生态环境学报 ›› 2026, Vol. 35 ›› Issue (1): 155-166.DOI: 10.16258/j.cnki.1674-5906.2026.01.014
• 研究论文【环境科学】 •
上一篇
石含之1,2,3(
), 曹怡然1,2,3, 刘帆4, 吴志超1,2,3, 李富荣1,2,3, 邓腾灏博1,2,3, 徐爱平1,2,3, 李冬琴1,2,3, 文典1,2,3, 王旭1,2,3,*(
)
收稿日期:2025-04-28
修回日期:2025-08-21
接受日期:2025-10-13
出版日期:2026-01-18
发布日期:2026-01-05
通讯作者:
* E-mail: 作者简介:石含之(1989年生),女,助理研究员,博士,主要研究方向为土壤组分互作微界面重金属的固定机制。E-mail: 692874887@qq.com
基金资助:
SHI Hanzhi1,2,3(
), CAO Yiran1,2,3, LIU Fan4, WU Zhichao1,2,3, LI Furong1,2,3, DENGTENG Haobo1,2,3, XU Aiping1,2,3, LI Dongqin1,2,3, WEN Dian1,2,3, WANG Xu1,2,3,*(
)
Received:2025-04-28
Revised:2025-08-21
Accepted:2025-10-13
Online:2026-01-18
Published:2026-01-05
摘要:
中国土壤铅(Pb)污染问题突出,亟待开发受铅污染耕地的安全利用技术。土壤有机物和铁氧化物的数量和类型决定了Pb的形态,但不同类型有机物和铁氧化物对Pb形态的影响尚不清晰。选取中国3种地带性土壤,设计添加Pb、秸秆和细菌的土壤培养试验,温室条件下培养4个月后取样。结果显示,1)土壤中Pb主要以专性吸附/碳酸盐结合态、腐殖酸结合态、铁锰氧化态形式存在;在红壤、褐土和黑土的不同处理中,这3种形态的Pb占总Pb含量的比例分别为74.4%-89.2%、84.2%-95.6%和73.4%-84.9%。秸秆、秸秆+细菌促进了低铅处理土壤中铅老化的进程;高Pb处理中Pb形态转化主要发生在离子交换态、专性吸附/碳酸盐结合、腐殖酸结合态及铁锰氧化态之间。2)高Pb处理红壤、褐土及黑土的移动系数分别为低铅处理的2.00、1.35和2.45倍,表明褐土中具有较充足的吸附点位可降低Pb移动性,可能与褐土的高pH值、脂肪碳和羧基碳比例有关。3)红壤中pH和各类型有机碳对Pb的固定起促进作用;各类型有机碳、铁氧化物主要影响褐土和黑土中离子交换态、碳酸盐结合态及腐殖酸结合态Pb含量。研究结果可为Pb污染土壤的安全利用及风险评估提供理论依据。
中图分类号:
石含之, 曹怡然, 刘帆, 吴志超, 李富荣, 邓腾灏博, 徐爱平, 李冬琴, 文典, 王旭. 秸秆与细菌联合作用下土壤铅形态转化的调控研究[J]. 生态环境学报, 2026, 35(1): 155-166.
SHI Hanzhi, CAO Yiran, LIU Fan, WU Zhichao, LI Furong, DENGTENG Haobo, XU Aiping, LI Dongqin, WEN Dian, WANG Xu. Study on the Regulation of Soil Lead Forms Transformation under the Combined Action of Straw and Bacteria[J]. Ecology and Environmental Sciences, 2026, 35(1): 155-166.
| 土壤性质 | 红壤 | 褐土 | 黑土 |
|---|---|---|---|
| 有机质质量分数/(g·kg−1) | 6.70±0.58 | 8.44±0.38 | 55.16±2.66 |
| 阳离子交换量/(cmol·kg−1) | 6.80±0.16 | 8.74±0.03 | 34.99±0.07 |
| pH/(H2O) | 6.20±0.01 | 7.43±0.02 | 6.25±0.00 |
| 砂粒质量分数/% | 41.42 | 20.72 | 14.04 |
| 粉粒质量分数/% | 39.75 | 71.14 | 58.70 |
| 粘粒质量分数/% | 18.83 | 8.14 | 27.26 |
| 游离铁质量分数/(g·kg−1) | 21.86±0.08 | 10.63±0.05 | 10.55±0.02 |
| 非晶型铁质量分数/(g·kg−1) | 2.35±0.02 | 0.99±0.01 | 5.06±0.03 |
| 络合铁质量分数/(g·kg−1) | 0.13±0.01 | 0.10±0.00 | 0.55±0.02 |
| 总Pb质量分数/(mg·kg−1) | 33.21±0.59 | 30.11±1.02 | 27.12±0.63 |
表1 土壤基本理化性质
Table 1 Soil physiochemical properties
| 土壤性质 | 红壤 | 褐土 | 黑土 |
|---|---|---|---|
| 有机质质量分数/(g·kg−1) | 6.70±0.58 | 8.44±0.38 | 55.16±2.66 |
| 阳离子交换量/(cmol·kg−1) | 6.80±0.16 | 8.74±0.03 | 34.99±0.07 |
| pH/(H2O) | 6.20±0.01 | 7.43±0.02 | 6.25±0.00 |
| 砂粒质量分数/% | 41.42 | 20.72 | 14.04 |
| 粉粒质量分数/% | 39.75 | 71.14 | 58.70 |
| 粘粒质量分数/% | 18.83 | 8.14 | 27.26 |
| 游离铁质量分数/(g·kg−1) | 21.86±0.08 | 10.63±0.05 | 10.55±0.02 |
| 非晶型铁质量分数/(g·kg−1) | 2.35±0.02 | 0.99±0.01 | 5.06±0.03 |
| 络合铁质量分数/(g·kg−1) | 0.13±0.01 | 0.10±0.00 | 0.55±0.02 |
| 总Pb质量分数/(mg·kg−1) | 33.21±0.59 | 30.11±1.02 | 27.12±0.63 |
| 处理 | Pb(NO3)2添加量/ (mg·kg−1) | 秸秆添加量/ (g·kg−1) | 细菌添加量/ (CFU·g−1) |
|---|---|---|---|
| 对照 | 100 | 0 | 0 |
| 秸秆 | 100 | 50 | 0 |
| 秸秆+细菌 | 100 | 50 | 1×107 |
