生态环境学报 ›› 2024, Vol. 33 ›› Issue (10): 1544-1553.DOI: 10.16258/j.cnki.1674-5906.2024.10.006
张传光1,2,3(), 沈艳1,3, 张珊珊1,2, 李玉文4, 陈剑1,2, 杨文忠1,2,*(
)
收稿日期:
2024-05-15
出版日期:
2024-10-18
发布日期:
2024-11-15
通讯作者:
*杨文忠。E-mail: yangwenzhong@yafg.ac.cn作者简介:
张传光(1985年生),男,副研究员,主要从事土壤生态和生物多样性保护方面的研究。E-mail: zhangchuanguang@yafg.ac.cn
基金资助:
ZHANG Chuanguang1,2,3(), SHEN Yan1,3, ZHANG Shanshan1,2, LI Yuwen4, CHEN Jian1,2, YANG Wenzhong1,2,*(
)
Received:
2024-05-15
Online:
2024-10-18
Published:
2024-11-15
摘要:
定植成活率是实施毛枝五针松迁地保护的关键。为探明毛枝五针松迁地定植成活率低的原因,通过测定土壤常规指标及采用高通量测序技术完成了原生地和迁地保护点毛枝五针松根际土壤微生物多样性及其群落组成的分析。结果表明,原生地根际土壤养分指标除全磷(TP)和全钾(TK)显著低于迁地点外,其余指标均显著高于迁地点。细菌46386个可操作分类单元OTUs涉及26门50纲125目204科316属,真菌67999个OTUs涉及11门36纲93目176科280属,且不论是特有细菌还是特有真菌,迁地点根际土壤中的OTU数目均高于原生地。门水平上,酸杆菌门、变形菌门和疣微菌门为优势细菌,担子菌门、子囊菌门和隐菌门为优势真菌;属水平上,未分类的酸杆菌属、未培养的酸杆菌属、未分类的细菌属为优势细菌,未分类的真菌属、粒状大团囊菌属和拟锁瑚菌属为优势真菌。通过物种差异特征分析发现2个原生地的细菌和真菌物种组成及细菌群落多样性结构相似,但与迁地点存在明显差异;原生地与迁地点根际土壤真菌群落多样性差异不显著。冗余分析表明,各理化因子不同程度地影响了原生地和迁地点根际土壤微生物的群落结构,pH和交换性镁(EMg)是影响优势细菌属组成的主要环境因子,TP和EMg是影响优势真菌属组成的主要环境因子。综上,毛枝五针松原生地和迁地点根际土壤微生物存在显著差异,pH、TP和EMg可能是造成这种差异并导致其迁地定植成活率低的关键因素,研究结果可为毛枝五针松迁地保护提供基础数据。
中图分类号:
张传光, 沈艳, 张珊珊, 李玉文, 陈剑, 杨文忠. 原生与迁地毛枝五针松根际土壤微生物多样性分析[J]. 生态环境学报, 2024, 33(10): 1544-1553.
ZHANG Chuanguang, SHEN Yan, ZHANG Shanshan, LI Yuwen, CHEN Jian, YANG Wenzhong. Analysis of Microbial Diversity of Rhizosphere Soil of Pinus wangii (Pinaceae) in In Situ and Ex Situ Conservation[J]. Ecology and Environment, 2024, 33(10): 1544-1553.
