生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 1913-1921.DOI: 10.16258/j.cnki.1674-5906.2023.11.002
李文菁1,2,3(), 黄月群1,2,3,*(
), 黄亮亮1,2,3, 李向通1,2,3, 苏琼源1,2,3, 孙扬言1,2,3
收稿日期:
2023-03-28
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
* 黄月群。E-mail: 66295574@qq.com作者简介:
李文菁(1998年生),女,硕士研究生,主要从事生态毒理学的研究。E-mail: 1006579647@qq.com
基金资助:
LI Wenjing1,2,3(), HUANG Yuequn1,2,3,*(
), HUANG Liangliang1,2,3, LI Xiangtong1,2,3, SU Qiongyuan1,2,3, SUN Yangyan1,2,3
Received:
2023-03-28
Online:
2023-11-18
Published:
2024-01-17
摘要:
微塑料(microplastics,MPs)在海洋鱼类组织中普遍存在,鱼体内的MPs及其相关污染物的积累可以反映其海洋环境中MPs的分布特征、污染物来源及其生态风险效应。为了解北部湾海洋鱼体内MPs的污染特征及其风险效应,对北部湾6个区域共144尾海洋鱼类进行MPs取样分析。通过10%氢氧化钾消解和真空抽滤方法提取鱼体内MPs,结合激光拉曼光谱和原位红外光谱仪分析MPs化学成分,利用风险指数(risk index,H)和污染负荷指数(pollution load index,PLI)方法评估研究区域MPs污染水平。结果表明,胃肠道(gastrointestinal tract,GIT)MPs的平均丰度大于鳃的平均丰度,有46%的鱼样提取出MPs,共检测出70个MPs,平均每条鱼摄入0.490个MPs,其中GIT检出率为36%,平均丰度为0.417 items∙ind−1;鳃检出率为13%,平均丰度为0.069 items∙ind−1,检测到MPs以50-500 μm的红色聚碳酸酯和聚丙烯纤维为主;丰度、尺寸和形状与栖息地、食性无相关性,而胃肠道MPs丰度与鱼类全长相关性较强,呈负相关;胃肠道MPs丰度与鱼类体质量相关性弱;鳃中MPs丰度与鱼类全长和体质量无相关性;研究区域内的鱼类MPs整体风险类别为Ⅱ类,属于轻度污染,其中白马井(S5)风险类别为Ш类,说明白马井区域微塑料污染程度更严重,表现为该区域有更多种类的有害塑料聚合物。鱼类胃肠道和鳃会在烹饪过程中去除,但一些体型较小的鱼类和软体生物可直接食用,故不能排除MPs对人类的健康风险。
中图分类号:
李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921.
LI Wenjing, HUANG Yuequn, HUANG Liangliang, LI Xiangtong, SU Qiongyuan, SUN Yangyan. Distribution Characteristics and Risk Assessment of Microplastics in Beibu Gulf Marine Fish[J]. Ecology and Environment, 2023, 32(11): 1913-1921.