| 对照 | 200 | 0 | 0 |
| 秸秆 | 200 | 50 | 0 |
| 秸秆+细菌 | 200 | 50 | 1×107 |
表2 土壤培养试验处理
Table 2 The treatment of soil incubation experiment
| 处理 | Pb(NO3)2添加量/ (mg·kg−1) | 秸秆添加量/ (g·kg−1) | 细菌添加量/ (CFU·g−1) |
|---|---|---|---|
| 对照 | 100 | 0 | 0 |
| 秸秆 | 100 | 50 | 0 |
| 秸秆+细菌 | 100 | 50 | 1×107 |
| 对照 | 200 | 0 | 0 |
| 秸秆 | 200 | 50 | 0 |
| 秸秆+细菌 | 200 | 50 | 1×107 |
| 铅浓度 | 处理 | 红壤 | 褐土 | 黑土 |
|---|---|---|---|---|
| Pb-100 | 对照 | 6.33±0.01a | 7.65±0.09a | 6.34±0.05a |
| 秸秆 | 6.50±0.09ab | 7.26±0.11b | 6.48±0.01a | |
| 秸秆+细菌 | 6.60±0.04a | 7.34±0.02b | 6.48±0.10a | |
| Pb-200 | 对照 | 6.34±0.01c | 7.60±0.02a | 6.36±0.01b |
| 秸秆 | 6.55±0.02b | 7.31±0.04b | 6.48±0.01ab | |
| 秸秆+细菌 | 6.65±0.04a | 7.34±0.02b | 6.50±0.07a |
表3 土壤pH值
Table 3 The pH values of soils
| 铅浓度 | 处理 | 红壤 | 褐土 | 黑土 |
|---|---|---|---|---|
| Pb-100 | 对照 | 6.33±0.01a | 7.65±0.09a | 6.34±0.05a |
| 秸秆 | 6.50±0.09ab | 7.26±0.11b | 6.48±0.01a | |
| 秸秆+细菌 | 6.60±0.04a | 7.34±0.02b | 6.48±0.10a | |
| Pb-200 | 对照 | 6.34±0.01c | 7.60±0.02a | 6.36±0.01b |
| 秸秆 | 6.55±0.02b | 7.31±0.04b | 6.48±0.01ab | |
| 秸秆+细菌 | 6.65±0.04a | 7.34±0.02b | 6.50±0.07a |
| 土壤类型 | 处理 | E4/E6 | |
|---|---|---|---|
| Pb-100 | Pb-200 | ||
| 红壤 | 对照 | 7.07±0.06b | 7.05±0.04b |
| 秸秆 | 7.70±0.08a | 7.68±0.03a | |
| 秸秆+细菌 | 7.70±0.08a | 7.69±0.04a | |
| 褐土 | 对照 | 5.10±0.06b | 5.08±0.02b |
| 秸秆 | 5.96±0.07a | 5.95±0.03a | |
| 秸秆+细菌 | 5.89±0.06a | 5.90±0.02a | |
| 黑土 | 对照 | 3.44±0.01a | 3.42±0.01a |
| 秸秆 | 3.48±0.02a | 3.47±0.01a | |
| 秸秆+细菌 | 3.48±0.00a | 3.48±0.00a | |
表4 土壤腐殖酸的E4/E6值
Table 4 E4/E6 values of soil humic substances
| 土壤类型 | 处理 | E4/E6 | |
|---|---|---|---|
| Pb-100 | Pb-200 | ||
| 红壤 | 对照 | 7.07±0.06b | 7.05±0.04b |
| 秸秆 | 7.70±0.08a | 7.68±0.03a | |
| 秸秆+细菌 | 7.70±0.08a | 7.69±0.04a | |
| 褐土 | 对照 | 5.10±0.06b | 5.08±0.02b |
| 秸秆 | 5.96±0.07a | 5.95±0.03a | |
| 秸秆+细菌 | 5.89±0.06a | 5.90±0.02a | |
| 黑土 | 对照 | 3.44±0.01a | 3.42±0.01a |
| 秸秆 | 3.48±0.02a | 3.47±0.01a | |
| 秸秆+细菌 | 3.48±0.00a | 3.48±0.00a | |
| 土壤类型 | 处理 | 芳香碳百分比/% | 酚基碳百分比/% | 脂肪碳百分比/% | 羧基碳百分比/% | 烷氧碳百分比/% | 羰基碳百分比/% | 芳香性 | 脂肪碳/烷氧碳值 |
|---|---|---|---|---|---|---|---|---|---|
| 红壤 | 对照 | 13.50 | 1.11 | 12.36 | 28.08 | 28.98 | 15.97 | 24.62 | 0.38 |
| 秸秆 | 9.65 | 1.78 | 19.01 | 18.29 | 36.02 | 15.25 | 14.92 | 1.38 | |
| 褐土 | 对照 | 13.87 | 2.35 | 19.11 | 23.16 | 37.04 | 4.47 | 19.81 | 3.38 |
| 秸秆 | 4.44 | 1.28 | 22.48 | 34.58 | 33.33 | 3.89 | 7.37 | 4.38 | |
| 黑土 | 对照 | 7.85 | 1.03 | 20.38 | 36.32 | 33.02 | 1.40 | 12.82 | 6.38 |
| 秸秆 | 21.14 | 4.83 | 21.98 | 16.52 | 32.18 | 3.35 | 28.07 | 7.38 |
表5 土壤各类型有机碳百分比、芳香性、脂肪碳/烷氧碳值
Table 5 The percentage of various types of organic carbon, aromaticity, and the value of aliphatic carbon/alkoxy carbon
| 土壤类型 | 处理 | 芳香碳百分比/% | 酚基碳百分比/% | 脂肪碳百分比/% | 羧基碳百分比/% | 烷氧碳百分比/% | 羰基碳百分比/% | 芳香性 | 脂肪碳/烷氧碳值 |
|---|---|---|---|---|---|---|---|---|---|
| 红壤 | 对照 | 13.50 | 1.11 | 12.36 | 28.08 | 28.98 | 15.97 | 24.62 | 0.38 |
