生态环境学报 ›› 2023, Vol. 32 ›› Issue (2): 341-350.DOI: 10.16258/j.cnki.1674-5906.2023.02.014
张莉1,2(), 李铖2, 谭皓泽2,3, 韦家怡4, 程炯2, 彭桂香1,*(
)
收稿日期:
2022-11-28
出版日期:
2023-02-18
发布日期:
2023-05-11
通讯作者:
*彭桂香(1968年生),女,副教授,博士,研究领域为土壤学。E-mail: gxpeng@scau.edu.cn作者简介:
张莉(1997年生),女(土家族),硕士研究生,研究方向为土壤学和景观生态学。E-mail: 2279290378@qq.com
基金资助:
ZHANG Li1,2(), LI Cheng2, TAN Haoze2,3, WEI Jiayi4, CHENG Jiong2, PENG Guixiang1,*(
)
Received:
2022-11-28
Online:
2023-02-18
Published:
2023-05-11
摘要:
大气颗粒物是城市大气污染的重要来源,威胁着城市居民健康。城市林地在削减大气颗粒物方面扮演着重要角色。但是,不同林分类型对大气颗粒物的削减作用有何差异及其影响因素,有待进一步研究。以广州市白云山风景名胜区和华南国家植物园典型城市林地为例,选取火力楠-灰木莲林(Michelia macclurel-Manglietia glauca)、白千层林(Melaleuca leucadendron L.)、湿地松-山油柑-柯林[Pinus elliottii-Acronychia pedunculata (L.) Miq.-Lithocarpus glaber (Thunb.) Nakai]、尾叶桉林(Eucalyptus urophylla S T Blake)、木荷-锥林(Schima superba Gardn. et Champ.-Castanopsis chinensis (Sprengel) Hance)等5种林分类型,分别对林内外大气颗粒物(TSP、PM10、PM2.5、PM1.0)进行人工对比观测,探讨不同林分类型对大气颗粒物的削减效应,并结合气象因素和林地植被特征,分析削减效应的影响因素。结果表明:(1)总体上,除了(火力楠-灰木莲)林对4种大气颗粒物的削减效率均为负值,其他林分类型对细颗粒物和超细颗粒物(PM2.5和PM1.0)具有正削减效应,对总颗粒物和粗颗粒物(TSP和PM10)具有负削减效应;针阔混交林对大气颗粒物的削减效率显著高于其他阔叶林;(2)不同林分的削减效率,在日尺度上多呈“W”或“V”型,峰值与谷值出现的时间与上班通勤高峰与低谷期重合;(3)城市林地对大气颗粒物的削减效应与气象因素(尤其温度和风速)以及植被特征(如冠幅和叶面积指数)呈显著正/负相关。该研究中细颗粒物(PM2.5和PM1.0)对林外大气含尘量较敏感,与林外大气颗粒物质量浓度呈显著负相关,这可能与细颗粒物更容易达到峰值(或饱和)有关。在高质量林地建设中,可适当增加针叶树种的种植,优先选择叶面积指数较大的物种,增大林地削减大气颗粒物的能力,改善大气环境。
中图分类号:
张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350.
ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou[J]. Ecology and Environment, 2023, 32(2): 341-350.
