生态环境学报 ›› 2023, Vol. 32 ›› Issue (10): 1794-1801.DOI: 10.16258/j.cnki.1674-5906.2023.10.008
周佳诚1,2(), 宋志斌1, 苗芃1,2, 谭路1, 唐涛1,2,*(
)
收稿日期:
2023-06-27
出版日期:
2023-10-18
发布日期:
2024-01-16
通讯作者:
*唐涛。E-mail: tangtao@ihb.ac.cn作者简介:
周佳诚(1998年生),男,博士研究生,主要从事流域生态学研究。E-mail: zhoujiacheng@ihb.ac.cn
基金资助:
ZHOU Jiacheng1,2(), SONG Zhibin1, MIAO Peng1,2, TAN Lu1, TANG Tao1,2,*(
)
Received:
2023-06-27
Online:
2023-10-18
Published:
2024-01-16
摘要:
了解不同河网位置的水生生物多样性差异对于识别生物多样性重点保护区域具有重要指导意义。虽然已有部分研究关注河网位置对水生生物多样性的影响,但这些研究大都集中于比较物种数量的变化,而对群落组成的影响差异研究较少。该研究将河网位置分为河网边缘和河网中心,基于柳江大型底栖动物的调查数据,比较河网边缘、中心位置的大型底栖动物分类单元数量、密度、优势分类单元以及群落组成相异度及其与环境和空间因子关系的差异。共采集到大型底栖动物132个分类单元,其中昆虫纲109个分类单元,为优势类群。河网边缘、中心位置样点分别采集到大型底栖动物129和114个分类单元,河网边缘样点的大型底栖动物平均分类单元数(32个)和平均密度(2.29×103 ind·m−2)均显著高于中心位置样点(平均分类单元数:22个,平均密度:1.04×103 ind·m−2)。此外,有12个分类单元的平均相对丰度超过1%,其中,蜉蝣目在河网边缘的平均相对丰度高于河网中心,双翅目在河网边缘的平均相对丰度低于河网中心。柳江河网边缘位置的大型底栖动物群落组成主要受溶解氧、化学需氧量和水深等环境因子的影响,而溶解氧、总氮、流速和水深是影响河网中心位置大型底栖动物群落组成的主要环境因子。大型底栖动物β多样性在河网边缘受环境因子和空间因子的共同影响,在河网中心则主要受环境因子的影响。结果表明,河网边缘与中心位置的河流大型底栖动物群落组成及其影响因子有显著差异,应该采取不同的保护策略。
中图分类号:
周佳诚, 宋志斌, 苗芃, 谭路, 唐涛. 柳江不同河网位置大型底栖动物群落特征及其影响因子差异比较研究[J]. 生态环境学报, 2023, 32(10): 1794-1801.
ZHOU Jiacheng, SONG Zhibin, MIAO Peng, TAN Lu, TANG Tao. Differences in Benthic Macroinvertebrate Communities and Their Driving Forces between the Edge and Center Positions of the Liujiang River Network[J]. Ecology and Environment, 2023, 32(10): 1794-1801.