| 秸秆 | 9.65 | 1.78 | 19.01 | 18.29 | 36.02 | 15.25 | 14.92 | 1.38 | |
| 褐土 | 对照 | 13.87 | 2.35 | 19.11 | 23.16 | 37.04 | 4.47 | 19.81 | 3.38 |
| 秸秆 | 4.44 | 1.28 | 22.48 | 34.58 | 33.33 | 3.89 | 7.37 | 4.38 | |
| 黑土 | 对照 | 7.85 | 1.03 | 20.38 | 36.32 | 33.02 | 1.40 | 12.82 | 6.38 |
| 秸秆 | 21.14 | 4.83 | 21.98 | 16.52 | 32.18 | 3.35 | 28.07 | 7.38 |
| 铅浓度 | 处理 | 红壤 | 褐土 | 黑土 |
|---|---|---|---|---|
| Pb-100 | 对照 | 0.54±0.07a | 0.97±0.05a | 5.24±0.05a |
| 秸秆 | 0.51±0.01b | 0.96±0.02a | 4.95±0.03b | |
| 秸秆+细菌 | 0.50±0.01b | 0.95±0.02a | 5.05±0.00b | |
| Pb-200 | 对照 | 0.59±0.00a | 0.96±0.06a | 5.19±0.02a |
| 秸秆 | 0.50±0.02b | 0.91±0.05b | 4.91±0.10b | |
| 秸秆+细菌 | 0.49±0.03b | 0.92±0.04b | 4.98±0.10b |
表6 土壤Fep/Fed比值
Table 6 The percentage values of Fep/Fed %
| 铅浓度 | 处理 | 红壤 | 褐土 | 黑土 |
|---|---|---|---|---|
| Pb-100 | 对照 | 0.54±0.07a | 0.97±0.05a | 5.24±0.05a |
| 秸秆 | 0.51±0.01b | 0.96±0.02a | 4.95±0.03b | |
| 秸秆+细菌 | 0.50±0.01b | 0.95±0.02a | 5.05±0.00b | |
| Pb-200 | 对照 | 0.59±0.00a | 0.96±0.06a | 5.19±0.02a |
| 秸秆 | 0.50±0.02b | 0.91±0.05b | 4.91±0.10b | |
| 秸秆+细菌 | 0.49±0.03b | 0.92±0.04b | 4.98±0.10b |
| 土壤类型 | 处理 | Pb形态 | pH | 有机质 | 腐殖酸 | 溶解性有机碳 | 游离铁 | 非晶型铁 | 络合铁 | 晶型铁 |
|---|---|---|---|---|---|---|---|---|---|---|
| 红壤 | Pb-100 | 水溶态 | −0.944** | −0.726 | −0.729 | −0.747 | −0.660 | 0.098 | 0 | −0.721 |
| 离子交换态 | −0.821* | −0.982** | −0.952** | −0.974** | −0.182 | 0.77 | 0.177 | −0.361 | ||
| 专性吸附态 | 0.113 | −0.190 | −0.071 | −0.116 | 0.099 | 0.646 | −0.425 | −0.036 | ||
| 腐殖酸结合态 | 0.119 | 0.484 | 0.477 | 0.476 | −0.496 | −0.693 | −0.673 | −0.375 | ||
| 铁锰氧化态 | 0.478 | 0.563 | 0.598 | 0.631 | −0.312 | −0.429 | −0.502 | −0.237 | ||
| 强有机结合态 | −0.473 | −0.458 | −0.491 | −0.470 | −0.261 | 0.303 | −0.492 | −0.342 | ||
| 残渣态 | 0.589 | 0.837* | 0.793 | 0.860* | −0.292 | −0.818* | −0.592 | −0.131 | ||
| Pb-200 | 水溶态 | −0.511 | −0.648 | −0.632 | −0.631 | −0.191 | 0.627 | −0.402 | −0.340 | |
| 离子交换态 | −0.866* | −0.998** | −0.975** | −0.997** | −0.217 | 0.705 | 0.32 | −0.384 | ||
| 专性吸附态 | 0.262 | 0.11 | 0.22 | 0.138 | 0.199 | 0.349 | −0.568 | 0.135 | ||
| 腐殖酸结合态 | 0.907* | 0.992** | 0.979** | 0.992** | 0.281 | −0.624 | −0.341 | 0.434 | ||
| 铁锰氧化态 | 0.672 | 0.879* | 0.916* | 0.860* | 0.149 | −0.681 | −0.238 | 0.306 | ||
| 强有机结合态 | 0.454 | 0.591 | 0.696 | 0.575 | 0.168 | −0.344 | −0.242 | 0.253 | ||
| 残渣态 | −0.528 | −0.733 | −0.707 | −0.722 | 0.324 | 0.74 | 0.398 | 0.182 | ||
| 褐土 | Pb-100 | 水溶态 | 0.204 | 0.042 | 0.054 | −0.140 | −0.258 | 0.03 | −0.474 | −0.509 |
| 离子交换态 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| 碳酸盐结合态 | 0.615 | −0.856* | −0.793 | −0.735 | 0.903* | 0.744 | 0.398 | 0.814* | ||
| 腐殖酸结合态 | −0.767 | 0.778 | 0.891* | 0.829* | −0.831* | −0.885* | −0.638 | −0.519 | ||
| 铁锰氧化态 | 0.693 | −0.716 | −0.623 | −0.670 | 0.383 | 0.637 | 0.401 | −0.022 | ||
| 强有机结合态 | 0.343 | −0.636 | −0.546 | −0.484 | 0.761 | 0.483 | 0.184 | 0.850* | ||