微塑料全称 | 微塑料简称 | 密度/(g∙cm−3) | 评分 |
---|---|---|---|
聚苯乙烯 | PS | 1.05 | 30 |
聚对苯二甲酸乙二醇酯 | PET | 1.38 | 4 |
聚氯乙烯 | PVC | 1.41 | 10551 |
热塑性聚氨酯 | TPU | 1.10-1.25 | 1094 |
尼龙* 1) | Nylon | 1.07-1.09 | 47 |
聚丙烯 | PP | 0.85-0.94 | 1 |
聚酰胺 | PA | 1.14-1.15 | 47 |
聚碳酸酯 | PC | 1.19 | 1177 |
聚苯醚砜** 2) | PES | 1.31-1.51 | - |
表1 微塑料聚合物简称、密度和评分
Table 1 Microplastic polymer abbreviation, density, and scoring
微塑料全称 | 微塑料简称 | 密度/(g∙cm−3) | 评分 |
---|---|---|---|
聚苯乙烯 | PS | 1.05 | 30 |
聚对苯二甲酸乙二醇酯 | PET | 1.38 | 4 |
聚氯乙烯 | PVC | 1.41 | 10551 |
热塑性聚氨酯 | TPU | 1.10-1.25 | 1094 |
尼龙* 1) | Nylon | 1.07-1.09 | 47 |
聚丙烯 | PP | 0.85-0.94 | 1 |
聚酰胺 | PA | 1.14-1.15 | 47 |
聚碳酸酯 | PC | 1.19 | 1177 |
聚苯醚砜** 2) | PES | 1.31-1.51 | - |
鱼类名称 | 体质量/g | 全长/cm | 样本数量 | 食性 | 栖息水层 | MPs数量 |
---|---|---|---|---|---|---|
蓝圆鲹 Decapterus maruadsi | 64.01±2.76 | 183.13±3.60 | 24 | 肉食性 | 中上层 | 18 |
南海带鱼 Trichiurus nanhaiensis | 142.61±12.73 | 610.99±19.89 | 24 | 肉食性 | 底层 | 14 |
大吻斜齿鲨 Scoliodon macrorhychos | 162.60±7.62 | 368.32±7.85 | 24 | 肉食性 | 底层 | 16 |
褐蓝子鱼 Siganus fuscessens | 85.61±5.86 | 187.34±7.25 | 24 | 杂食性 | 中上层 | 22 |
表2 北部湾海洋鱼类样本数据
Table 2 Data of the Beibu Gulf Marine fish samples
鱼类名称 | 体质量/g | 全长/cm | 样本数量 | 食性 | 栖息水层 | MPs数量 |
---|---|---|---|---|---|---|
蓝圆鲹 Decapterus maruadsi | 64.01±2.76 | 183.13±3.60 | 24 | 肉食性 | 中上层 | 18 |
南海带鱼 Trichiurus nanhaiensis | 142.61±12.73 | 610.99±19.89 | 24 | 肉食性 | 底层 | 14 |
大吻斜齿鲨 Scoliodon macrorhychos | 162.60±7.62 | 368.32±7.85 | 24 | 肉食性 | 底层 | 16 |
褐蓝子鱼 Siganus fuscessens | 85.61±5.86 | 187.34±7.25 | 24 | 杂食性 | 中上层 | 22 |
影响因素 | 皮尔逊相关性 | MPs尺寸 | MPs形状 | MPs丰度 |
---|---|---|---|---|
食性 | 相关性 (P) | −0.040 | 0.053 | 0.083 |
显著性 (t) | 0.383 | 0.348 | 0.537 | |
栖息地 | 相关性 (P) | 0.171 | 0.075 | 0.157 |
显著性 (t) | 0.204 | 0.581 | 0.224 |
表3 栖息地、食性与微塑料丰度、尺寸和形状相关性
Table 3 Correlation of habitat, diet between abundance, size and shape of MPs
影响因素 | 皮尔逊相关性 | MPs尺寸 | MPs形状 | MPs丰度 |
---|---|---|---|---|
食性 | 相关性 (P) | −0.040 | 0.053 | 0.083 |
显著性 (t) | 0.383 | 0.348 | 0.537 | |
栖息地 | 相关性 (P) | 0.171 | 0.075 | 0.157 |
显著性 (t) | 0.204 | 0.581 | 0.224 |
采样点 | 风险指数 (H) | 浓度因子 (Fi) | 污染负荷指数 (PLI) |
---|---|---|---|
S1 | 94.53 | 122.77 | 11.08 |
S2 | 92.81 | 184.14 | 13.57 |
S3 | 81.63 | 367.87 | 19.18 |
S4 | 78.44 | 205.64 | 14.34 |
S5 | 97.24 | 401.60 | 20.04 |
S6 | 73.65 | 333.43 | 18.26 |
表4 各采样点微塑料风险指数、浓度因子和污染负荷指数
Table 4 MPs risk index, concentration factor and pollution burden index at each sampling point
采样点 | 风险指数 (H) | 浓度因子 (Fi) | 污染负荷指数 (PLI) |
---|---|---|---|
S1 | 94.53 | 122.77 | 11.08 |
S2 | 92.81 | 184.14 | 13.57 |
S3 | 81.63 | 367.87 | 19.18 |
S4 | 78.44 | 205.64 | 14.34 |
S5 | 97.24 | 401.60 | 20.04 |
S6 | 73.65 | 333.43 | 18.26 |
风险指数 (H) | <10 | 10-100 | 100-1000 | >1000 |
---|---|---|---|---|
污染负荷指数 (PLI) | <10 | 10-20 | 20-30 | >30 |
风险类别 | Ⅰ | Ⅱ | Ш | Ⅳ |