环境因子 | 均值 (取值范围) | P值 | |
---|---|---|---|
河网边缘 | 河网中心 | ||
电导率Cond/(μS∙cm−1) | 110.4 (20.8‒465.7) | 152.5 (26.1‒311.4) | 0.004 |
浊度Turb/NTU | 3.91 (0.7‒28.4) | 3.09 (0.6‒11.1) | 0.397 |
溶解氧DO/(mg∙L−1) | 9.78 (6.9‒14.7) | 8.98 (6.17‒12.24) | 0.018 |
化学需氧量COD/(mg∙L−1) | 0.94 (0.39‒2.15) | 2.19 (0.02‒8.48) | <0.001 |
总氮TN/(mg∙L−1) | 0.64 (0.10‒1.79) | 0.91 (0.41‒1.88) | <0.001 |
总磷TP/(mg∙L−1) | 0.02 (0.01‒0.06) | 0.02 (0.01‒0.03) | 0.074 |
流速/(m∙s−1) | 0.51 (0.1‒1.3) | 0.31 (0.1‒0.92) | 0.001 |
水深/m | 0.35 (0.18‒0.47) | 0.46 (0.19‒0.55) | 0.019 |
表1 河网边缘和河网中心环境因子差异
Table 1 Statistics and differences in environmental factors between the edge and center positions of the Liujiang River network
环境因子 | 均值 (取值范围) | P值 | |
---|---|---|---|
河网边缘 | 河网中心 | ||
电导率Cond/(μS∙cm−1) | 110.4 (20.8‒465.7) | 152.5 (26.1‒311.4) | 0.004 |
浊度Turb/NTU | 3.91 (0.7‒28.4) | 3.09 (0.6‒11.1) | 0.397 |
溶解氧DO/(mg∙L−1) | 9.78 (6.9‒14.7) | 8.98 (6.17‒12.24) | 0.018 |
化学需氧量COD/(mg∙L−1) | 0.94 (0.39‒2.15) | 2.19 (0.02‒8.48) | <0.001 |
总氮TN/(mg∙L−1) | 0.64 (0.10‒1.79) | 0.91 (0.41‒1.88) | <0.001 |
总磷TP/(mg∙L−1) | 0.02 (0.01‒0.06) | 0.02 (0.01‒0.03) | 0.074 |
流速/(m∙s−1) | 0.51 (0.1‒1.3) | 0.31 (0.1‒0.92) | 0.001 |
水深/m | 0.35 (0.18‒0.47) | 0.46 (0.19‒0.55) | 0.019 |
图2 不同河网位置大型底栖动物分类单元数和密度箱线图
Figure 2 Boxplots displaying differences in taxonomic units and density of benthic macroinvertebrates between the edge and center positions of the Liujiang River network
分类单元 | 河网边缘 | 河网中心 |
---|---|---|
四节蜉属 Baetis sp. | 19.80 | 14.03 |
直突摇蚊亚科 Orthocladiinae | 15.15 | 19.22 |
宽基蜉属 Choroterpes sp. | 7.81 | 6.15 |
扁蜉属 Heptagenia sp. | 5.59 | 5.46 |
蚋 Simulium sp. | 5.33 | 1.35 |
长足摇蚊亚科 Tanypodinae | 5.15 | 13.91 |
摇蚊亚科 Chironominae | 4.65 | 6.36 |
细蜉属 Caenis sp. | 3.78 | 2.19 |
锯形蜉属 Serrattella sp. | 3.55 | 2.38 |
朝大蚊属 Antocha sp. | 1.66 | 1.79 |
花翅蜉属 Baetiella sp. | 1.60 | |
高翔蜉属 Epeorus sp. | 1.38 |
表2 不同河网位置优势分类单元相对丰度
Table 2 Relative abundance of dominant taxonomic units of benthic macroinvertebrates between the edge and center positions of the Liujiang River network %
分类单元 | 河网边缘 | 河网中心 |
---|---|---|
四节蜉属 Baetis sp. | 19.80 | 14.03 |
直突摇蚊亚科 Orthocladiinae | 15.15 | 19.22 |
宽基蜉属 Choroterpes sp. | 7.81 | 6.15 |
扁蜉属 Heptagenia sp. | 5.59 | 5.46 |
蚋 Simulium sp. | 5.33 | 1.35 |
长足摇蚊亚科 Tanypodinae | 5.15 | 13.91 |
摇蚊亚科 Chironominae | 4.65 | 6.36 |
细蜉属 Caenis sp. | 3.78 | 2.19 |
锯形蜉属 Serrattella sp. | 3.55 | 2.38 |
朝大蚊属 Antocha sp. | 1.66 | 1.79 |
花翅蜉属 Baetiella sp. | 1.60 | |
高翔蜉属 Epeorus sp. | 1.38 |
图3 基于Bray-Curtis相异度的柳江大型底栖动物群落组成非度量多维尺度分析(NMDS)排序图 红色三角形代表河网边缘,绿色圆形代表河网中心
Figure 3 Non-metric Multidimensional Scaling (NMDS) plot based on inter-site Bray-Curtis dissimilarity of benthic macroinvertebrate communities in the Liujiang River network
检验 | 因子 | 控制因子 | 河网边缘 | 河网中心 |
---|---|---|---|---|
r | r | |||
Mantel 检验 | 陆上距离 | ‒ | 0.197* 1) | 0.126* |