公园名称 | 样地 | 林内外 | 经度 | 纬度 | 距离污染源的最近距离/m | 林内外监测点的距离/m | 林分类型 |
---|---|---|---|---|---|---|---|
华南国家植物园 | a1 | 林内 | 113.3667 | 23.1835 | 229.16 | 208.57 | 火力楠-灰木莲 Michelia macclurel-Manglietia glauca |
a2 | 林外 | 113.3647 | 23.1831 | 363.09 | |||
b1 | 林内 | 113.3587 | 23.1871 | 229.09 | 31.72 | 白千层 Melaleuca leucadendron L. | |
b2 | 林外 | 113.3584 | 23.1871 | 212.45 | |||
白云山风景区 | c1 | 林内 | 113.3055 | 23.1884 | 1159.45 | 139.48 | 湿地松-山油柑-柯 Pinus elliottii-Acronychia pedunculata (L.) Miq.-Lithocarpus glaber (Thunb.) Nakai |
c2 | 林外 | 113.3041 | 23.1883 | 1276.07 | |||
华南国家植物园 | d1 | 林内 | 113.3604 | 23.1800 | 518.70 | 176.70 | 尾叶桉 Eucalyptus urophylla S.T. Blake |
d2 | 林外 | 113.3621 | 23.1805 | 416.51 | |||
白云山风景区 | e1 | 林内 | 113.2985 | 23.1844 | 1711.20 | 99.06 | 锥-木荷 Schima superba Gardn. et Champ.-Castanopsis chinensis (Sprengel) Hance |
e2 | 林外 | 113.2985 | 23.1835 | 1696.63 |
表1 研究样地概况
Table 1 Overview of the sample sites in our study
公园名称 | 样地 | 林内外 | 经度 | 纬度 | 距离污染源的最近距离/m | 林内外监测点的距离/m | 林分类型 |
---|---|---|---|---|---|---|---|
华南国家植物园 | a1 | 林内 | 113.3667 | 23.1835 | 229.16 | 208.57 | 火力楠-灰木莲 Michelia macclurel-Manglietia glauca |
a2 | 林外 | 113.3647 | 23.1831 | 363.09 | |||
b1 | 林内 | 113.3587 | 23.1871 | 229.09 | 31.72 | 白千层 Melaleuca leucadendron L. | |
b2 | 林外 | 113.3584 | 23.1871 | 212.45 | |||
白云山风景区 | c1 | 林内 | 113.3055 | 23.1884 | 1159.45 | 139.48 | 湿地松-山油柑-柯 Pinus elliottii-Acronychia pedunculata (L.) Miq.-Lithocarpus glaber (Thunb.) Nakai |
c2 | 林外 | 113.3041 | 23.1883 | 1276.07 | |||
华南国家植物园 | d1 | 林内 | 113.3604 | 23.1800 | 518.70 | 176.70 | 尾叶桉 Eucalyptus urophylla S.T. Blake |
d2 | 林外 | 113.3621 | 23.1805 | 416.51 | |||
白云山风景区 | e1 | 林内 | 113.2985 | 23.1844 | 1711.20 | 99.06 | 锥-木荷 Schima superba Gardn. et Champ.-Castanopsis chinensis (Sprengel) Hance |
e2 | 林外 | 113.2985 | 23.1835 | 1696.63 |
图2 不同林分类型对大气颗粒物的削减效率的平均值(柱状)和标准差(误差棒) 火力楠-灰木莲,n=75;白千层,n=64;湿地-山油柑-柯,n=30;尾叶桉,n=16;木荷-锥,n=12
Figure 2 Mean values (columns) and standard deviations (error bars) of reduction efficiencies of atmospheric particulate matter by different woodland types
大气颗粒物削减率/质量浓度 | 颗粒物类型 | 温度 | 相对湿度 | 风速 |
---|---|---|---|---|
大气颗粒物削减率/ % | TSP | 0.08 | -0.12 | -0.19** |
PM10 | -0.01 | 0.03 | -0.31** | |
PM2.5 | 0.15** | -0.11 | -0.26** | |
PM1.0 | 0.21** | -0.10 | -0.23** | |
林内大气颗粒物质量浓度/ (μg·m-3) | TSP | -0.36** | 0.56** | -0.22** |
PM10 | -0.35** | 0.60** | -0.22** | |
PM2.5 | -0.36** | 0.63** | -0.24** | |
PM1.0 | -0.30** | 0.54** | -0.25** | |
林外大气颗粒物质量浓度/ (μg·m-3) | TSP | -0.38** | 0.58** | -0.29** |
PM10 | -0.39** | 0.65** | -0.29** | |
PM2.5 | -0.36** | 0.65** | -0.27** | |
PM1.0 | -0.30** | 0.57** | -0.28** |
表2 大气颗粒物削减率/质量浓度与气象因子的Spearman相关性
Table 2 Spearman correlation coefficients between the reduction rate/mass concentrations of atmospheric particulate matter and meteorological factors
大气颗粒物削减率/质量浓度 | 颗粒物类型 | 温度 | 相对湿度 | 风速 |
---|---|---|---|---|
大气颗粒物削减率/ % | TSP | 0.08 | -0.12 | -0.19** |
PM10 | -0.01 | 0.03 | -0.31** | |
PM2.5 | 0.15** | -0.11 | -0.26** | |
PM1.0 | 0.21** | -0.10 | -0.23** | |
