-01-18
发布日期:2026-01-05
通讯作者:
* E-mail: 作者简介:王国琳(1999年生),女(布依族),硕士研究生,主要研究方向为土壤改良。E-mail: 20232105042@stu.qau.edu.cn
基金资助:
WANG Guolin1,2(
), LIU Kaiying3, SONG Ningning1, LIU Jun1, WANG Fangli1, WANG Xuexia4, ZONG Haiying1,*(
), LI Shaojing5,*(
)
Received:2025-04-25
Revised:2025-08-04
Accepted:2025-08-23
Online:2026-01-18
Published:2026-01-05
摘要: 施用生物炭和秸秆还田是改良盐碱土的重要措施,但盐碱土中土壤有机氮组分的变化特征及其对生物炭和秸秆还田的响应机理尚不清楚。以黄河三角洲盐碱土为研究对象,探讨不添加外源物质(CK)、秸秆还田(ST)和施用生物炭(BI)对土壤有机氮组分、土壤酶活、微生物多样性和土壤团聚体的影响。结果表明:ST和BI均改变了盐渍土有机氮组分含量,其中BI改变效果更为显著(p<0.05)。与对照相比,BI提高了酸解性总氮、非酸解性氮、酸解性氨态氮、氨基酸态氮、氨基糖态氮和酸解性未知氮,幅度分别为38.86%、75.62%、35.05%、34.38%、39.61%和59.19%。ST和BI均显著增加了土壤中脲酶、蛋白酶、碱性磷酸酶、蔗糖酶和过氧化氢酶的含量,其中BI对土壤酶含量提升效果更显著(p<0.05),增幅分别为139%、104%、43.4%、50.2%、76.8%。BI显著提高了土壤微生物多样性(p<0.05),其丰富度指数、辛普森多样性指数、香农多样性指数均高于ST处理,分别高出15.0%、9.57%和20.8%。BI显著提高土壤微团聚体中酸解氮含量(p<0.05),而ST显著提高了土壤团聚体中非酸解氮含量(p<0.05)。此外,有机氮各组分与土壤酶活和微生物多样性均呈显著正相关,说明生物炭和秸秆还田主要通过促进土壤酶活性和改变土壤团聚体结构,改变土壤有机氮组分含量。综上,在盐碱土中添加生物炭和秸秆,通过提高盐碱土壤中酶含量、团聚体酸解氮含量和微生物活性而改善了土壤有机态氮组成,促进了土壤质量的提升。
中图分类号:
王国琳, 刘凯英, 宋宁宁, 刘君, 王芳丽, 王学霞, 宗海英, 李绍静. 盐碱土有机态氮组分对秸秆及秸秆生物炭输入的响应机理[J]. 生态环境学报, 2026, 35(1): 62-74.
WANG Guolin, LIU Kaiying, SONG Ningning, LIU Jun, WANG Fangli, WANG Xuexia, ZONG Haiying, LI Shaojing. Response Mechanism of Organic Nitrogen Components in Saline-alkali Soil to the Input of Straw and Straw Biochar[J]. Ecology and Environmental Sciences, 2026, 35(1): 62-74.