河道距离 | ‒ | 0.164* | 0.028 | |
环境 | ‒ | 0.419*** 2) | 0.250* | |
偏Mantel 检验 | 陆上距离 | 环境 | 0.157* | 0.069 |
河道距离 | 环境 | 0.139* | 0.20 | |
环境 | 陆上距离 | 0.274* | 0.245* | |
环境 | 河道距离 | 0.287* | 0.247* | |
环境因子 | ‒ | ‒ | 溶解氧; 化学需氧量; 水深 | 溶解氧; 总氮 流速; 水深 |
表3 大型底栖动物β多样性与空间距离(陆上、河道)和环境距离的相关性Mantel检验
Table 3 The correlations between benthic macroinvertebrate beta diversity and spatial distances (Overland, Watercourse) and environmental distances with Mantel test and partial Mantel test
检验 | 因子 | 控制因子 | 河网边缘 | 河网中心 |
---|---|---|---|---|
r | r | |||
Mantel 检验 | 陆上距离 | ‒ | 0.197* 1) | 0.126* |
河道距离 | ‒ | 0.164* | 0.028 | |
环境 | ‒ | 0.419*** 2) | 0.250* | |
偏Mantel 检验 | 陆上距离 | 环境 | 0.157* | 0.069 |
河道距离 | 环境 | 0.139* | 0.20 | |
环境 | 陆上距离 | 0.274* | 0.245* | |
环境 | 河道距离 | 0.287* | 0.247* | |
环境因子 | ‒ | ‒ | 溶解氧; 化学需氧量; 水深 | 溶解氧; 总氮 流速; 水深 |
[1] |
ALTERMATT F, SEYMOUR M, MARTINEZ N, 2013. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins[J]. Journal of Biogeography, 40(12): 2249-2260.
DOI URL |
[2] | ANDERSON M J, 2001. A new method for non-parametric multivariate analysis of variance[J]. Austral Ecology, 26(1): 32-46. |
[3] |
ARCE P, PALT M, SCHLETTERER M, et al., 2023. Has riparian woody vegetation a positive effect on dispersal and distribution of mayfly, stonefly and caddisfly species?[J]. Science of the Total Environment, 879: 163137.
DOI URL |
[4] |
ASTORGA A, OKSANEN J, LUOTO M, et al., 2012. Distance decay of similarity in freshwater communities: Do macro- and microorganisms follow the same rules?[J]. Global Ecology and Biogeography, 21(3): 365-375.
DOI URL |
[5] | BELMAR O, VELASCO J, GUTIERREZ-CANOVAS C, et al., 2013. The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin[J]. Ecohydrology, 6(3): 363-379. |
[6] |
BROWN B L, SWAN C M, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems[J]. Journal of Animal Ecology, 79(3): 571-580.
DOI PMID |
[7] |
BROWN B L, SWAN C M, AUERBACH D A, et al., 2011. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems[J]. Journal of the North American Benthological Society, 30(1): 310-327.
DOI URL |
[8] |
CALAPEZ A R, SERRA S R Q, RIVAES R, et al., 2021. Influence of river regulation and instream habitat on invertebrate assemblage' structure and function[J]. Science of the Total Environment, 794: 148696.
DOI URL |
[9] |
CANEDO-ARGUEELLES M, BOERSMA K S, BOGAN M T, et al., 2015. Dispersal strength determines meta-community structure in a dendritic riverine network[J]. Journal of Biogeography, 42(4): 778-790.
DOI URL |
[10] |
CHAPUT-BARDY A, ALCALA N, SECONDI J, et al., 2017. Network analysis for species management in rivers networks: Application to the Loire River[J]. Biological Conservation, 210(Part A): 26-36.
DOI URL |
[11] |
CLARKE A, MAC NALLY R, BOND N, et al., 2008. Macroinvertebrate diversity in headwater streams: A review[J]. Freshwater Biology, 53(9): 1707-1721.