林内大气颗粒物质量浓度/ (μg·m-3) | TSP | -0.36** | 0.56** | -0.22** |
PM10 | -0.35** | 0.60** | -0.22** | |
PM2.5 | -0.36** | 0.63** | -0.24** | |
PM1.0 | -0.30** | 0.54** | -0.25** | |
林外大气颗粒物质量浓度/ (μg·m-3) | TSP | -0.38** | 0.58** | -0.29** |
PM10 | -0.39** | 0.65** | -0.29** | |
PM2.5 | -0.36** | 0.65** | -0.27** | |
PM1.0 | -0.30** | 0.57** | -0.28** |
图4 林内(a)和林外(b)大气颗粒物质量浓度与相对湿度的线性关系 x,相对湿度%
Figure 4 Linear fitting of the mass concentration of atmospheric particulate matter to the relative humidity in (a) and outside (b) the woodland
颗粒物类型 | 林外大气颗粒物质量浓度/(μg·m-3) | |||
---|---|---|---|---|
TSP | PM10 | PM2.5 | PM1.0 | |
TSP | 0.04 | -0.02 | -0.10 | -0.09 |
PM10 | 0.00 | 0.01 | -0.02 | -0.00 |
PM2.5 | -0.25** | -0.21** | -0.22** | -0.21** |
PM1.0 | -0.29** | -0.23** | -0.22** | -0.21** |
表3 大气颗粒物削减效率与林外颗粒物质量浓度的Spearman相关系数
Table 3 Spearman correlation coefficients between the reduction rate of atmospheric particulate matter and its mass concentrations outside the woodland
颗粒物类型 | 林外大气颗粒物质量浓度/(μg·m-3) | |||
---|---|---|---|---|
TSP | PM10 | PM2.5 | PM1.0 | |
TSP | 0.04 | -0.02 | -0.10 | -0.09 |
PM10 | 0.00 | 0.01 | -0.02 | -0.00 |
PM2.5 | -0.25** | -0.21** | -0.22** | -0.21** |
PM1.0 | -0.29** | -0.23** | -0.22** | -0.21** |
尺度 | 颗粒物 类型 | 冠幅1 | 冠幅2 | 平均 树高 | 优势种 密度 | 叶面积 指数 |
---|---|---|---|---|---|---|
半小时 (n=205) | TSP | -0.14* | -0.12 | 0.03 | 0.05 | 0.22** |
PM10 | -0.31** | -0.30** | -0.05 | 0.02 | 0.30** | |
PM2.5 | -0.32** | -0.35** | -0.11 | -0.03 | 0.27** | |
PM1.0 | -0.31** | -0.34** | -0.13 | -0.03 | 0.19** | |
日 (n=14) | TSP | -0.03 | 0.06 | -0.07 | -0.07 | 0.15 |
PM10 | -0.21 | -0.18 | -0.21 | -0.13 | 0.27 | |
PM2.5 | -0.36 | -0.44 | -0.24 | -0.10 | 0.25 | |
PM1.0 | -0.50 | -0.58* | -0.16 | 0.02 | 0.31 | |
林地 (n=5) | TSP | 0.03 | 0.17 | -0.09 | 0.03 | 0.26 |
PM10 | -0.20 | -0.06 | -0.20 | 0.09 | 014 | |
PM2.5 | -0.31 | -0.58 | -0.49 | -0.26 | 0.09 | |
PM1.0 | -0.43 | -0.73 | -0.54 | -0.20 | 0.03 |
表4 不同尺度大气颗粒物削减率与林地植被特征的Spearman相关系数
Table 4 Spearman correlation coefficients between the reduction efficiency of atmospheric particulate matter and the vegetation characteristics of woodlands at different scales
尺度 | 颗粒物 类型 | 冠幅1 | 冠幅2 | 平均 树高 | 优势种 密度 | 叶面积 指数 |
---|---|---|---|---|---|---|
半小时 (n=205) | TSP | -0.14* | -0.12 | 0.03 | 0.05 | 0.22** |
PM10 | -0.31** | -0.30** | -0.05 | 0.02 | 0.30** | |
PM2.5 | -0.32** | -0.35** | -0.11 | -0.03 | 0.27** | |
PM1.0 | -0.31** | -0.34** | -0.13 | -0.03 | 0.19** | |
日 (n=14) | TSP | -0.03 | 0.06 | -0.07 | -0.07 | 0.15 |
PM10 | -0.21 | -0.18 | -0.21 | -0.13 | 0.27 | |
PM2.5 | -0.36 | -0.44 | -0.24 | -0.10 | 0.25 | |
PM1.0 | -0.50 | -0.58* | -0.16 | 0.02 | 0.31 | |
林地 (n=5) | TSP | 0.03 | 0.17 | -0.09 | 0.03 | 0.26 |
PM10 | -0.20 | -0.06 | -0.20 | 0.09 | 014 | |
PM2.5 | -0.31 | -0.58 | -0.49 | -0.26 | 0.09 | |
PM1.0 | -0.43 | -0.73 | -0.54 | -0.20 | 0.03 |
[1] |
BUCCOLIERI R, GROMKE C, SABATINO S D, et al., 2009. Aerodynamic effects of trees on pollutant concentration in street canyons[J]. Science of the Total Environment, 407(19): 5247-5256.