| 处理 | 全氮质量分数/(mg·kg−1) | 铵态氮质量分数/(mg·kg−1) | 硝态氮质量分数/(mg·kg−1) | 固定态铵氮质量分数/(mg·kg−1) |
|---|---|---|---|---|
| CK | 1040.30±5.19c | 5.15±0.05c | 20.53±0.17c | 85.75±0.01c |
| ST | 1428.02±7.82b | 6.14±1.11b | 35.57±0.49b | 131.05±0.04b |
| BI | 1518.01±9.24a | 7.58±0.09a | 32.60±0.35a | 137.71±0.01a |
表1 土壤全氮和无机氮质量分数
Table 1 Soil total nitrogen and inorganic nitrogen content
| 处理 | 全氮质量分数/(mg·kg−1) | 铵态氮质量分数/(mg·kg−1) | 硝态氮质量分数/(mg·kg−1) | 固定态铵氮质量分数/(mg·kg−1) |
|---|---|---|---|---|
| CK | 1040.30±5.19c | 5.15±0.05c | 20.53±0.17c | 85.75±0.01c |
| ST | 1428.02±7.82b | 6.14±1.11b | 35.57±0.49b | 131.05±0.04b |
| BI | 1518.01±9.24a | 7.58±0.09a | 32.60±0.35a | 137.71±0.01a |
图8 生物炭及秸秆还田下土壤有机态氮组分与土壤酶活和微生物间的相关关系
Figure 8 Correlation between soil organic nitrogen components, soil enzyme activity and microorganisms under biochar and straw returning *p<0.05;**p<0.01
| [1] | BREMNER J M, 1965. Nitrogen Availability Indexes[M]. Madison, WI: American Society of Agronomy: 1324-1345. |
| [2] |
ELGHARABLY A, MARSCHNER P, 2011. Microbial activity and biomass and N and P availability in a saline sandy loam amended with inorganic N and lupin residues[J]. European Journal of Soil Biology, 47(5): 310-315.
DOI URL |
| [3] | JI B Y, HU H, ZHAO Y L, et al., 2014. Effects of deep tillage and straw returning on soil microorganism and enzyme activities[J]. The Scientific World Journal, 1: 451493. |
| [4] |
LEHMANN J, RILLIG M C, THIES J, et al., 2011. Biochar effects on soil biota: A review[J]. Soil Biology and Biochemistry, 43(9): 1812.
DOI URL |
| [5] |
LI S X, WANG Z H, MIAO Y F, et al., 2014. Soil organic nitrogen and its contribution to crop production[J]. Journal of Integrative Agriculture, 13(10): 2061-2080.
DOI URL |
| [6] |
PROMMER J, WANEK W, HOFHANSL F, et al., 2014. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial[J]. PlOS ONE, 9(1): e86388.
DOI URL |
| [7] | WANG D, LAN Y, CHEN W F, et al., 2024. Response of bacterial communities, enzyme activities and dynamic changes of soil organic nitrogen fractions to six-year different application levels of biochar retention in Northeast China[J]. Soil & Tillage Research, 240: 106097. |
| [8] |
WANG F L, LIU Y, LIANG B, et al., 2022. Variations in soil aggregate distribution and associated organic carbon and nitrogen fractions in long-term continuous vegetable rotation soil by nitrogen fertilization and plastic film mulching[J]. The Science of the Total Environment, 835: 155420.
DOI URL |
| [9] |
XU N, TAN G C, WANG H Y, et al., 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 74: 1-8.
DOI URL |
| [10] |
YANG X, SUN Q, YUAN J, et al., 2022. Successive corn stover and biochar applications mitigate N2O emissions by altering soil physicochemical properties and N-cycling-related enzyme activities: A five-year field study in northeast China[J]. Agriculture, Ecosystems and Environment, 340: 108183.
DOI URL |
| [11] |
ZHANG L Y, JING Y M, CHEN C R, et al., 2021. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta‐analysis of field studies[J]. Global Change Biology Bioenergy, 13(12): 1859-1873.
DOI URL |
| [12] |
ZHANG S B, ZHOU J S, CHEN J, et al., 2023. Changes in soil CO2 and N2O emissions in response to urea and biochar-based urea in a subtropical Moso bamboo forest[J]. Soil and Tillage Research, 228: 105625.