表5 微塑料污染风险水平标准
Table 5 Risk level standards of microplastics pollution
风险指数 (H) | <10 | 10-100 | 100-1000 | >1000 |
---|---|---|---|---|
污染负荷指数 (PLI) | <10 | 10-20 | 20-30 | >30 |
风险类别 | Ⅰ | Ⅱ | Ш | Ⅳ |
[1] |
CIMMARUTA R, GIOVANNINI S, BIANCHI J, et al., 2022. Microplastics occurrence in fish with different habits from the central Tyrrhenian Sea[J]. Regional Studies in Marine Science, 52: 102251.
DOI URL |
[2] |
COURTENE W, QUINN B, GARY S F, et al., 2017. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean[J]. Environmental Pollution, 231(Part 1): 271-280.
DOI URL |
[3] |
DEVRIES A N, GOVONI D, ÁRNASON S H, et al., 2020. Microplastic ingestion by fish: Body size, condition factor and gut fullness are not related to the amount of plastics consumed[J]. Marine Pollution Bulletin, 151: 110827.
DOI URL |
[4] |
DING J F, SUN C J, HE C F, et al., 2022. Atmospheric microplastics in the Northwestern Pacific Ocean: Distribution, source, and deposition[J]. Science of The Total Environment, 829: 154337.
DOI URL |
[5] |
DOWARAH K, DEVIPRIYA S P, 2019. Microplastic prevalence in the beaches of Puducherry, India and its correlation with fishing and tourism/recreational activities[J]. Marine Pollution Bulletin, 148: 123-133.
DOI PMID |
[6] |
JAAFAR N, AZFARALARIFF A, MUSA S M, et al., 2021. Occurrence, distribution and characteristics of microplastics in gastrointestinal tract and gills of commercial marine fish from Malaysia[J]. Science of The Total Environment, 799: 149457.
DOI URL |
[7] |
JIN X, FU X D, LU W J, et al., 2022. Fugitive release and influencing factors of microplastics in urbanized watersheds: A case study of the central area of Suzhou City[J]. Science of The Total Environment, 837(6): 155653.
DOI URL |
[8] |
JOSHY A, KRUPESHA SHARMA S R, MINI K G, 2022. Microplastic contamination in commercially important bivalves from the southwest coast of India[J]. Environmental Pollution, 305(347): 119250.
DOI URL |
[9] |
JUNG M R, HORGEN F D, ORSKI S V, et al., 2018. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms[J]. Marine Pollution Bulletin, 127: 704-716.
DOI PMID |
[10] |
KOONGOLLA J B, LIN L, PAN Y F, et al., 2020. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea[J]. Environmental Pollution, 258: 113734.
DOI URL |
[11] |
LUSHER A L, MCHUGH M, THOMPSON R C, 2013. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel[J]. Marine Pollution Bulletin, 67(1-2): 94-9.
DOI PMID |
[12] |
LITHNER D, LARSSON A, DAVE G, 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of The Total Environment, 409(18): 3309-3324.
DOI URL |
[13] |
LI Z Z, LIU Y D, ZHANG D H, et al., 2022. Distribution and environmental risk assessment of microplastics in continental shelf sediments in the southern East China Sea: A high-spatial-resolution survey[J]. Marine Pollution Bulletin, 177(1): 113548.