DOI URL |
[2] |
BUCCOLIERI R, SALIM S M, LEO L S, et al., 2011. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction[J]. Atmospheric Environment, 45(9): 1702-1713.
DOI URL |
[3] |
BURNETT R, CHEN H, SZYSZKOWICZ M, et al., 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter[J]. Proceedings of the National Academy of the United States of America, 115(38): 9592-9597.
DOI URL |
[4] |
CHEN L, GAO S, ZHANG H, et al., 2018. Spatiotemporal modeling of PM2.5 concentrations at the national scale combining land use regression and Bayesian maximum entropy in China[J]. Environment International, 116: 300-307.
DOI URL |
[5] |
GROMKE C, BUCCOLIERI R, SABATINO S D, et al., 2008. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations-Evaluation of CFD data with experimental data[J]. Atmospheric Environment, 42(37): 8640-8650.
DOI URL |
[6] |
GROMKE C, JAMARKATTEL N, RUCK B, 2016. Influence of roadside hedgerows on air quality in urban street canyons[J]. Atmospheric Environment, 139: 75-86.
DOI URL |
[7] |
GROMKE C, RUCK B, 2007. Influence of trees on the dispersion of pollutants in an urban street canyon-Experimental investigation of the flow and concentration field[J]. Atmospheric Environment, 41(16): 3287-3302.
DOI URL |
[8] | HUANG D S, XU J H, ZHAN S Q, 2012. Valuing the health risks of particulate air pollution in the Pearl River Delta, China[J]. Environmental Science & Policy, 15(1): 38-47. |
[9] |
LARKIN A, DONKELAAR A V, GEDDES J A, et al., 2016. Relationships between changes in urban characteristics and air quality in east asia from 2000 to 2010[J]. Environmental Science & Technology, 50(17): 9142-9149.
DOI URL |
[10] |
LUO X S, BING H J, LUO Z X, et al., 2019. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review[J]. Environmental Pollution, 255(Part 1): 113138.
DOI URL |
[11] | PUGH T A, MACKENZIE A R, WHYATT J D, et al., 2012. Effectiveness of green infrastructure for improvement of air quality in urban street canyons[J]. Environmental Science & Techology, 46(14): 7692-7699. |
[12] |
SHI W Z, WONG M S, WANG J Z, et al., 2012. Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS[J]. Sensors, 12(6): 6825-6836.
DOI PMID |
[13] |
TURNER J, POND G R, TREMBLAY A, et al., 2021. Risk perception among a lung cancer screening population[J]. Chest, 160(2): 718-730.
DOI PMID |
[14] |
VOS P E, MAIHEU B, VANKERKOM J, et al., 2013. Improving local air quality in cities: to tree or not to tree?[J]. Environmental Pollution, 183: 113-122.
DOI PMID |
[15] |
包红光, 王成, 郄光发, 等, 2016. 城市公园外侧防护林结构对外源PM2.5的消减作用[J]. 生态环境学报, 25(6): 987-993.