DOI URL |
| [13] | ZHAO Y M, WANG X J, YAO G W, et al., 2022. Advances in the effects of biochar on microbial ecological function in soil and crop quality[J]. a)Sustainability, 14(16): 10411. |
| [14] | 常玥昕, 王俊, 杨彩迪, 等, 2025. 秸秆还田对黄土高原典型农田土壤团聚体组成及其碳组分的影响[J/OL]. 环境科学, 1-11[2025-07-23]. https://doi.org/10.13227/j.hjkx.202408279. |
| CHANG Y X, WANG J, YANG C D, et al., 2025. Effect of straw returning on soil aggregate aomposition and carbon fractions in typical farmland of the loess plateau[J/OL]. Environmental Science, 1-11[2025-07-23]. https://doi.org/10.13227/j.hjkx.202408279. | |
| [15] | 陈坤, 2017. 生物炭等有机物料定位施用对土壤微生物群落和有机氮的影响[D]. 沈阳: 沈阳农业大学. |
| CHEN K, 2017. Enfluences of soil microbial community and organic nitrogen under the long-term application of biochar and three organice resources[D]. Shenyang: Shenyang Agricultural University. | |
| [16] | 储成, 程谊, 曹亚澄, 等, 2021. 土壤可溶性有机氮测定方法研究进展[J]. 土壤, 53(3): 449-457. |
| CHU C, CHENG Y, CAO Y C, et al., 2021. Advances in determination of soil dissolved organic nitrogen[J]. Soils, 53(3): 449-457. | |
| [17] | 丛耀辉, 张玉玲, 张玉龙, 等, 2016. 黑土区水稻土有机氮组分及其对可矿化氮的贡献[J]. 土壤学报, 53(2): 457-467. |
| CONG Y H, ZHANG Y L, ZHANG Y L, et al., 2016. Soil organic nitrogen components and their contributions to mineralizable nitrogen in paddy soil of the black soil region[J]. Acta Pedologica Sinica, 53(2): 457-467. | |
| [18] | 冯中洲, 叶泽杰, 翟文露, 等, 2025. 长期施用生物炭对潮土理化特性和小麦产量的影响[J]. 河南农业大学学报, 59(1): 49-56. |
| FENG Z Z, YE Z J, ZHAI W L, et al., 2025. Effects of long-term application of biochar on physicochemical properties and wheat yield in fluvo-aquic soil[J]. Journal of Henan Agricultural University, 59(1): 49-56. | |
| [19] | 高君亮, 罗凤敏, 高永, 等, 2019. 农牧交错带不同土地利用类型土壤碳氮磷生态化学计量特征[J]. 生态学报, 39(15): 5594-5602. |
| GAO J L, LUO F M, GAO Y, et al., 2019. Ecological soil C, N, and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of northern China[J]. Acta Ecologica Sinica, 39(15): 5594-5602. | |
| [20] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社: 274-278. |
| GUAN S Y, 1986. Soil Enzymes and Their Research methods[M]. Beijing: Agriculture Press: 274-278. | |
| [21] | 韩志旺, 赵志华, 张艳利, 等, 2021. 生物炭对农田土壤中酶活性和细菌群落结构的影响研究[J]. 四川环境, 40(4): 26-34. |
| HAN Z W, ZHAO Z H, ZHANG Y L, et al., 2021. Effects of biochars on enzyme acitivity and bacterial community structure in agricultural soil[J]. Sichuan Environment, 40(4): 26-34. | |
| [22] | 贺纪正, 张丽梅, 2013. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 40(1): 98-108. |
| HE J Z, ZHANG L M, 2013. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China, 40(1): 98-108. | |
| [23] |
蒋婧, 宋明华, 2010. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 34(8): 979-988.
DOI |
|
JIANG J, SONG M H, 2010. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 34(8): 979-988.
DOI |
|
| [24] | 姜慧敏, 李树山, 张建峰, 等, 2014. 外源化肥氮素在土壤有机氮库中的转化及关系[J]. 植物营养与肥料学报, 20(6): 1421-1430. |
| JIANG H M, LI S S, ZHANG J F, et al., 2014. Transformation of external chemical nitrogen in soil organic nitrogen fractions and their relationship[J]. Journal of Plant Nutrition and Fertilizers, 20(6): 1421-1430. | |
| [25] |
焦亚鹏, 齐鹏, 王晓娇, 等, 2020. 施氮量对农田土壤有机氮组分及酶活性的影响[J]. 中国农业科学, 53(12): 2423-2434.