DOI URL |
[12] |
CLARKE K R, AINSWORTH M, 1993. A method of linking multivariate community structure to environmental variables[J]. Marine Ecology Progress Series, 92: 205-219.
DOI URL |
[13] |
COTTENIE K, 2005. Integrating environmental and spatial processes in ecological community dynamics[J]. Ecology Letters, 8(11): 1175-1182.
DOI PMID |
[14] |
DODDS W K, 2006. Eutrophication and trophic state in rivers and streams[J]. Limnology and Oceanography, 51(1): 671-680.
DOI URL |
[15] |
GAUTHIER M, LAUNAY B, LE GOFF G, et al., 2020. Fragmentation promotes the role of dispersal in determining 10 intermittent headwater stream metacommunities[J]. Freshwater Biology, 65(12): 2169-2185.
DOI URL |
[16] |
GOTHE E, ANGELER D G, SANDIN L, 2013. Metacommunity structure in a small boreal stream network[J]. Journal of Animal Ecology, 82(2): 449-458.
DOI PMID |
[17] |
GRÖNROOS M, HEINO J, SIQUEIRA T, et al., 2013. Metacommunity structuring in stream networks: Roles of dispersal mode, distance type, and regional environmental context[J]. Ecology and Evolution, 3(13): 4473-4487.
DOI PMID |
[18] |
HE S W, WANG B X, CHEN K, et al., 2023. Patterns in aquatic metacommunities are associated with environmental and trait heterogeneity[J]. Freshwater Biology, 68(1): 91-102.
DOI URL |
[19] |
HE S W, SOININEN J, CHEN K, et al., 2020. Environmental factors override dispersal-related factors in shaping diatom and macroinvertebrate communities within stream networks in China[J]. Frontiers in Ecology and Evolution, 8: 141.
DOI URL |
[20] |
HEINO J, MELO A S, SIQUEIRA T, et al., 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects[J]. Freshwater Biology, 60(5): 845-869.
DOI URL |
[21] |
HENRIQUES-SILVA R, LOGEZ M, REYNAUD N, et al., 2019. A comprehensive examination of the network position hypothesis across multiple river metacommunities[J]. Ecography, 42(2): 284-294.
DOI URL |
[22] |
HITT N P, ANGERMEIER P L, 2011. Fish community and bioassessment responses to stream network position[J]. Journal of the North American Benthological Society, 30(1): 296-309.
DOI URL |
[23] |
KARNA O-M, GRONROOS M, ANTIKAINEN H, et al., 2015. Inferring the effects of potential dispersal routes on the metacommunity structure of stream insects: As the crow flies, as the fish swims or as the fox runs?[J]. Journal of Animal Ecology, 84(5): 1342-1353.
DOI URL |
[24] |
KHALAF M A, KOCHZIUS M, 2002. Changes in trophic community structure of shore fishes at an industrial site in the Gulf of Aqaba, Red Sea[J]. Marine Ecology Progress Series, 239: 287-299.
DOI URL |
[25] |
LANSAC-TOHA F M, BINI L M, HEINO J, et al., 2021. Scale-dependent patterns of metacommunity structuring in aquatic organisms across floodplain systems[J]. Journal of Biogeography, 48(4): 872-885.
DOI URL |
[26] |
LI Z F, CHEN X, JIANG X M, et al., 2021. Distance decay of benthic macroinvertebrate communities in a mountain river network: Do dispersal routes and dispersal ability matter?[J]. Science of the Total Environment, 758: 143630.
DOI URL |
[27] |
MASESE F O, ACHIENG A O, O'BRIEN G C, et al., 2021. Macroinvertebrate taxa display increased fidelity to preferred biotopes among disturbed sites in a hydrologically variable tropical river[J]. Hydrobiologia, 848: 321-343.
DOI |
[28] |
MAZOR R D, REHN A C, ODE P R et al., 2016. Bioassessment in complex environments: Designing an index for consistent meaning in different settings[J]. Freshwater Science, 35(1): 249-71.