| 残渣态 | −0.416 | 0.614 | 0.713 | 0.62 | −0.809 | −0.663 | −0.442 | −0.732 | ||
| Pb-200 | 水溶态 | 0.239 | −0.162 | −0.181 | −0.069 | 0.044 | 0.178 | 0.711 | −0.123 | |
| 离子交换态 | −0.854* | 0.637 | 0.735 | 0.834* | −0.527 | −0.803 | −0.186 | −0.054 | ||
| 碳酸盐结合态 | −0.601 | 0.559 | 0.714 | 0.657 | −0.607 | −0.718 | −0.588 | −0.299 | ||
| 腐殖酸结合态 | −0.807 | 0.928** | 0.839* | 0.837* | −0.709 | −0.827* | −0.531 | −0.361 | ||
| 铁锰氧化态 | 0.691 | −0.724 | −0.728 | −0.628 | 0.603 | 0.712 | 0.857* | 0.297 | ||
| 强有机结合态 | 0.518 | −0.361 | −0.510 | −0.596 | 0.463 | 0.558 | −0.102 | 0.214 | ||
| 残渣态 | −0.794 | 0.692 | 0.76 | 0.854* | −0.596 | −0.803 | −0.178 | −0.180 | ||
| 黑土 | Pb-100 | 水溶态 | 0.123 | −0.177 | −0.019 | 0.09 | 0.402 | 0.404 | 0.057 | 0.261 |
| 离子交换态 | −0.873* | −0.712 | −0.758 | −0.859* | 0.498 | 0.487 | 0.751 | 0.348 | ||
| 专性吸附态 | 0.139 | 0.589 | 0.621 | −0.406 | −0.812* | −0.677 | −0.678 | −0.782 | ||
| 腐殖酸结合态 | 0.363 | 0.823* | 0.788 | 0.671 | −0.951** | −0.854* | −0.863* | −0.804 | ||
| 铁锰氧化态 | −0.636 | −0.522 | −0.370 | −0.617 | 0.26 | 0.387 | 0.38 | −0.060 | ||
| 强有机结合态 | −0.102 | 0.434 | 0.383 | 0.161 | −0.567 | −0.589 | −0.415 | −0.334 | ||
| 残渣态 | 0.423 | 0.401 | 0.266 | 0.617 | −0.239 | −0.157 | −0.391 | −0.306 | ||
| Pb-200 | 水溶态 | −0.757 | −0.991** | −0.937** | −0.929** | 0.915* | 0.937** | 0.959** | 0.564 | |
| 离子交换态 | −0.769 | −0.960** | −0.908* | −0.974** | 0.863* | 0.841* | 0.957** | 0.609 | ||
| 专性吸附态 | −0.326 | −0.765 | −0.731 | −0.691 | 0.779 | 0.712 | 0.816* | 0.635 | ||
| 腐殖酸结合态 | 0.864* | 0.930** | 0.878* | 0.992* | −0.792 | −0.785 | −0.912* | −0.534 | ||
| 铁锰氧化态 | 0.515 | 0.129 | 0.354 | 0.169 | 0 | −0.126 | 0.163 | 0.229 | ||
| 强有机结合态 | −0.289 | −0.480 | −0.583 | −0.301 | 0.664 | 0.61 | 0.54 | 0.537 | ||
| 残渣态 | −0.622 | −0.437 | −0.408 | −0.406 | 0.447 | 0.477 | 0.355 | 0.239 |
表7 铅化学形态与土壤性质的相关性分析
Table 7 The correlation analysis between Pb chemical forms and soil properties
| 土壤类型 | 处理 | Pb形态 | pH | 有机质 | 腐殖酸 | 溶解性有机碳 | 游离铁 | 非晶型铁 | 络合铁 | 晶型铁 |
|---|---|---|---|---|---|---|---|---|---|---|
| 红壤 | Pb-100 | 水溶态 | −0.944** | −0.726 | −0.729 | −0.747 | −0.660 | 0.098 | 0 | −0.721 |
| 离子交换态 | −0.821* | −0.982** | −0.952** | −0.974** | −0.182 | 0.77 | 0.177 | −0.361 | ||
| 专性吸附态 | 0.113 | −0.190 | −0.071 | −0.116 | 0.099 | 0.646 | −0.425 | −0.036 | ||
| 腐殖酸结合态 | 0.119 | 0.484 | 0.477 | 0.476 | −0.496 | −0.693 | −0.673 | −0.375 | ||
| 铁锰氧化态 | 0.478 | 0.563 | 0.598 | 0.631 | −0.312 | −0.429 | −0.502 | −0.237 | ||
| 强有机结合态 | −0.473 | −0.458 | −0.491 | −0.470 | −0.261 | 0.303 | −0.492 | −0.342 | ||
| 残渣态 | 0.589 | 0.837* | 0.793 | 0.860* | −0.292 | −0.818* | −0.592 | −0.131 | ||
| Pb-200 | 水溶态 | −0.511 | −0.648 | −0.632 | −0.631 | −0.191 | 0.627 | −0.402 | −0.340 | |
| 离子交换态 | −0.866* | −0.998** | −0.975** | −0.997** | −0.217 | 0.705 | 0.32 | −0.384 | ||
| 专性吸附态 | 0.262 | 0.11 | 0.22 | 0.138 | 0.199 | 0.349 | −0.568 | 0.135 | ||