DOI |
BAO H G, WANG C, QIE G F, et al., 2016. The effect of forest shelter belt on subduction of PM2.5 in urban parks[J]. Ecology and Environmental Sciences, 25(6): 987-993. | |
[16] | 陈尖, 黎明, 2011. 广东让森林挺进城市[J]. 中国林业 (4): 18-21. |
CHE J, LI M, 2011. Let the forest advance into the city in Guangdong[J]. Forest of China (4): 18-21. | |
[17] | 陈上杰, 牛健植, 韩旖旎, 等, 2015. 道路绿化带内大气PM2.5质量浓度变化特征[J]. 水土保持学报, 29(2): 100-105. |
CHEN S J, NIU J Z, HAN Y N, et al., 2015. Characteristics of mass concentration variations of PM2.5 in the road greenbelts[J]. Journal of Soil and Water Conservation, 29(2): 100-105. | |
[18] | 杜志坚, 2017. 华南植物园迁地植物害虫多样性分析[D]. 广州: 仲恺农业工程学院: 6-7. |
DU Z J, 2017. Analysis on the diversity of pests of ex situ plants in Southern China Botanical Garden[D]. Guangzhou: ZhongKai University of Agriculture and Engineering: 6-7. | |
[19] | 冯海英, 2018. 北京市大气颗粒物浓度与植被空间分布相关性研究[D]. 北京: 北京林业大学:68-69. |
FENG H Y, 2018. Study on correlation between particulate concentration and spatial distribution of vegetation in Beijing[D]. Beijing: Beijing Forestry University:68-69. | |
[20] | 郭二果, 2008. 北京西山典型游憩林生态保健功能研究[D]. 北京: 中国林业科学研究院:36-66. |
GUO E G, 2008. Ecological health effects of typical recreation forests in west mountain of Beijing[D]. Beijing: Chinese Academy of Forestry:36-66. | |
[21] | 郭二果, 王成, 郄光发, 等, 2013. 北方地区典型天气对城市森林内大气颗粒物的影响[J]. 中国环境科学, 33(7): 1185-1198. |
GUO E G, WANG C, QIE G F, et al., 2013. Influence of typical weather conditions on the airborne particulate matters in urban forests in northern China[J]. China Environmental Science, 33(7): 1185-1198. | |
[22] | 黄俊彪, 2013. 广州市典型森林土壤多环芳烃分布及其吸附性能研究[D]. 北京: 中国林业科学研究院:15-16. |
HUANG J B, 2013. Distribution and absorption of polycyclic aromatic hydrocarbons in tipical forest soil of Guangzhou[D]. Beijing: Chinese Academy of Forestry:15-16. | |
[23] |
蒋燕, 陈波, 鲁绍伟, 等, 2016. 北京城市森林PM2.5质量浓度特征及影响因素分析[J]. 生态环境学报, 25(3): 447-457.
DOI |
JIANG Y, CHEN B, LU S W, et al., 2016. Analysis on characteristics and influential factors of PM2.5 mass concentration in Beijing’s urban forest[J]. Ecology and Environmental Sciences, 25(3): 447-457. | |
[24] | 赖乃揆, 翟月明, 贺紫兰, 等, 1982. 广州市部分地区空气中花粉及其致敏性的初步调查[J]. 广州医学院学报 (3): 1-11. |
LAI N K, ZHAI Y M, HE Z L, et al., 1982. Pollen in air in some areas of Guangzhou preliminary investigation of its sensitization[J]. Academic Journal of Guangzhou Medical College (3): 1-11. | |
[25] | 李惠玲, 何秉宇, 玉米提·哈力克, 等, 2020. 干旱区城市森林大气颗粒物浓度变化特征及其与环境因子的关系[J]. 江苏农业科学, 48(18): 294-299. |
LI H L, HE B Y, YU M T·H L G, et al., 2020. Characteristics of atmospheric particulate concentrations in urban forests in arid areas and its relationship with environmental factors[J]. Jiangsu Agricultural Sciences, 48(18): 294-299. | |
[26] | 粟莉圆, 2021. 火力楠种子园开花动态与繁育系统研究[D]. 南宁: 广西大学: 3-4. |
LI L Y, 2021. Study on the flowering dynamics and breeding system in seed orchard of Michelia macclurei[D]. Nanning: Guangxi University: 3-4. | |
[27] | 李少宁, 刘斌, 鲁笑颖, 等, 2016. 北京常见绿化树种叶表面形态与PM2.5吸滞能力关系[J]. 环境科学与技术, 39(10): 62-68. |