DOI URL |
[29] | MERRITT R W, CUMMINS K W, BERG M B, 2019. An introduction to the aquatic insects of North America[M]. Fifth Edition. Dibuque county: Kendall Hunt. |
[30] |
MEYER J L, STRAYER D L, WALLACE J B, et al., 2007. The contribution of headwater streams to biodiversity in river networks[J]. Journal of the American Water Resources Association, 43(1): 86-103.
DOI URL |
[31] | MORSE J C, YANG L F, TIAN L, 1994. Aquatic insects of China useful for monitoring water quality[M]. Nanjing: Hohai University. |
[32] |
MRUZEK J L, BUDNICK W R, LARSON C A, et al., 2022. Stronger niche than dispersal effects on α- and β-diversity of stream algae, insects, and fish across latitudes in the United States[J]. Global Ecology and Biogeography, 31(12): 2453-2462.
DOI URL |
[33] |
OESTER R, OLIVEIRA P C D, MORETTI M S, et al., 2023. Leaf-associated macroinvertebrate assemblage and leaf litter breakdown in headwater streams depend on local riparian vegetation[J]. Hydrobiologia, 850(15): 3359-3374.
DOI PMID |
[34] |
POFF N, LEROY O, JULIAN D, et.al., 2006. Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships[J]. Journal of the North American Benthological Society, 25(4): 730-755.
DOI URL |
[35] |
QUANZ M E, WALKER T R, OAKES K, et al., 2021. Effects of industrial effluent on wetland macroinvertebrate community structures near a wastewater treatment facility[J]. Ecological Indicators, 127: 107709.
DOI URL |
[36] |
RICHARDSON J S, 2019. Biological diversity in headwater streams[J]. Water, 11(2): 366.
DOI URL |
[37] |
SARREMEJANE R, MYKRA H, BONADA N, et al., 2017. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks[J]. Freshwater Biology, 62(6): 1073-1082.
DOI URL |
[38] |
STRAHLER A N, 1957. Quantitative analysis of watershed geomorphology[J]. Eos, Transactions American Geophysical Union, 38: 913-920.
DOI URL |
[39] |
TRIGAL C, DEGERMAN E, 2015. Multiple factors and thresholds explaining fish species distributions in lowland streams[J]. Global Ecology and Conservation, 4: 589-601.
DOI URL |
[40] |
TURUNEN J, AROVIITA J, MARTTILA H, et al., 2017. Differential responses by stream and riparian biodiversity to in-stream restoration of forestry-impacted streams[J]. Journal of Applied Ecology, 54(5): 1505-1514.
DOI URL |
[41] |
WANG X G, WIEGAND T, ANDERSON-TEIXEIRA K J, et al., 2018. Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests[J]. Global Ecology and Biogeography, 27(5): 581-592.
DOI URL |
[42] |
WILLIAMS-SUBIZA E A, BRAND C, MISERENDINO M L, 2020. Metacommunity structure analysis reveals nested patterns in deconstructed macroinvertebrates assemblages[J]. Ecological Entomology, 45(6): 1284-1295.
DOI URL |
[43] |
ZHENG B, YIN X W, 2023. Assembly mechanism of macroinvertebrate metacommunities and ecological factors of multiple aspects of beta diversity in a boreal river basin, China[J]. Frontiers in Ecology and Evolution, 11: 1131403.