| 腐殖酸结合态 | 0.907* | 0.992** | 0.979** | 0.992** | 0.281 | −0.624 | −0.341 | 0.434 | ||
| 铁锰氧化态 | 0.672 | 0.879* | 0.916* | 0.860* | 0.149 | −0.681 | −0.238 | 0.306 | ||
| 强有机结合态 | 0.454 | 0.591 | 0.696 | 0.575 | 0.168 | −0.344 | −0.242 | 0.253 | ||
| 残渣态 | −0.528 | −0.733 | −0.707 | −0.722 | 0.324 | 0.74 | 0.398 | 0.182 | ||
| 褐土 | Pb-100 | 水溶态 | 0.204 | 0.042 | 0.054 | −0.140 | −0.258 | 0.03 | −0.474 | −0.509 |
| 离子交换态 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
| 碳酸盐结合态 | 0.615 | −0.856* | −0.793 | −0.735 | 0.903* | 0.744 | 0.398 | 0.814* | ||
| 腐殖酸结合态 | −0.767 | 0.778 | 0.891* | 0.829* | −0.831* | −0.885* | −0.638 | −0.519 | ||
| 铁锰氧化态 | 0.693 | −0.716 | −0.623 | −0.670 | 0.383 | 0.637 | 0.401 | −0.022 | ||
| 强有机结合态 | 0.343 | −0.636 | −0.546 | −0.484 | 0.761 | 0.483 | 0.184 | 0.850* | ||
| 残渣态 | −0.416 | 0.614 | 0.713 | 0.62 | −0.809 | −0.663 | −0.442 | −0.732 | ||
| Pb-200 | 水溶态 | 0.239 | −0.162 | −0.181 | −0.069 | 0.044 | 0.178 | 0.711 | −0.123 | |
| 离子交换态 | −0.854* | 0.637 | 0.735 | 0.834* | −0.527 | −0.803 | −0.186 | −0.054 | ||
| 碳酸盐结合态 | −0.601 | 0.559 | 0.714 | 0.657 | −0.607 | −0.718 | −0.588 | −0.299 | ||
| 腐殖酸结合态 | −0.807 | 0.928** | 0.839* | 0.837* | −0.709 | −0.827* | −0.531 | −0.361 | ||
| 铁锰氧化态 | 0.691 | −0.724 | −0.728 | −0.628 | 0.603 | 0.712 | 0.857* | 0.297 | ||
| 强有机结合态 | 0.518 | −0.361 | −0.510 | −0.596 | 0.463 | 0.558 | −0.102 | 0.214 | ||
| 残渣态 | −0.794 | 0.692 | 0.76 | 0.854* | −0.596 | −0.803 | −0.178 | −0.180 | ||
| 黑土 | Pb-100 | 水溶态 | 0.123 | −0.177 | −0.019 | 0.09 | 0.402 | 0.404 | 0.057 | 0.261 |
| 离子交换态 | −0.873* | −0.712 | −0.758 | −0.859* | 0.498 | 0.487 | 0.751 | 0.348 | ||
| 专性吸附态 | 0.139 | 0.589 | 0.621 | −0.406 | −0.812* | −0.677 | −0.678 | −0.782 | ||
| 腐殖酸结合态 | 0.363 | 0.823* | 0.788 | 0.671 | −0.951** | −0.854* | −0.863* | −0.804 | ||
| 铁锰氧化态 | −0.636 | −0.522 | −0.370 | −0.617 | 0.26 | 0.387 | 0.38 | −0.060 | ||
| 强有机结合态 | −0.102 | 0.434 | 0.383 | 0.161 | −0.567 | −0.589 | −0.415 | −0.334 | ||
| 残渣态 | 0.423 | 0.401 | 0.266 | 0.617 | −0.239 | −0.157 | −0.391 | −0.306 | ||
| Pb-200 | 水溶态 | −0.757 | −0.991** | −0.937** | −0.929** | 0.915* | 0.937** | 0.959** | 0.564 | |
| 离子交换态 | −0.769 | −0.960** | −0.908* | −0.974** | 0.863* | 0.841* | 0.957** | 0.609 | ||
| 专性吸附态 | −0.326 | −0.765 | −0.731 | −0.691 | 0.779 | 0.712 | 0.816* | 0.635 | ||
| 腐殖酸结合态 | 0.864* | 0.930** | 0.878* | 0.992* | −0.792 | −0.785 | −0.912* | −0.534 | ||
| 铁锰氧化态 | 0.515 | 0.129 | 0.354 | 0.169 | 0 | −0.126 | 0.163 | 0.229 | ||
| 强有机结合态 | −0.289 | −0.480 | −0.583 | −0.301 | 0.664 | 0.61 | 0.54 | 0.537 | ||
| 残渣态 | −0.622 | −0.437 | −0.408 | −0.406 | 0.447 | 0.477 | 0.355 | 0.239 |
| [1] |
BAI Z Q, LI T, ZHANG S R, et al., 2024. Effects of climate and geochemical properties on the chemical forms of soil Cd, Pb and Cr along a more than 4000 km transect[J]. Journal of Hazardous Materials, 467: 133746.