编号 | 取样地点 | 树龄/年 | 生境 |
---|---|---|---|
A11 | 文山州麻栗坡县A1 | >30 | 原生 |
A12 | 文山州麻栗坡县A1 | >30 | 原生 |
A13 | 文山州麻栗坡县A1 | >30 | 原生 |
A21 | 文山州麻栗坡县A2 | >30 | 原生 |
A22 | 文山州麻栗坡县A2 | >30 | 原生 |
A23 | 文山州麻栗坡县A2 | >30 | 原生 |
A31 | 昆明树木园A3 | 18 | 迁地 |
A32 | 昆明树木园A3 | 18 | 迁地 |
A33 | 昆明树木园A3 | 18 | 迁地 |
表1 土壤样品信息
Table 1 Information of soil samples
编号 | 取样地点 | 树龄/年 | 生境 |
---|---|---|---|
A11 | 文山州麻栗坡县A1 | >30 | 原生 |
A12 | 文山州麻栗坡县A1 | >30 | 原生 |
A13 | 文山州麻栗坡县A1 | >30 | 原生 |
A21 | 文山州麻栗坡县A2 | >30 | 原生 |
A22 | 文山州麻栗坡县A2 | >30 | 原生 |
A23 | 文山州麻栗坡县A2 | >30 | 原生 |
A31 | 昆明树木园A3 | 18 | 迁地 |
A32 | 昆明树木园A3 | 18 | 迁地 |
A33 | 昆明树木园A3 | 18 | 迁地 |
土壤理化因子 | A1 | A2 | A3 |
---|---|---|---|
pH | 6.42±0.454a | 6.56±0.0520a | 5.73±0.0929b |
w(SOM)/(g·kg−1) | 685±52.3a | 748±153.7a | 38.6±2.41b |
w(TN)/(g∙kg−1) | 17.1±0.811a | 16.1±1.48a | 1.50±0.131b |
w(TN)/(mg∙kg−1) | 1029±26.1a | 819±272a | 157±10.0b |
w(TP)/(g∙kg−1) | 0.490±0.0557b | 0.390±0.0458c | 0.927±0.0416a |
w(AP)/(mg∙kg−1) | 23.7±0.451a | 20.5±7.92 a | 4.37±5.51b |
w(TK)/(g∙kg−1) | 1.13±0.231b | 0.733±0.115b | 3.80±0.265a |
w(AK)/(mg∙kg−1) | 253±77.6a | 217±45.0a | 64.7±14.4b |
w(ECa)/(mg∙kg−1) | 14449±1671a | 9533±3904b | 1165±143c |
w(EMg)/(mg∙kg−1) | 1380±55.8a | 1173±146b | 209±25.9c |
表2 不同生境毛枝五针松根际土壤理化性质
Table 2 Rhizosphere soil physical and chemical properties of P. wangii in different habitats
土壤理化因子 | A1 | A2 | A3 |
---|---|---|---|
pH | 6.42±0.454a | 6.56±0.0520a | 5.73±0.0929b |
w(SOM)/(g·kg−1) | 685±52.3a | 748±153.7a | 38.6±2.41b |
w(TN)/(g∙kg−1) | 17.1±0.811a | 16.1±1.48a | 1.50±0.131b |
w(TN)/(mg∙kg−1) | 1029±26.1a | 819±272a | 157±10.0b |
w(TP)/(g∙kg−1) | 0.490±0.0557b | 0.390±0.0458c | 0.927±0.0416a |
w(AP)/(mg∙kg−1) | 23.7±0.451a | 20.5±7.92 a | 4.37±5.51b |
w(TK)/(g∙kg−1) | 1.13±0.231b | 0.733±0.115b | 3.80±0.265a |
w(AK)/(mg∙kg−1) | 253±77.6a | 217±45.0a | 64.7±14.4b |
w(ECa)/(mg∙kg−1) | 14449±1671a | 9533±3904b | 1165±143c |
w(EMg)/(mg∙kg−1) | 1380±55.8a | 1173±146b | 209±25.9c |
样品 | 种类 | ACE指数 | Chao1指数 | Shannon指数 | Simpson 指数 | 覆盖率 |
---|---|---|---|---|---|---|
A1 | 细菌 | 717±86.3ab | 708±96.7a | 7.67±0.667a | 0.990±0.00390a | 97.3%±0.463%a |
真菌 | 276±113a | 279±110a | 4.89±1.19a | 0.885±0.0577a | 99.6%±0.155%a | |
A2 | 细菌 | 843±112a | 850±103a | 8.45±0.294a | 0.995±0.00142a | 96.7%±1.12%a |
真菌 | 215±121a | 212±121a | 4.65±1.59a | 0.868±0.114a | 99.7%±0.110%a | |
A3 | 细菌 | 646±83.2b | 664±116a | 7.31±0.684a | 0.980±0.0127a | 96.4%±0.854%a |
真菌 | 248±23.2a | 245±25.2a | 5.59±1.06a | 0.940±0.0358a | 99.8%±0.283%a |
表3 微生物α多样性指数
Table 3 α diversity index of soil microorganisms
样品 | 种类 | ACE指数 | Chao1指数 | Shannon指数 | Simpson 指数 | 覆盖率 |
---|---|---|---|---|---|---|
A1 | 细菌 | 717±86.3ab | 708±96.7a | 7.67±0.667a | 0.990±0.00390a | 97.3%±0.463%a |
真菌 | 276±113a | 279±110a | 4.89±1.19a | 0.885±0.0577a | 99.6%±0.155%a | |