DOI |
|
JIAO Y P, QI P, WANG X J, et al., 2020. Effects of different nitrogen application rates on soil organic nitrogen components and enzyme activities in farmland[J]. Scientia Agricultura Sinica, 53(12): 2423-2434.
DOI |
|
| [26] | 李春喜, 李斯斯, 邵云, 等, 2019. 减氮条件下有机物料还田对麦田酶活性及其土壤碳氮含量的影响[J]. 作物杂志 (5): 129-134. |
| LI C X, LI S S, SHAO Y, et al., 2019. Effects of organic materials returning on enzyme activities and soil carbon and nitrogen content in wheat field under nitrogen-reducing conditions[J]. Crops (5): 129-134. | |
| [27] | 李红霖, 贺丽, 吴科君, 等, 2023. 黄河上游白河干流全段植物群落特征及生物多样性[J]. 草业科学, 40(4): 848-863. |
| LI H L, HE L, WU K J, et al., 2023. Research on plant community characteristics and biodiversity in the whole section of the main stream of Baihe River in the upper reaches of the Yellow River[J]. Pratacultural Science, 40(4): 848-863. | |
| [28] | 李菊梅, 李生秀, 2003. 可矿化氮与各有机氮组分的关系[J]. 植物营养与肥料学报, 9(2): 158-164. |
| LI J M, LI S X, 2003. Relation of mineralizable N to organic N components[J]. Journal of Plant Nutrition and Fertilizers, 9(2): 158-164. | |
| [29] | 李玲, 仇少君, 陈印平, 等, 2014. 黄河三角洲区土壤活性氮对盐分含量的响应[J]. 环境科学, 35(6): 2358-2364. |
| LI L, QIU S J, CHEN Y P, et al., 2014. Response of active nitrogen to salinity in a soil from the Yellow River Delta[J]. Enviromental Science, 35(6): 2358-2364. | |
| [30] | 李娜, 韩晓增, 尤孟阳, 等, 2013. 土壤团聚体与微生物相互作用研究[J]. 生态环境学报, 22(9): 1625-1632. |
| LI N, HAN X Z, YOU M Y, et al., 2013. Research review on soil aggregates and microbes[J]. Ecology and Environmental Sciences, 22(9): 1625-1632. | |
| [31] |
李想, 于红博, 刘月璇, 等, 2022. 锡林郭勒不同草原类型群落生物量及多样性研究[J]. 草地学报, 30(1): 196-204.
DOI |
|
LI X, YU H B, LIU Y X, et al., 2022. Study on community biomass and diversity of different grassland types in Xilingol[J]. Acta Agrestia Sinica, 30(1): 196-204.