DOI URL |
[14] |
PARVIN F, JANNAT S, TAREQ S M, 2021. Abundance, characteristics and variation of microplastics in different freshwater fish species from Bangladesh[J]. Science of The Total Environment, 784: 147137.
DOI URL |
[15] |
SAMANDRA S, MESCALL O J, PLAISTED K, et al., 2022. Assessing exposure of the Australian population to microplastics through bottled water consumption[J]. Science of The Total Environment, 837: 155329.
DOI URL |
[16] |
TANG J, WU Z J, WAN L, et al., 2021. Differential enrichment and physiological impacts of ingested microplastics in scleractinian corals in situ[J]. Hazardous Materials, 404(Part B): 124205.
DOI URL |
[17] |
WANG S D, ZHANG C N, PAN Z K, et al., 2020. Microplastics in wild freshwater fish of different feeding habits from Beijiang and Pearl River Delta regions, south China[J]. Chemosphere, 258: 127345.
DOI URL |
[18] |
WANG Q, ZHU X P, HOU C W, et al., 2021. Microplastic uptake in commercial fishes from the Bohai Sea, China[J]. Chemosphere, 263: 127962.
DOI URL |
[19] |
WEI L L, WANG D L, AIERKEN R, et al., 2022. The prevalence and potential implications of microplastic contamination in marine fishes from Xiamen Bay, China[J]. Marine Pollution Bulletin, 174(6): 113306.
DOI URL |
[20] |
WOOTTON N, REIS-SANTO P, DOWSETT N, et al., 2021. Low abundance of microplastics in commercially caught fish across southern Australia[J]. Environmental Pollution, 290: 118030.
DOI URL |
[21] |
WRIGHT L S, NAPPER I E, THOMPSON R C, 2021. Potential microplastic release from beached fishing gear in Great Britain's region of highest fishing litter density[J]. Marine Pollution Bulletin, 173(1): 113115.
DOI URL |
[22] |
XU P, PENG G Y, SU L, et al., 2018. Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China[J]. Marine Pollution Bulletin, 133: 647-654.
DOI PMID |
[23] |
YARANAL N A, SUBBIAH S, MOHANTY K, 2021. Distribution and characterization of microplastics in beach sediments from Karnataka (India) coastal environments[J]. Marine Pollution Bulletin, 169: 112550.
DOI URL |
[24] |
YANG L, KANG S C, WANG Z Q, et al., 2022. Microplastic characteristic in the soil across the Tibetan Plateau[J]. Science of The Total Environment, 828: 154518.
DOI URL |
[25] |
ZHAO S L, ZHANG Z Q, CHEN L, et al., 2022. Review on migration, transformation and ecological impacts of microplastics in soil[J]. Applied Soil Ecology, 176: 104486.