DOI URL |
| [2] |
BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al., 2014. Remediation of heavy metal(loid)s contaminated soils-To mobilize or immobolize?[J]. Journal of Hazardous Materials, 266: 141-166.
DOI URL |
| [3] |
BONTEN L T C, GROENENBERG J E, WENG L P, et al., 2008. Use of speciation and complexation models to estimate heavy metal sorption in soils[J]. Geoderma, 146(1-2): 303-310.
DOI URL |
| [4] |
CAI Q, XU M, MA J, et al., 2023. Improvement of cadmium immobilization in contaminated paddy soil by using ureolytic bacteria and rice straw[J]. Science of The Total Environment, 874: 162594.
DOI URL |
| [5] |
CUI J Q, YU Y J, XIANG M D, et al., 2023. Decreased in vitro bioaccessibility of Cd and Pb in an acidic Ultisol through incorporation of crop straw-derived biochar[J]. Environmental Pollution, 317: 120721.
DOI URL |
| [6] |
EUSTERHUES K, RENNERT H, KNICKER H, et al., 2011. Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus adsorption[J]. Environmental Science and Technology, 45: 527-533.
DOI PMID |
| [7] |
HU X P, QU C C, SHI H Z, et al., 2023. Mineral-organic interactions drive the aging and stabilization of exogenous Pb in soils[J]. Geoderma, 437: 116588.
DOI URL |
| [8] |
HSU L C, LIU Y T, TZOU Y M, 2015. Comparison of the sepetroscopic speciation and chemical fractionation of chromium in contaminated paddy soils[J]. Journal of Hazardous Materials, 296: 230-238.
DOI URL |
| [9] |
JALALI M, JALALI M, ANTONIADIS V, 2023. The release of Cd, Cu, Fe, Mn, Ni, Pb, and Zn from clay loam and sandy loam soils under the influence of various organic amendments and low-molecular-weight organic acids[J]. Journal of Hazardous Materials, 459: 132111.
DOI URL |
| [10] |
JIANG Z, NIE K, YU L, et al., 2023. Synchronous stabilization of As, Cd, and Pb in soil by sustained-release of iron-phosphate[J]. Science of The Total Environment, 867: 161369.
DOI URL |
| [11] |
LI Q, WANG Y H, LI Y C, et al., 2022. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components[J]. Science of The Total Environment, 825: 153862.
DOI URL |
| [12] |
LIN X Y, XUE R Y, ZHOU L, et al., 2022. Effects of various Fe compounds on the bioavailability of Pb contained in orally ingested soils in mice: Mechanistic insights and health implications[J]. Environment International, 170: 107664.
DOI URL |
| [13] |
LU Y, HU S W, WANG Z M, et al., 2019. Ferrihydrite transformation under the impact of humic acid and Pb: Kinetics, nanoscale mechanisms, and implications for C and Pb dynamics[J]. Environmental Science: Nano, 6(3): 747-762.
DOI URL |
| [14] |
MENG J, TAO M M, WANG L L, et al., 2018. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of The Total Environment, 633: 300-307.
DOI URL |
| [15] |
SALAM A, SHAHEEN S M, BASHIR S, et al., 2019. Rice straw- and rapeseed residue-derived biochars affect the geochemical fractions and phytoavailability of Cu and Pb to maize in a contaminated soil under different moisture content[J]. Journal of Environmental Management, 237: 5-14.
DOI PMID |
| [16] |
SHI H, WEN D, HUANG Y D, et al., 2022. Time effects of rice straw and engineered bacteria on reduction of exogenous Cu mobility in three typical Chinese soils[J]. Pedosphere, 32(5): 665-672.
DOI URL |
| [17] | SONG H H, LIANG W Y, LUO K L, et al., 2023. Simultaneous stabilization of Pb, Cd, and As in soil by rhamnolipid coated sulfidated nano zero-valent iron: Effects and mechanisms[J]. Journal of Hazardous Materials, 443(Part B): 130259. |
| [18] |
WAN D, ZHANG N C, CHEN W L, et al., 2018. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil[J]. Environmental Science and Pollution Research, 25(32): 32130-32139.