A2 | 细菌 | 843±112a | 850±103a | 8.45±0.294a | 0.995±0.00142a | 96.7%±1.12%a |
真菌 | 215±121a | 212±121a | 4.65±1.59a | 0.868±0.114a | 99.7%±0.110%a | |
A3 | 细菌 | 646±83.2b | 664±116a | 7.31±0.684a | 0.980±0.0127a | 96.4%±0.854%a |
真菌 | 248±23.2a | 245±25.2a | 5.59±1.06a | 0.940±0.0358a | 99.8%±0.283%a |
土壤理化因子 | 细菌 | 真菌 | |||||||
---|---|---|---|---|---|---|---|---|---|
解释度/% | 贡献率/% | F | P | 解释度/% | 贡献率/% | F | P | ||
pH | 27.2 | 27.2 | 4.60 | 0.0260**2) | 11.0 | 11.0 | 0.900 | 0.460 | |
SOM | 5.50 | 5.50 | 0.900 | 0.406 | 6.20 | 6.20 | 0.800 | 0.606 | |
TN | 0.800 | 0.800 | <0.100 | 0.892 | 7.10 | 7.10 | 1.00 | 0.458 | |
TP | 2.60 | 2.60 | 0.400 | 0.614 | 17.9 | 17.9 | 2.50 | 0.0760*1) | |
TK | 1.30 | 1.30 | 0.100 | 0.810 | 8.00 | 8.00 | 1.10 | 0.442 | |
AP | 16.0 | 16.0 | <0.100 | 1.00 | 8.30 | 8.30 | <0.100 | 1.00 | |
ECa | 9.30 | 9.30 | 0.600 | 0.606 | 6.00 | 6.00 | 0.700 | 0.568 | |
EMg | 37.4 | 37.4 | 4.20 | 0.0160** | 35.5 | 35.5 | 4.00 | 0.0240** |
表4 土壤理化因子的显著性检验
Table 4 Significance test of soil properties factors
土壤理化因子 | 细菌 | 真菌 | |||||||
---|---|---|---|---|---|---|---|---|---|
解释度/% | 贡献率/% | F | P | 解释度/% | 贡献率/% | F | P | ||
pH | 27.2 | 27.2 | 4.60 | 0.0260**2) | 11.0 | 11.0 | 0.900 | 0.460 | |
SOM | 5.50 | 5.50 | 0.900 | 0.406 | 6.20 | 6.20 | 0.800 | 0.606 | |
TN | 0.800 | 0.800 | <0.100 | 0.892 | 7.10 | 7.10 | 1.00 | 0.458 | |
TP | 2.60 | 2.60 | 0.400 | 0.614 | 17.9 | 17.9 | 2.50 | 0.0760*1) | |
TK | 1.30 | 1.30 | 0.100 | 0.810 | 8.00 | 8.00 | 1.10 | 0.442 | |
AP | 16.0 | 16.0 | <0.100 | 1.00 | 8.30 | 8.30 | <0.100 | 1.00 | |
ECa | 9.30 | 9.30 | 0.600 | 0.606 | 6.00 | 6.00 | 0.700 | 0.568 | |
EMg | 37.4 | 37.4 | 4.20 | 0.0160** | 35.5 | 35.5 | 4.00 | 0.0240** |
[1] |
BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al., 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 10(1): 57-59.
DOI PMID |
[2] | EDGAR R, UPARSE C, 2013. Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-998. |
[3] | GUO L N, WANG X K, LIN Y L, et al., 2021. Microorganisms that are critical for the fermentation quality of paper mulberry silage[J]. Food Energy Secur, 10(4): e304. |
[4] | HOU Q, WANG W X, YANG Y, et al., 2020. Rhizosphere microbial diversity and community dynamics during potato cultivation[J]. European Journal of Soil Biology, 98: 103176. |
[5] | LI F R, SUN W B, 2023. Comparative analysis of rhizospheric fungi using high-throughput sequencing between wild, ex situ, and reintroduced Pinus squamata, a plant species with extremely small populations in Yunnan Province, China[J]. Diversity, 15(7): 868. |
[6] | TAYLOR M D, LOCASCIO S J, 2004. Blossom-end rot: a calcium deficiency[J]. Journal of Plant Nutrition, 27(1): 123-139. |
[7] |
TEDERSOO L, LINDAHL B, 2016. Fungal identification biases in microbiome projects[J]. Environmental Microbiology Reports, 8(5): 774-779.