DOI URL |
[26] | 黄月群, 李文菁, 黄寿琨, 等, 2022. 鱼类行为监测技术应用研究[J]. 水产学杂志, 35(2): 102-107. |
HUANG Y Q, LI W J, HUANG S H, et al., 2022. Research on the application of fish behavior monitoring technology[J]. Journal of Fisheries, 35(2): 102-107. | |
[27] | 靳非, 田淼, 穆景利, 等, 2021. 聚苯乙烯微塑料长期暴露对海水青鳉 (Oryzias melastigma) 亲代生长、繁殖及子代发育的影响[J]. 生态毒理学报, 16(4): 216-223. |
JIN F, TIAN M, MU J L, et al., 2021. Effects of long-term exposure to polystyrene microplastics on parental growth, reproduction and offspring development of seawater medaka (Oryzias melastigma)[J]. Journal of Ecological Toxicology, 16(4): 216-223. | |
[28] | 龙籍艺, 童春富, 王涛, 等, 2021. 长江口潮间带沉积物微塑料分布特征及其影响因素[J]. 生态学杂志, 40(9): 2860-2871. |
LONG J Y, TONG C F, WANG T, et al., 2021. Distribution characteristics of microplastics and their influencing factors in intertidal sediments in the Yangtze Estuary[J]. Journal of Ecology, 40(9): 2860-2871. | |
[29] | 栗志民, 刘志刚, 黄文庆, 等, 2010. 北部湾江洪扇贝养殖区的污损生物[J]. 广东海洋大学学报, 30(1): 1-6. |
LI Z M, LIU Z G, HUANG W Q, et al., 2010. Defaced organisms in the flood scallop breeding area in Beibu Bay[J]. Journal of Guangdong Ocean University, 30(1): 1-6. | |
[30] | 凌炜琪, 张丽姿, 吴文秀, 等, 2023. 环境变化对北部湾海域春季鱼类多样性的影响[J]. 水生态学杂志, 44(1): 82-91. |
LING W Q, ZHANG L Z, WU W X, et al., 2023. Effect of environmental changes on spring fish diversity in the Beibu Gulf area[J]. Journal of Water Ecology, 44(1): 82-91. | |
[31] | 李渊, 王燕平, 张静, 等, 2016. 北部湾口海域鱼类分类多样性的初步探讨[J]. 应用海洋学学报, 35(2): 229-235. |
LI Y, WANG Y P, ZHANG J, et al., 2016. Preliminary study on the taxonomic diversity of fish in the Beibu Gulf estuary[J]. Journal of Applied Oceanography, 35(2): 229-235. | |
[32] | 尹诗琪, 贾芳丽, 刘筱因, 等, 2021. 青岛近岸表层海水和潮滩沉积物中微塑料的分布及其影响因素[J]. 环境科学学报, 41(4): 1410-1418. |
YIN S Q, JIA F L, LIU X Y, et al., 2021. Distribution of microplastics and their influencing factors in coastal surface seawater and tidal beach sediment in Qingdao[J]. Journal of Environmental Science, 41(4): 1410-1418. | |
[33] | 朱晓桐, 衣俊, 强丽媛, 等, 2018. 长江口潮滩表层沉积物中微塑料的分布及沉降特点[J]. 环境科学, 39(5): 2067-2074. |
ZHU X T, YI J, QIANAG L Y, et al., 2018. Distribution and sedimentation characteristics of microplastics in the surface sediment of tidal flats at the Yangtze Estuary[J]. Environmental Science, 39(5): 2067-2074.
DOI URL |
|
[34] | 张文超, 叶振江, 田永军, 等, 2017. 北部湾洋浦海域鱼类群落结构[J]. 生态学杂志, 36(7): 1894-1904. |
ZHANG W C, YE Z J, TIAN Y J, et al., 2017. Fish community structure in the Yangpu sea area of the Beibu Gulf[J]. Journal of Ecology, 36(7): 1894-1904. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[3] | 刘紫薇, 葛继稳, 王月环, 杨诗雨, 姚东, 谢金林. 大九湖泥炭湿地甲烷通量变异特征及影响因素[J]. 生态环境学报, 2023, 32(4): 706-714. |
[4] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[5] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
[6] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[7] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[8] | 李双双, 蔡铭灿, 汪庆, 齐丽英, 魏贺红, 王纯. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 2023, 32(11): 2041-2049. |
[9] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[10] | 樊珂宇, 高原, 赖子尼, 曾艳艺, 刘乾甫, 李海燕, 麦永湛, 杨婉玲, 魏敬欣, 孙金辉, 王超. 珠三角河网鱼类微塑料污染特征研究[J]. 生态环境学报, 2022, 31(8): 1590-1598. |
[11] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[12] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
[13] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[14] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
[15] | 谢晨敏, 隆楚月, 黎大宁, 朱春友, 彭先芝, 孙毓鑫, 罗孝俊, 张黎, 麦碧娴. 南海永兴岛和东岛土壤中微塑料和卤代阻燃剂的分布特征[J]. 生态环境学报, 2022, 31(5): 1008-1014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||