DOI |
| [19] |
WANG J, ZHANG C B, JIN Z X, 2009. The distribution and phytoavailability of heavy metal fractions in rhizosphere soils of Paulowniu fortunei (seem) Hems near a Pb/Zn smelter in Guangdong, P R China[J]. Geoderma, 148(3-4): 299-306.
DOI URL |
| [20] |
WU Y, WANG Z W, XUE Z Y, et al., 2025. Fertilization of potentially toxic element-contaminated soils remediated with reusable biochar pellets using rice straw, pig manure and their derived biochar[J]. Environmental Pollution, 366: 125551.
DOI URL |
| [21] |
XU D M, WEN X C, DAI D S, et al., 2025. Potential influence mechanism of mineral-organic matter (OM) interactions on the mobility of toxic elements in Pb/Zn smelter contaminated soils[J]. Journal of Hazardous Materials, 484: 136671.
DOI URL |
| [22] |
YESILONIS I D, JAMES B R, POUYAT R V, et al., 2008. Lead forms in urban turfgrass and forest soils as related to organic matter content and pH[J]. Environmental Monitoring and Assessment, 146: 1-17.
DOI PMID |
| [23] |
ZHANG Y L, FU P F, LI S, et al., 2024. Remediation of As, Sb, and Pb co-contaminated mining soils by using Fe/C based solid wastes: Synergistic effects and field applications[J]. Chemical Engineering Journal, 498: 155476.
DOI URL |
| [24] |
ZHAO Y, YAO J, LI H, et al., 2024. Effects of three plant growth-promoting bacterial symbiosis with ryegrass for remediation of Cd, Pb, and Zn soil in a mining area[J]. Journal of Environmental Management, 353: 120167.
DOI URL |
| [25] |
常春英, 王刚, 曹浩轩, 等, 2025. 模拟干湿过程对稳定化修复土壤中重金属Ni和Pb的影响[J]. 生态环境学报, 34(1): 118-125.
DOI |
| CHANG C Y, WANG G, CAO H X, et al., 2025. Impact of simulated dry-wet process on nickel(Ni) and lead(Pb) in stabilization remediated soils[J]. Ecology and Environmental Sciences, 34(1): 118-125. | |
| [26] | 胡世文, 刘同旭, 李芳柏, 等, 2022. 土壤铁矿物的生物-非生物转化过程及其界面重金属反应机制的研究进展[J]. 土壤学报, 59(1): 54-65. |
| HU S W, LIU T X, LI F B, et al., 2022. The abiotic and biotic transformation processes of soil iron-bearing minerals and its interfacial reaction mechanisms of heavy metals: A review[J]. Acta Pedologica Sinica, 59(1): 54-65. | |
| [27] | 李佳毅, 余江, 丁萍, 等, 2025. 炭基@零价铁/氯磷灰石复合材料对铅镉污染土壤的修复效果[J/OL]. 环境科学: 1-13 [2025-04-18]. https://doi.org/10.13227/j.hjkx.202412172. |
| LI J Y, YU J, DING P, et al., 2025. Remediation of Pb and Cd contaminated soil by biochar-based @ZVI/chlorapatite composites material[J/OL]. Environmental Science: 1-13 [2025-04-18]. https://doi.org/10.13227/j.hjkx.202412172. | |
| [28] | 李思敏, 吴月颖, 吴治澎, 等, 2023. 不同有机改良剂对矿区土壤溶解性有机质及其铅赋存形态的影响机制[J]. 农业资源与环境学报, 40(2): 271-279. |
| LI S M, WU Y Y, WU Z P, et al., 2023. Effects of different organic amendments on dissolved organic matter and lead occurrence formation in soil of mining areas[J]. Journal of Agricultural Resources and Environment, 40(2): 271-279. | |
| [29] |
刘娟, 张乃明, 袁启慧, 2021. 不同钝化剂对铅镉复合污染土壤钝化效果及影响因素研究[J]. 生态环境学报, 30(8): 1732-1741.
DOI |
| LIU J, ZHANG N M, YUAN Q H, 2021. Passivation effect and influencing factors of different passivators on lead-cadmium compound contaminated soils[J]. Ecology and Environmental Sciences, 30(8): 1732-1741. | |
| [30] | 龙新宪, 刘文晶, 仇荣亮, 2024. 中国农田土壤重金属污染的人体健康风险评估: 研究进展与展望[J]. 土壤学报, 61(5): 1188-1200. |
| LONG X X, LIU W J, QIU R L, 2024. Research progress and prospects of human health risk assessment of heavy metal pollution in farmland soils of China[J]. Acta Pedologica Sinica, 61(5): 1188-1200. | |
| [31] | 石含之, 吴志超, 王旭, 等, 2019. 土壤外源镉老化过程中形态变化及影响因素[J]. 江苏农业学报, 35(6): 1360-1367. |
| SHI H Z, WU Z C, WANG X, et al., 2019. Changes of chemical forms and influence factors of soil exogenous cadmium during the aging process[J]. Jiangsu Journal of Agricultural Sciences, 35(6): 1360-1367. | |
| [32] |
石含之, 赵沛华, 黄永东, 等, 2020. 秸秆还田对土壤有机碳结构的影响[J]. 生态环境学报, 29(3): 536-542.