DOI |
|
| [32] | 李玥, 余亚琳, 张欣, 等, 2017. 连续施用炭基肥及生物炭对棕壤有机氮组分的影响[J]. 生态学杂志, 36(10): 2903-2909. |
| LI Y, YU Y L, ZHANG X, et al., 2017. Effects of continuous application of biochar-based fertilizer and biochar on organic nitrogen fractions in brown soil[J]. Chinese Journal of Ecology, 36(10): 2903-2909. | |
| [33] | 刘金山, 戴健, 刘洋, 等, 2015. 过量施氮对旱地土壤碳、氮及供氮能力的影响[J]. 植物营养与肥料学报, 21(1): 112-120. |
| LIU J S, DAI J, LIU Y, et al., 2015. Effects of excessive nitrogen fertilization on soil organic carbon and nitrogen and nitrogen supply capacity in dryland[J]. Journal of Plant Nutrition and Fertilizers, 21(1): 112-120. | |
| [34] | 刘淼, 王志春, 杨福, 等, 2021. 生物炭在盐碱地改良中的应用进展[J]. 水土保持学报, 35(3): 1-8. |
| LIU M, WANG Z C, YANG F, et al., 2021. Application progress of biochar in amelioration of saline-alkaline soil[J]. Journal of Soil and Water Conservation, 35(3): 1-8. | |
| [35] | 鲁如坤, 1999. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 157-159. |
| LU R K, 1999. Analytical methods for soil agrochemistry[M]. Beijing: China Agricultural Science and Technology Press: 157-159. | |
| [36] | 孟繁昊, 高聚林, 于晓芳, 等, 2018. 生物炭配施氮肥改善表层土壤生物化学性状研究[J]. 植物营养与肥料学报, 24(5): 1214-1226. |
| MENG F H, GAO J L, YU X F, et al., 2018. Inprovent of biochemical property of surface soil by combined application of biochar with nitrogen fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 24(5): 1214-1226. | |
| [37] | 米会珍, 朱利霞, 沈玉芳, 等, 2015. 生物炭对旱作农田土壤有机碳及氮素在团聚体中分布的影响[J]. 农业环境科学学报, 34(8): 1550-1556. |
| MI H Z, ZHU L X, SHEN Y F, et al., 2015. Biochar effects on organic carbon and nitrogen in soil aggregates in semiarid farmland[J]. Journal of Agro-Environment Science, 34(8): 1550-1556. | |
| [38] | 潘剑玲, 代万安, 尚占环, 等, 2013. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 21(5): 526-535. |
|
PAN J L, DAI W A, SHANG Z H, et al., 2013. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chinese Journal of Eco-Agriculture, 21(5): 526-535.
DOI URL |
|
| [39] | 尚杰, 耿增超, 陈心想, 等, 2015. 施用生物炭对旱作农田土壤有机碳、氮及其组分的影响[J]. 农业环境科学学报, 34(3): 509-517. |
| SHANG J, GENG Z C, CHEN X X, et al., 2015. Effects of biochar on soil organic carbon and nitrogen and their fractions in a rainfed farmland[J]. Journal of Agro-Environment Science, 34(3): 509-517. | |
| [40] | 沈仁芳, 赵学强, 2015. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 35(20): 6584-6591. |
| SHEN R F, ZHAO X Q, 2015. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica, 35(20): 6584-6591. | |
| [41] | 沈晓琳, 王丽丽, 汪洋, 等, 2020. 保护性耕作对土壤团聚体微生物及线虫群落的影响研究进展[J]. 农业资源与环境学报, 37(3): 361-370. |
| SHEN X L, WANG L L, WANG Y, et al., 2020. Progress on the effects of conservation tillage on soil aggregates, microbes, and nematode communities[J]. Journal of Agricultural Resources and Environment, 37(3): 361-370. | |
| [42] | 宋震震, 李絮花, 李娟, 等, 2014. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响[J]. 植物营养与肥料学报, 20(3): 525-533. |
| SONG Z Z, LI X H, LI J, et al., 2014. Long-term effects of mineral versus organic fertilizers on soil labile nitrogen fractions and soil enzyme activities in agricultural soil[J]. Journal of Plant Nutrition and Fertilizers, 20(3): 525-533. | |
| [43] | 孙瀚, 屈杰, 王晓雯, 等, 2021. 黄河三角洲盐渍土有机氮组成及氮有效性对土壤含盐量的响应[J]. 中国生态农业学报, 29(8): 1397-1404. |
| SUN H, QU J, WANG X W, et al., 2021. The response of soil organic nitrogen fractions and nitrogen availability to salinity in saline soils of the Yellow River Delta[J]. Chinese Journal of Eco-Agriculture, 29(8): 1397-1404. | |
| [44] | 孙佳, 夏江宝, 苏丽, 等, 2020. 黄河三角洲盐碱地不同植被模式的土壤改良效应[J]. 应用生态学报, 31(4): 1323-1332. |
| SUN J, XIA J B, SU L, et al., 2020. Soil amelioration of different vegetation types in saline-alkali land of the Yellow River Delta[J]. Chinese Journal of Applied Ecology, 31(4): 1323-1332. | |
| [45] |
王飞, 李清华, 何春梅, 等, 2023. 长期施肥对黄泥田土壤团聚体中氮素积累和有机氮组成的影响[J]. 中国农业科学, 56(9): 1718-1728.