LI S N, LIU B, LU X Y, et al., 2016. Relationship between leaf surface morphology and PM2.5 adsorption capacity of common greening tree species in Beijing[J]. Environmental Science & Technology, 39(10): 62-68. | |
[28] | 李新宇, 赵松婷, 李延明, 等, 2014. 北京市不同主干道绿地群落对大气PM2.5浓度消减作用的影响[J]. 生态环境学报, 23(4): 615-621. |
LI X Y, ZHAO S T, LI Y M, et al., 2014. Subduction effect of urban arteries green space on atmospheric concentration of PM2.5 in Beijing[J]. Ecology and Environmental Sciences, 23(4): 615-621. | |
[29] | 廖莉团, 苏欣, 李小龙, 等, 2014. 城市绿化植物滞尘效益及滞尘影响因素研究概述[J]. 森林工程, 30(2): 21-24, 28. |
LIAO L T, SU X, LI X L, et al., 2014. Review on the purification effects of urban landscape plants and factors affecting detaining dust[J]. Forest Engineering, 30(2): 21-24, 28. | |
[30] | 刘斌, 鲁绍伟, 李少宁, 等, 2016. 北京大兴6种常见绿化树种吸附PM2.5能力研究[J]. 环境科学与技术, 39(2): 31-37. |
LIU B, LU S W, LI S N, et al., 2016. Study on adsorption ability of PM2.5 about six common landscape plants in Daxing District, Beijing[J]. Environmental Science & Technology, 39(2): 31-37. | |
[31] | 刘浩栋, 陈亚静, 李清殿, 等, 2020. 城市道路林对细颗粒物 (PM2.5) 的阻滞作用解析[J]. 浙江农林大学学报, 37(3): 397-406. |
LIU H D, CHEN Y J, LI Q D, et al., 2020. Analysis of blocking effects of urban roadside forests on PM2.5[J]. Journal of Zhejiang A & F University, 37(3): 397-406. | |
[32] | 刘旭辉, 2016. 北京地区典型人工林对空气颗粒物浓度的影响[D]. 北京: 北京林业大学:19-20. |
LIU X H, 2016. Influence of plantation ecosystems on atmospheric particles concentration in Beijing region[D]. Beijing: Beijing Forestry University:19-20. | |
[33] | 刘一超, 王萌, 梁琼, 等, 2018. 北京通州不同树种滞纳大气颗粒物的能力[J]. 北京农学院学报, 33(1): 84-88. |
LIU Y C, WANG M, LIANG Q, et al., 2018. Study on the atmospheric particulate matter adsorption capacity of different tree species in Tongzhou District of Beijing[J]. Journal of Beijing University of Agriculture, 33(1): 84-88. | |
[34] | 卢万鸿, 罗建中, 曹加光, 2010. 不同树龄、种源尾叶桉的开花结实情况调查[J]. 桉树科技, 27(2): 39-42. |
LU W H, LUO J Z, CAO J G, 2010. Investigation on florescence and seeding of different provenances and ages of Eucalyptus urophylla[J]. Eucalypt Science & Technology, 27(2): 39-42. | |
[35] | 罗传秀, 苏翔, 杨艺萍, 2017. 广州市孢粉致敏病学研究与预报[R]. 广东省, 中国科学院南海海洋研究所: 1-2. |
LUO C X, SU X, YANG Y P, 2017. Study and prediction of sporopollen allergies in Guangzhou[R]. Institute of Oceanology Chinese Academy of Sciences, Guangdong Province: 1-2. | |
[36] | 鲁绍伟, 蒋燕, 陈波, 等, 2017. 北京城市植被区PM2.5浓度时空变化及影响因素分析[J]. 环境科学与技术, 40(1): 180-187. |
LU S W, JIANG Y, CHEN B, et al., 2017. Analysis on spatial-temporal variation and influential factors of PM2.5mass concentration in Beijing’s urban forest[J]. Environmental Science & Technology, 40(1): 180-187. | |
[37] | 潘丽琴, 郝建, 徐建民, 等, 2018. 灰木莲花期物侯观测及生殖构件分布[J]. 林业科学研究, 31(2): 92-97. |
PAN L Q, HAO J, XU J M, et al., 2018. Flowering phenology and reproductive modules distribution of Manglietia glance blune[J]. Forest Research, 31(2): 92-97. | |
[38] | 舒德远, 丁访军, 刘延惠, 等, 2017. 贵阳市城郊常绿落叶阔叶混交林对大气颗粒物的影响[J]. 贵州林业科技, 45(1): 15-21. |
SHU D Y, DING F J, LIU Y H, 2017. Impact of evergreen and deciduous broad-leaved mixed forest on atmospheric particulates in suburb of Guiyang City[J]. Guizhou Forestry Science and Technology, 45(1): 15-21. | |