DOI |
| SHI H Z, ZHAO P H, HUANG Y D, et al., 2020. Effect of straw mulching on soil organic carbon structure[J]. Ecology and Environmental Sciences, 29(3): 536-542. | |
| [33] | 万丹, 王伯仁, 张璐, 等, 2022. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应[J]. 中国生态农业学报(中英文), 30(4): 694-701. |
| WAN D, WANG B R, ZHANG L, et al., 2022. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in red soil[J]. Chinese Journal of Eco-Agriculture, 30(4): 694-701. | |
| [34] | 王春雨, 罗少辉, 段杰, 等, 2018. 化学修复剂对污染土壤中锌、铅、镉形态及其生物有效性的影响[J]. 江苏农业科学, 46(15): 280-283. |
| WANG C Y, LUO S H, DUAN J, et al., 2018. Effects of chemical remediation agents on the speciation and bioavailability of zinc, lead and cadmium in contaminated soil[J]. Jiangsu Agricultural Sciences, 46(15): 280-283. | |
| [35] | 徐建明, 何丽芝, 唐先进, 等, 2023. 中国重金属污染耕地土壤安全利用存在问题与建议[J]. 土壤学报, 60(5): 1289-1296. |
| XU J M, HE L Z, TANG X J, et al., 2023. Problems and suggestions on safe utilization of heavy metal(loid)-contaminated farmlands in China[J]. Acta Pedologica Sinica, 60(5): 1289-1296. | |
| [36] | 周茹, 刘山, 上官莉莎, 等, 2023. 秸秆和生物炭添加对污染土壤铅形态转化及小麦幼苗生长的影响[J]. 河南农业大学学报, 57(2): 207-215. |
| ZHOU R, LIU S, SHANGGUAN L S, et al., 2023. Effect of straw and biochar addition on transformation of lead speciation in contaminated soil and wheat seedling growth[J]. Journal of Henan Agricultural University, 57(2): 207-215. |
| [1] | 杜若愚, 马潇瑶, 陈江耀. 基于NO+ PTR-QMS在线观测评估广州市夏季大气VOCs的光化学损失及二次环境效应[J]. 生态环境学报, 2026, 35(1): 112-123. |
| [2] | 王国琳, 刘凯英, 宋宁宁, 刘君, 王芳丽, 王学霞, 宗海英, 李绍静. 盐碱土有机态氮组分对秸秆及秸秆生物炭输入的响应机理[J]. 生态环境学报, 2026, 35(1): 62-74. |
| [3] | 付守琪, 余朝毅, 邬乐欢, 张琪, 袁筱茜, 杨钢洪, 潘月鹏. 基于WRF-CAMx模型的舟山群岛新区大气环境承载力测算及多污染物协同控制研究[J]. 生态环境学报, 2026, 35(1): 88-98. |
| [4] | 张蔷, 李令军, 鹿海峰, 刘保献, 李琪, 王涵霖. 北京地区9种典型绿化树种的BVOCs释放及二次污染生成潜势[J]. 生态环境学报, 2025, 34(9): 1432-1441. |
| [5] | 包雪儿, 包海, 赵玲玲, 昂给拉玛. 内蒙古高原农作物挥发性有机物排放特征[J]. 生态环境学报, 2025, 34(9): 1442-1451. |
| [6] | 徐茂宏. 暖温带森林土壤微生物α多样性海拔梯度格局及其影响因素[J]. 生态环境学报, 2025, 34(5): 678-687. |
| [7] | 方华, 王燕, 李璇, 章婷婷, 赵怡, 徐林. 天然有机物与钙镁离子对水环境中氧化石墨烯稳定性的复合影响[J]. 生态环境学报, 2025, 34(5): 754-762. |
| [8] | 陈思宇, 孙丽娟, 苏枞枞, 于兴娜. 太原市春夏季VOCs组成特征及其对二次有机气溶胶和臭氧的贡献[J]. 生态环境学报, 2025, 34(4): 548-555. |
| [9] | 孙煜佳, 陆梅, 赵旭燕, 冯峻, 刘国庆, 郭础鸟, 王明柳, 黄敏超, 陈志明. 纳帕海高寒退化草甸土壤细菌群落结构对氮添加的响应[J]. 生态环境学报, 2025, 34(2): 233-246. |
| [10] | 赵彧, 方王凯, 张紫薇, 张焕军, 李轶. 太湖水体中非甾体消炎药的赋存特征及其对细菌群落和抗生素抗性基因的影响[J]. 生态环境学报, 2025, 34(10): 1495-1506. |
| [11] | 韩军超, 郑茂坤, 涂晨, 刘颖, 曹振宇, 邢倩雯, 申卫收, 骆永明. 趋磁细菌在环境污染修复中的应用研究进展与展望[J]. 生态环境学报, 2025, 34(1): 145-155. |
| [12] | 曹振宇, 涂晨, 刘颖, 韩军超, 邢倩雯, 骆永明. 趋磁细菌Magnetospirillum gryphiswaldense MSR-1对镉的生物吸附初步研究[J]. 生态环境学报, 2025, 34(1): 99-107. |
| [13] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
| [14] | 范贝贝, 丁帅, 张田田, 张帅, 魏露露, 陈清. 周期性淹水-落干和施用秸秆对白云石改良棕壤磷素流失风险的模拟研究[J]. 生态环境学报, 2024, 33(8): 1203-1213. |
| [15] | 李玉彩, 杨垒, 梁贤, 孟红艳, 刘焕焕, 石辉, 任勇翔. 基于转录组学揭示腐殖酸影响纳米三氧化二铬对小球藻的毒性机制[J]. 生态环境学报, 2024, 33(8): 1289-1297. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||