DOI |
|
WANG F, LI Q H, HE C M, et al., 2023. Effects of long-term fertilization on nitrogen accumulations and organic nitrogen components in soil aggregates in Yellow-Mud paddy soil[J]. Scientia Agricultura Sinica, 56(9): 1718-1728.
DOI |
|
| [46] | 杨华, 陈莎莎, 冯哲叶, 等, 2017. 土壤微生物与有机物料对盐碱土团聚体形成的影响[J]. 农业环境科学学报, 36(10): 2080-2085. |
| YANG H, CHEN S S, FENG Z Y, et al., 2017. Combined effects of soil microbes and organic matter on aggregate formation in saline-alkali soil[J]. Journal of Agro-Environment Science, 36(10): 2080-2085. | |
| [47] | 袁晶晶, 同延安, 卢绍辉, 等, 2018. 生物炭与氮肥配施改善土壤团聚体结构提高红枣产量[J]. 农业工程学报, 34(3): 159-165. |
| YUAN J J, TONG Y A, LU Z H, et al., 2018. Biochar and nitrogen amendments improving soil aggregate structure and jujube yields[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(3): 159-165. | |
| [48] | 曾全超, 李鑫, 董扬红, 等, 2015. 黄土高原不同乔木林土壤微生物量碳氮和溶解性碳氮的特征[J]. 生态学报, 35(11): 3598-3605. |
| ZENG Q C, LI X, DONG Y H, et al., 2015. Soil microbial biomass nitrogen and carbon, water soluble nitrogen and carbon under different arbors forests on the Loess Plateau[J]. Acta Ecologica Sinica, 35(11): 3598-3605. | |
| [49] | 曾庆庭, 2018. 半微量凯氏定氮法测定地球化学样品中全氮时的影响因素及消除方法[J]. 广东化工, 45(12): 225-226, 220. |
| ZENG Q T, 2018. The influence factors and elimination methods of the determination of nitrogen in geochemical samples by sei-micro kjeldahl method[J]. Guangdong Chemical Industry, 45(12): 225-226, 220. | |
| [50] | 战秀梅, 彭靖, 王月, 等, 2015. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用[J]. 植物营养与肥料学报, 21(6): 1633-1641. |
| ZHAN X M, PENG J, WANG Y, et al., 2015. Influences of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields[J]. Journal of Plant Nutrition and Fertilizers, 21(6): 1633-1641. | |
| [51] |
张伟明, 陈温福, 孟军, 等, 2019. 东北地区秸秆生物炭利用潜力、产业模式及发展战略研究[J]. 中国农业科学, 52(14): 2406-2424.
DOI |
|
ZHANG W M, CHEN W F, MENG J, et al., 2019. Study of straw-biochar on utilization potential, Industry model and developing strategy in northeast China[J]. Scientia Agricultura Sinica, 52(14): 2406-2424.
DOI |
|
| [52] |
张秀敏, 高日平, 康文钦, 等, 2021. 秸秆还田对盐碱地改良的研究进展[J]. 北方农业学报, 49(5): 85-92.
DOI |
|
ZHANG X M, GAO R P, KANG W Q, et al., 2021. Research progress of the straw returning on soil improvement in saline-alkali land[J]. Journal of Northern Agriculture, 49(5): 85-92.