[39] | 谭超, 郑慧梓, 马艺天, 2022. 绿色发展享誉世界[N]. 南方日报, [2022-07-12]. AA4. |
TAN C, ZHENG H Z, MA Y T, 2022. Green development is world-renowned[N]. Southern Daily, [2022-07-12]. AA4. | |
[40] | 王兵, 张维康, 牛香, 等, 2015. 北京10个常绿树种颗粒物吸附能力研究[J]. 环境科学, 36(2): 408-414. |
WANG B, ZHANG W K, NIU X, et al., 2015. Particulate matter adsorption capacity of 10 evergreen species in Beijing[J]. Environmental Science, 36(2): 408-414. | |
[41] | 王科朴, 张语克, 刘雪华, 2020. 北京城市绿地对大气颗粒物的削减量计算[J]. 环境科学与技术, 43(4): 121-129. |
WANG K P, ZHANG Y K, LIU X H, 2020. Modeled particulate matters removal by urban green lands in Beijing[J]. Environmental Science & Technology, 43(4): 121-129. | |
[42] | 王磊, 黄利斌, 万欣, 等, 2016. 城市森林对大气颗粒物 (尤其PM2.5) 调控作用研究进展[J]. 南京林业大学学报(自然科学版), 40(5): 148-154. |
WANG L, HUANG L B, WAN X, et al., 2016. Progress on the regulating effects of urban forest vegetation on atmospheric particulate matter (especially PM2.5)[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 40(5): 148-154. | |
[43] | 王萌, 刘一超, 梁琼, 等, 2018. 北京城市森林公园不同树种吸附大气颗粒物能力[J]. 北京农学院学报, 33(1): 79-83. |
WANG M, LIU Y C, LIANG Q, et al., 2018. Study on the atmospheric particulate matters adsorption capacity of different tree species in urban forest park of Beijing[J]. Journal of Beijing University of Agriculture, 33(1): 79-83. | |
[44] | 王忠, 欧阳婵娟, 罗燕燕, 等, 2007. 乡土植物在广州城市园林绿化中的应用[J]. 亚热带植物科学, 36(4): 33-37. |
WANG Z, OUYANG C J, LUO Y Y, et al., 2007. Application of indigenous plants to urban landscap in Guangzhou[J]. Subtropical Plant Scienc, 36(4): 33-37. | |
[45] | 王轶浩, 凯旋, 谢双喜, 2016. 重庆铁山坪森林植被调控下的大气PM2.5和PM10特征[J]. 四川林业科技, 37(6): 54-58. |
WANG Y H, KAI X, XIE S X, 2016. Characteristics of atmospheric PM2.5 and PM10 regulated by forest vegetation in the Tieshanping forest park of Chongqing[J]. Journal of Sichuan Forestry Science and Technology, 37(6): 54-58. | |
[46] | 肖小军, 谢雄杰, 康敏雄, 等, 2011. 深圳市春季气传致敏花粉的调查[J]. 免疫学杂志, 27(10): 837-839, 844. |
XIAO X J, XIE X J, KANG M X, et al., 2011. Investigation on airborne pollen in spring of Shenzhen[J]. Immunological Journal, 27(10): 837-839, 844. | |
[47] | 杨期和, 黄楚琪, 王燕华, 2018. 粤东山区山茶科植物资源及其开发利用初探[J]. 中国野生植物资源, 37(3): 56-63. |
YANG Q H, HUANG C Q, WANG Y H, 2018. A preliminary study on the exploitation and utilization of theaceae plant resources in the mountainous area of eastern Guangdong[J]. Chinese Wild Plant Resources, 37(3): 56-63. | |
[48] | 杨伟儿, 张乔松, 周先武, 2006. 广州城市绿地生物多样性的现状与展望[J]. 广东园林, 28(2): 47-51, 55. |
YANG W E, ZHANG Q S, ZHOU X W, 2006. Gurrent status and prospects of iodiversity in Guangzhou urban green space[J]. Guangdong Landscape Architecture, 28(2): 47-51, 55. | |
[49] | 喻明美, 谢正生, 2011. 广州市白云山五种森林类型的土壤渗透性研究[J]. 水土保持研究, 18(1): 153-156. |
YU M M, XIE Z S, 2011. Study on soil permeability capability of five forest types in Baiyunshan scenic spot of Gangzhou[J]. Research of Soil and Water Conservation, 18(1): 153-156. | |
[50] |
张刘东, 郭建曜, 万家隆, 等, 2021. 泰山景区不同林型空气颗粒物浓度研究[J]. 中国农学通报, 37(19): 100-105.