DOI PMID |
[8] | WANG Y Z, JIAO P Y, GUO W, et al., 2022. Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese fir (Cunninghamia lanceolate) plantations in subtropical China[J]. Frontiers in Microbiology, 12: 777862. |
[9] | YANG M Q, DU Y, LING L Z, 2018. Characterization of the complete chloroplast genome of Pinus wangii (Pinaceae), an endangered and endemic species in China[J]. Mitochondrial DNA Part B, 3(2): 1195-1197. |
[10] | 阿瓦古丽·图尔荪, 张新强, 贠丰泽, 等, 2023. 乌鲁木齐市河马泉新区土壤微生物多样性及其影响因素分析[J]. 中国环境科学, 43(S1): 277-287. |
TURSUN A, ZHANG X Q, YUN F Z, et al., 2022. Analysis of soil microbial diversity and influencing factors in Hemaquan New District in Urumqi[J]. China Environmental Science, 43(S1): 277-287. | |
[11] | 陈兴琼, 李金娜, 国一凡, 等, 2022. 华北平原春玉米多熟种植模式对土壤真菌群落的影响[J]. 中国生态农业学报(中英文), 30(10): 1588-1600. |
CHEN X Q, LI J N, GUO Y F, et al., 2022. Effects of multiple cropping systems based on spring maize on soil fungal communities in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 30(10): 1588-1600. | |
[12] | 程凌寒, 张裕棠, 方宇, 等, 2024. 不同品种烟草患黑胫病根际土壤真菌群落结构研究[J/OL]. 西南农业学报, https://link.cnki.net/urlid/51.1213.S.20240523.1217.05. |
CHENG L H, ZHANG Y T, FANG Y, et al., 2024. Study on rhizosphere soil fungal community structure of different varieties of tobacco with black shank disease[J/OL]. Southwest China Journal of Agricultural Sciences, https://link.cnki.net/urlid/51.1213.S.20240523.1217.05. | |
[13] | 杜雪丽, 柯璐瑶, 柳展, 等, 2024. 叶面喷施镁对紫米产质量、花青素及代谢物含量的影响[J]. 河南农业科学, 53(2): 28-36. |
DU X L, KE L Y, LIU Z, et al., 2024. Effects of foliar magnesium on yield, quality and contents of anthocyanin and metabolites of purple rice[J]. Journal of Henan Agricultural Sciences, 53(2): 28-36. | |
[14] | 管鸿智, 黄荣珍, 朱丽琴, 等, 2023. 红壤区不同生态恢复林分的土壤微生物群落差异[J]. 森林与环境学报, 43(2): 177-184. |
GUAN H Z, HUANG R Z, ZHU L Q, et al., 2023. Differences in soil microbial communities in different ecological restoration forests in red soil regions[J]. Journal of Forest and Environment, 43(2): 177-184. | |
[15] | 红梅, 郑海春, 魏晓军, 等, 2014. 石灰性土壤交换性钙和镁测定方法的研究[J]. 土壤学报, 51(1): 82-89. |
HONG M, ZHENG H C, WEI X J, et al., 2014. Study on the determination method of exchangeable calcium and magnesium in calcareous soil[J]. Acta Pedologica Sinica, 51(1): 82-89. | |
[16] | 洪晓微, 2006. 福建优质烤烟生产的氮素营养研究[D]. 福州: 福建农林大学: 10-11. |
HONG X W, 2006. Studies on nitrogen nutrition of high-quality flue-cured tobacco production in Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University:10-11. | |
[17] | 黄艳英, 彭晓辉, 欧桂宁, 等, 2024. 连作木薯对根际与非根际土壤真菌群落结构演替的影响[J/OL]. 广西植物, https://link.cnki.net/urlid/45.1134.Q.20240508.1057.004. |