DOI |
|
| [53] | 周建斌, 陈竹君, 郑险峰, 2005. 土壤可溶性有机氮及其在氮素供应及转化中的作用[J]. 土壤通报, 36(2): 244-248. |
| ZHOU J B, CHEN J Z, ZHEN X F, 2005. Soluble organic nitrogen in soil and its roles in the sapply and transformation of N[J]. Chinese Journal of Soil Science, 36(2): 244-248. |
| [1] | 石含之, 曹怡然, 刘帆, 吴志超, 李富荣, 邓腾灏博, 徐爱平, 李冬琴, 文典, 王旭. 秸秆与细菌联合作用下土壤铅形态转化的调控研究[J]. 生态环境学报, 2026, 35(1): 155-166. |
| [2] | 柳凤娟, 马超, 黄玲涵, 陈琪, 罗绪强. 生物炭添加对尾砂污染土壤中As和Sb植物有效性的影响[J]. 生态环境学报, 2025, 34(8): 1273-1281. |
| [3] | 贺环, 周丹丹, 马芷萱, 李芳芳, 秦珊珊, 豆思娴. 钙改性对生物炭中溶解性有机质与Cd(Ⅱ)结合的影响[J]. 生态环境学报, 2025, 34(7): 1121-1132. |
| [4] | 林泳怡, 周燕飞, 邓金环, 田纪辉, 蔡昆争. 生物炭与磷添加促进赤红壤的硅形态转化和大豆植株硅吸收转运[J]. 生态环境学报, 2025, 34(5): 710-719. |
| [5] | 吴小令, 杜衍红, 窦飞, 高双全, 王向琴. 生物炭和腐殖质治理重金属污染菜地的定位试验研究[J]. 生态环境学报, 2025, 34(12): 1952-1961. |
| [6] | 王永梅, 袁雨珍, 王梓成, 李志丰, 高双全, 刘传平, 杜衍红. 生物炭协同化肥减量对重金属污染土壤甜玉米安全生产的长期效应[J]. 生态环境学报, 2025, 34(12): 1962-1973. |
| [7] | 赵程潇, 马江鸿, 刘虹霞, 胡静雯, 潘姿彤, 王嘉莹, 李金页. 生物炭对人工湿地的强化脱氮作用[J]. 生态环境学报, 2025, 34(12): 1985-1992. |
| [8] | 吉波, 程红光, 韩世明, 邢丹, 吴志兵, 张金莲, 刘芳, 朱艺, 邓丽蓉, 张晓松. 生物炭与丛枝菌根真菌对土壤中磷供应影响的研究进展[J]. 生态环境学报, 2025, 34(11): 1812-1826. |
| [9] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
| [10] | 范贝贝, 丁帅, 张田田, 张帅, 魏露露, 陈清. 周期性淹水-落干和施用秸秆对白云石改良棕壤磷素流失风险的模拟研究[J]. 生态环境学报, 2024, 33(8): 1203-1213. |
| [11] | 卢聪. 生物炭负载纳米零价铁对沉积物中十溴二苯乙烷去除效果及机制[J]. 生态环境学报, 2024, 33(8): 1279-1288. |
| [12] | 陈文哲, 黄秋香, 孟凡德, 高金妍, 李敏, 张恩俊, 袁国栋. 草酸和酒石酸对稻田土壤中砷解吸行为的影响研究[J]. 生态环境学报, 2024, 33(8): 1298-1305. |
| [13] | 蒋云峰, 严婷, 刘俊男, 马丙增, 王海萌, 窦笑萌. 黑土区农田中型土壤动物群落对免耕玉米秸秆覆盖频率的响应[J]. 生态环境学报, 2024, 33(5): 699-707. |
| [14] | 王室苹, 李梅, 安娅, 秦好丽. 镁改性增强小麦秸秆生物炭对镉的吸附能力:表面络合模型研究[J]. 生态环境学报, 2024, 33(4): 617-625. |
| [15] | 肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||