DOI |
ZHANG L D, GUO J Y, WAN J L, et al., 2021. Study on ambient particulate matter concentration of different forest types in Mountain Tai Scenic Area[J]. Chinese Agricultural Science Bulletin, 37(19): 100-105.
DOI |
|
[51] | 张雅慧, 廖景平, 张容妹, 等, 2020. 华南植物园藤本植物专类园规划设计[J]. 中国园林, 36(10): 92-97. |
ZHANG Y H, LIAO J P, ZHANG R M, et al., 2020. The planning and design of the specialized gardenfor vine plants in South China Botanical Garden[J]. Chinese Landscape Architecture, 36(10): 92-97. | |
[52] | 张志国, 2016. 森林城市群让广东更美丽[J]. 绿色中国 (23): 18-23. |
ZHANG Z G, 2016. Forest city group make more beautiful in Guangdong[J]. Green China (23): 18-23. | |
[53] | 赵云阁, 鲁笑颖, 刘斌, 等, 2016. 夏季绿化树种滞留PM2.5与叶片微形态特征研究[J]. 水土保持研究, 23(6): 52-58. |
ZHAO Y G, LU X Y, LIU B, et al., 2016. Study on four kinds of greening tree retention PM2.5 and leaf surface morphology during summer in Beijing, China[J]. Research of Soil and Water Conservation, 23(6): 52-58. | |
[54] | 郑铭浩, 2017. 重庆主城区常见树种及植物群落对空气颗粒物的调控作用研究[D]. 重庆: 西南大学:57-61. |
ZHENG M H, 2017. Study on the regulation of common tree species and plant communities on atmospheric particle in urban areas of Chongqing[D]. Chongqing: Master Thesis of Southwest University:57-61. | |
[55] | 朱书银, 2019. 新乡市主城区大气颗粒物的变化特征及来源解析[D]. 新乡: 河南师范大学: 1-2. |
ZHU S Y, 2019. Variation characteristics and source apportionment of atmosphere particul atematterin the main urban area of Xinxiang[D]. Xinxiang: Henan Normal University: 1-2. | |
[56] | 邹杰, 2011. 湿地松种子园花粉散发特性研究[D]. 武汉: 华中农业大学: 1-2. |
ZOU J, 2011. Studies on pollen dispersal characteristic in seed orchard of Pinus elliottii[D]. Wuhan: Huazhong Agricultural University: 1-2. |
[1] | 董洁芳, 邓椿, 张仲伍. 渭河流域PM2.5时空演化及人口暴露风险[J]. 生态环境学报, 2023, 32(6): 1078-1088. |
[2] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[3] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[4] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[5] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[6] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[7] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[8] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[9] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
[10] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[11] | 江明, 张子洋, 李婷婷, 林勃机, 张正恩, 廖彤, 袁鸾, 潘苏红, 李军, 张干. 基于氮同位素的珠三角典型地区大气PM2.5中NH4+来源解析[J]. 生态环境学报, 2022, 31(9): 1840-1848. |
[12] | 苏泳松, 宋松, 陈叶, 叶子强, 钟润菲, 王昭尧. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022, 31(8): 1599-1609. |
[13] | 陈文裕, 夏丽华, 徐国良, 余世钦, 陈行, 陈金凤. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7): 1306-1316. |
[14] | 魏小锋, 韩红, 闫学军, 王在峰, 李圣增, 田勇, 梁第, 马明亮, 张桂芹. 基于卫星遥感与CMB模型的济南市冬季重污染过程PM2.5溯源分析[J]. 生态环境学报, 2022, 31(6): 1175-1183. |
[15] | 王占永, 陈昕, 胡喜生, 何红弟, 蔡铭, 彭仲仁. 植物屏障影响路边大气颗粒物分布机理及研究方法的进展[J]. 生态环境学报, 2022, 31(5): 1047-1058. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||