DOI URL |
[44] | 李佳静, 刘威, 邓培雁, 2020. 柳江流域不同水文季节水质对附生硅藻群落的影响研究[J]. 生态科学, 39(1): 10-19. |
LI J J, LIU W, DENG P Y, 2020. The effects of water quality on epilithic diatom community in different hydrological seasons in Liujiang River Basin[J]. Ecological Science, 39(1): 10-19. | |
[45] | 李鑫, 邓培雁, 刘威, 2021. 柳江流域大型底栖动物群落结构及其与水质因子的关系[J]. 华南师范大学学报(自然科学版), 53(5): 53-61. |
LI X, DENG P Y, LIU W, 2021. The Macrobenthos community structure and its relationships with water quality factors in the Liujiang River basin[J]. Journal of South China Normal University (Natural Science Edition), 53(5): 53-61. | |
[46] | 刘建康, 1999. 高级水生生物学[M]. 北京: 科学出版社: 241. |
LIU J K, 1999. Advanced hydrobiology[M]. Beijing: Science Press: 241. | |
[47] | 卢玉典, 张盛, 莫飞龙, 等, 2023. 广西柳江鱼类资源调查[J]. 农业与技术, 43(6): 102-107. |
LU Y D, ZHANG S, MO F L, et al., 2023. Investigation of fish resources in Liujiang River, Guangxi[J]. Agriculture and Technology, 43(6): 102-107. | |
[48] | 国家环境保护总局, 2002. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社. |
State Environmental Protection Administration, 2002. Water and wastewater monitoring and analysis method[M]. The fourth edition. Beijing: China Environmental Science Press. | |
[49] | 国家环境保护总局, 国家质量监督检验检疫总局, 2002. 地表水环境质量标准: GB 3838—2002 [S]. 北京: 中国环境科学出版社. |
State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine, 2002. Environmental quality standards for surface water: GB 3838—2002 [S]. Beijing: China Environmental Science Press. | |
[50] | 杨钙仁, 张秀清, 蔡德所, 等, 2012. 广西主要人工林凋落物分解过程及其对淋溶水质的影响[J]. 应用生态学报, 23(1): 9-16. |
YANG G R, ZHANG X Q, CAI D S, et al., 2012. Litter decomposition of dominant plantations in Guangxi and its effects on leachate quality[J]. Chinese Journal of Applied Ecology, 23(1): 9-16. | |
[51] | 杨昆, 贺磊, 许乃中, 等, 2016. 柳江流域生态系统服务价值的影响研究[J]. 生态科学, 35(4): 148-156. |
YANG K, HE L, XU N Z, et al., 2016. The study of ecosystem service values of Liujiang River basin[J]. Ecological Science, 35(4): 148-156. | |
[52] | 张婉军, 辛存林, 于奭, 等, 2021. 柳江流域河流溶解态重金属时空分布及污染评价[J]. 环境科学, 42(9): 4234-4245. |
ZHANG W J, XIN C L, YU S, et al., 2021. Spatial and temporal distribution and pollution evaluation of soluble heavy metals in Liujiang River basin[J]. Environmental Science, 42(9): 4234-4245. | |
[53] | 周长发, 归鸿, 周开亚, 2003. 中国蜉蝣目稚虫科检索表 (昆虫纲)[J]. 南京师大学报 (自然科学版), 26(3): 65-68. |
ZHOU C F, GUI H, ZHOU K Y, 2003. Larval Key to Families of Ephemeroptera from China (Insecta)[J]. Journal of Nanjing Normal University (Natural Science Edition), 26(3): 65-68. |
[1] | 梁舒汀, 王菲, 吴丹, 赵燕楚, 孔凡青. 基于大型底栖动物完整性指数的海河流域典型水库水生态健康评价[J]. 生态环境学报, 2023, 32(8): 1457-1464. |
[2] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[3] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[4] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[5] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[6] | 李善家, 王兴敏, 刘海锋, 孙梦格, 雷雨昕. 河西走廊荒漠植物多样性及其对环境因子的响应[J]. 生态环境学报, 2023, 32(3): 429-438. |
[7] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[8] | 赵燕楚, 王菲, 吴丹, 黄鑫, 陈佳林, 周琳普, 孔凡青. 海河流域河流大型底栖动物生物完整性指数健康评价[J]. 生态环境学报, 2023, 32(10): 1785-1793. |
[9] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[10] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[11] | 陈乐, 卫伟. 西北旱区典型流域土地利用与生境质量的时空演变特征[J]. 生态环境学报, 2022, 31(9): 1909-1918. |
[12] | 李婷婷, 侯梦丹, 邓欣妍, 周徐平, 王顺莉, 黄丹, 曾芷若, 彭涛. 贵州习水国家级自然保护区4种植被类型树附生苔藓植物多样性研究[J]. 生态环境学报, 2022, 31(8): 1556-1565. |
[13] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[14] | 蔡国俊, 袁桂香, 符辉. 基于文献计量分析的生态网络研究现状和趋势[J]. 生态环境学报, 2022, 31(8): 1690-1699. |
[15] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||