HUANG Y Y, PENG X H, OU G N, et al., 2024. Effects of continuous cropping on fungal community structure succession in rhizosphere and non-rhizosphere soils of cassava[J/OL]. Guihaia, https://link.cnki.net/urlid/45.1134.Q.20240508.1057.004. | |
[18] | 康洪梅, 张珊珊, 杨文忠, 等, 2016a. 土壤含水量对极小种群毛枝五针松幼苗抗氧化活性的影响[J]. 热带亚热带植物学报, 24(2): 182-188. |
KANG H M, ZHANG S S, YANG W Z, et al., 2016a. Effects of Soil Water Content on Antioxidant Activities of Pinus wangii Seedlings[J]. Journal of Tropical and Subtropical Botany, 24(2): 182-188. | |
[19] | 康洪梅, 张珊珊, 杨文忠, 等, 2016b. 土壤pH值对极小种群毛枝五针松生理特性的影响[J]. 东北林业大学学报, 44(6): 4-6, 10. |
KANG H M, ZHANG S S, YANG W Z, et al., 2016b. Effects of soil pH on physiological characteristics of Pinus wangii [J]. Journal of Northeast Forestry University, 44(6): 4-6, 10. | |
[20] | 纪瑞丽, 李凤云, 尹成刚, 等, 2013. 土壤有机质及阳离子交换量对园林植物生长的影响——以宁城县县城绿地土壤为例[J]. 中国城市林业, 11(5): 30-31. |
JI R L, LI F Y, YIN C G, et al., 2013. Influence of soil organic matter and cation exchange capacity on growth of garden plants: A case study of green land soil in ningcheng county[J]. Journal of Chinese Urban Forestry, 11(5): 30-31. | |
[21] | 李德会, 李相君, 吴庆贵, 等, 2022. 柏木人工林林窗位置对香椿细根分解及土壤真菌群落多样性的影响[J]. 生态学报, 42(7): 2784-2797. |
LI D H, LI X J, WU Q G, et al., 2022. Effects of gap locations on the decomposition of fine root Toona sinensis and soil fungal community diversity in cypress plantation forest[J]. Journal of Ecology, 42(7): 2784-2797. | |
[22] | 刘玉新, 2018. 三种山野菜的驯化栽培研究[D]. 黑龙江: 东北农业大学: 59-60. |
LIU Y X, 2018. Study on domestication and cultivation of three wild vegetables[D]. Heilongjiang: Northeast Agricultural University: 59-60. | |
[23] | 李敏, 高秀宏, 2021. 大青山白桦根围外生菌根真菌群落结构及其驱动因素[J]. 生态学杂志, 40(5): 1244-1252. |
LI M, GAO X H, 2021. Community structure and driving factors for rhizosphere ectomycorrhizal fungi of Betula platyphylla in Daqing Mountain[J]. Chinese Journal of Ecology, 40(5): 1244-1252. | |
[24] | 李泽宇, 张志, 邱天艺, 等, 2020. 来源于大兴安岭多年冻土可培养真菌及其发酵物的生物活性[J]. 天然产物研究与开发, 32(3): 453-463. |
LI Z Y, ZHANG Z, QIU T Y, et al., 2020. Culturable fungi from permafrost of Greater Khingan Mountains and biological activities of their fermented products[J]. Natural Product Research and Development, 32(3): 453-463.
DOI |
|
[25] | 刘晔, 2022. 不同生态区稻田土壤微生物群落差异及深耕作用机制研究[D]. 郑州: 河南农业大学: 23-40. |
LIU Y, 2022. Study of different ecological regions and deep ploughing on soil microbial community in paddy soil[D]. Zhengzhou: Henan Agricultural University: 23-40. | |
[26] |
鲁兆莉, 覃海宁, 金效华, 等, 2021. 《国家重点保护野生植物名录》调整的必要性, 原则和程序[J]. 生物多样性, 29(12): 1577-1582.
DOI |
LU Z L, QIN H N, JIN X H, et al., 2021. On the necessity, principle, and process of updating the List of National Key Protected Wild Plants[J]. Biodiversity Science, 29(12): 1577-1582.
DOI |
|
[27] |
覃仁柳, 林刚云, 吴银秀, 等, 2021. 桑树青枯病与根际土壤肥力及微生物群落结构特征的研究[J]. 中国生物防治学报, 37(6): 1256-1264.
DOI |
QIN R L, LIN G Y, WU Y X, et al., 2021. Characteristic of Soil Fertility and Microbial Community Structure in Rhizosphere of Bacterial Wilt Infected and Non-Infected Mulberry Plants[J]. Chinese Journal of Biological Control, 37(6): 1256-1264.
DOI |
|
[28] | 全国农业推广服务中心, 2006. 土壤分析技术规范[M]. 北京: 中国农业出版社: 36-167. |
National Agricultural Extension Service, 2006. Technical specification for soil analysis[M]. Beijing: China Agriculture Press: 36-167. | |
[29] | 孙卫邦, 蔡磊, 刀志灵, 等, 2021. 云南省极小种群野生植物保护名录[M]. 昆明: 云南科技出版社: 1-3. |
SUN W B, CAI L, DAO Z L, et al., 2021. Protection List of Extremely Small Population Wild Plants in Yunnan Province[M]. Kunming: Yunnan Science and Technology Press: 1-3. | |
[30] | 王晶, 张会萍, 苏晓, 等, 2023. 阿尔泰银莲花根际土壤微生物多样性研究[J]. 广西植物, 43(8): 1467-1477. |
WANG J, ZHANG H P, SU X, et al., 2023. Microbial diversity study in rhizosphere soil of Anemone altaic[J]. Guihaia, 43(8): 1467-1477. | |
[31] |
万人源, 马会杰, 蒋宾, 等, 2021. 茶园土壤真菌群落组成及影响因素研究[J]. 中国农学通报, 37(33): 88-97.
DOI |
WAN R Y, MA H J, JIANG B, et al., 2021. The fungi community structure and influencing factors in tea gardens soil[J]. Chinese Agricultural Science Bulletin, 37(33): 88-97.
DOI |
|
[32] | 吴秋芳, 侯立江, 何玲敏, 等, 2021. 北艾根际与非根际土壤微生物多样性的高通量测序分析[J]. 河南农业大学学报, 55(5): 928-935. |
WU Q F, HOU L J, HE L M, et al., 2021. Illumina next-generation sequencing analysis of microbial diversity in rhizosphere and non-rhizosphere soils of Artemisia vulgaris L.[J]. Journal of Henan Agricultural University, 55(5): 928-935. | |
[33] | 向立刚, 周浩, 汪汉成, 等, 2019. 健康与感染青枯病烟株根际土壤与茎秆细菌群落结构与多样性[J]. 微生物学报, 59(10): 1984-1999. |
XIANG L G, ZHOU H, WANG H C, et al., 2019. Bacterial community structure and diversity in rhizosphere soil and stem of healthy and infected tobacco plants with bacterial wilt[J]. Acta Microbiologica Sinica, 59(10): 1984-1999. | |
[34] | 向振勇, 张珊珊, 康洪梅, 等, 2015. 水杨酸对毛枝五针松幼苗生长发育和防御酶活性的影响[J]. 东北林业大学学报, 43(9): 115-116, 124. |
XIANG Z Y, ZHANG S S, KANG H M, et al., 2015. Effects of Salicylic Acid on the Growth and Defensive Enzyme Activity of Pinus wangii Seedlings[J]. Journal of Northeast Forestry University, 43(9): 115-116, 124. | |
[35] |
向振勇, 张珊珊, 康洪梅, 等, 2017. 水杨酸对毛枝五针松壮苗的形成及生理指标的影响[J]. 中国农学通报, 33(1): 29-32.
DOI |
XIANG Z Y, ZHANG S S, KANG H M, et al., 2017. Effect of salicylic acid on high quality seedling forming and physiological index of Pinus wangii [J]. Chinese Agricultural Science Bulletin, 33(1): 29-32. | |
[36] | 徐海忠, 薛彦华, 丁洪发, 等, 2024. 不同地区桃树根际土壤微生物群落结构及多样性分析[J]. 中国果菜, 44(1): 72-79. |
XU H Z, XUE Y H, DING H F, et al., 2024. Microbial community structure and diversity of peach rhizosphere soil in different regions[J]. China Fruit Vegetables, 44(1): 72-79. | |
[37] | 徐燕, 牛俊峰, 陈利军, 等, 2022. 基于高通量测序技术研究栽培苍术根际土壤微生物变化[J]. 作物杂志, 38(5): 221-228. |
XU Y, NUI J F, CHENG L J, et al., 2022. Study on microbial changes in rhizosphere soil of cultivated Atractylodes lancea based on high-throughput sequencing technology[J]. Crops, 38(5): 221-228. | |
[38] | 尹原森, 马国胜, 曹春燕, 等, 2021. 不同地区凤丹根际土壤微生物功能多样性分析[J]. 分子植物育种, 19(20): 6918-6926. |
YIN Y S, MA G S, CAO C Y, et al., 2021. Soil rhizosphere microbial functional diversity analysis of fengdan (Paeonia ostii) in three different regions[J]. Molecular Plant Breeding, 19(20): 6918-6926. | |
[39] | 张丽芳, 胡海林, 桂腾茸, 等, 2023. 火棘不同组织内生细菌群落多样性[J]. 广西植物, 43(7): 1193-1200. |
ZHANG L F, HU H L, GUI T R, et al., 2023. Diversity of endophytic bacterial community in different tissues of Pyracantha fortuneana [J]. Guihaia, 43(7): 1193-1200. | |
[40] |
张姣, 徐明, 文春玉, 等, 2022. 黔中地区火灾对马尾松外生菌根真菌群落的影响[J]. 菌物学报, 41(9): 1430-1440.
DOI |
ZHANG J, XU M, WEN C Y, et al., 2023. Effects of fire on the community of ectomycorrhizal fungi of Pinus massoniana in central Guizhou, Southwest China[J]. Mycosystema, 41(9): 1430-1440. | |
[41] | 张松林, 王晓宇, 郭俊霞, 等, 2023. 磷和根际土壤菌群调控川丹参有效成分含量的机理[J]. 分子植物育种, 21(20): 6874-6885. |
ZHANG S L, WANG X Y, GUO J X, et al., 2023. Mechanisms of phosphorus and root zone soil microbial regulating active ingredient content of chuandanshen[J]. Molecular Plant Breeding, 21(20): 6874-6885. | |
[42] | 周云, 蒋宏, 杨文忠, 等, 2012. 极小种群植物毛枝五针松的野生资源状况研究[J]. 西部林业科学, 41(3): 80-83. |
ZHOU Y, JIANG H, YANG W Z, et al., 2012. Study on Stock of Pinus wangii, an Extremely Small Population Species[J]. Journal of West China Forestry Science, 41(3): 80-83. |
[1] | 陈弘杰, 廖洪凯, 龙健, 赵雨鑫, 湛凯翔, 冉泰山, 杨国梅. 强还原土壤灭菌对土壤原生生物群落的影响[J]. 生态环境学报, 2024, 33(4): 539-547. |
[2] | 李多美, 孔涛, 陈曦, 高明夫, 高熙梣, 曾泽宇, 保佳慧. 古龙酸母液混制肥和草席覆盖措施对新疆旱区牧草生长和土壤养分含量的影响[J]. 生态环境学报, 2024, 33(4): 548-559. |
[3] | 李勋, 张艳, 宋思梦, 周扬, 张健. 西南地区马尾松与乡土阔叶树种凋落叶混合分解过程中的细菌群落特征[J]. 生态环境学报, 2024, 33(1): 12-27. |
[4] | 顾美英, 唐光木, 张云舒, 黄建, 张志东, 张丽娟, 朱静, 唐琦勇, 楚敏, 徐万里. 有机肥与生物炭对新疆盐碱沙化土壤微生物群落特征的影响[J]. 生态环境学报, 2023, 32(8): 1392-1404. |
[5] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[6] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[7] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[8] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[9] | 张贝儿, 吴建强, 王敏, 熊丽君, 谭娟, 沈城, 黄波涛, 黄沈发. 耕地生态保育工程的土壤健康度评价方法初探[J]. 生态环境学报, 2023, 32(2): 388-396. |
[10] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[11] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[12] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[13] | 夏恩龙, 农珺清, 魏松坡, 刘希珍, 刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征[J]. 生态环境学报, 2022, 31(6): 1110-1117. |
[14] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[15] | 王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||