生态环境学报 ›› 2022, Vol. 31 ›› Issue (8): 1690-1699.DOI: 10.16258/j.cnki.1674-5906.2022.08.021
收稿日期:
2022-03-15
出版日期:
2022-08-18
发布日期:
2022-10-10
通讯作者:
* 符辉,教授,博士,主要从事淡水/湿地植物功能生态学、大数据生态学和生态系统生态学方面的研究。E-mail: huifu367@163.com作者简介:
蔡国俊,男,博士研究生,主要从事生态系统生态学及湖泊生态学研究。E-mail: hunau_gjcai@stu.hunau.edu.cn
基金资助:
CAI Guojun1,2(), YUAN Guixiang1, FU Hui1,*(
)
Received:
2022-03-15
Online:
2022-08-18
Published:
2022-10-10
摘要:
基于图论(graph)发展而来的生态网络(ecological network)理论,为揭示生态系统组分之间的相互关系、生态系统复杂性和稳定性以及生态系统演变规律和驱动机制等的研究提供了全新视角。为了解生态网络研究的现状和趋势,基于Web of Science 核心数据库(WoSCC),利用R语言文献计量分析程序包bibliometrix和知识图谱分析软件VOSviewer,对WoSCC中检索到的2782篇与生态网络相关的文献,从产出时间趋势、国家/地区和研究机构分布、文献刊载源、研究热点主题和高被引论文分布情况等方面进行文献计量和知识图谱分析。结果表明,2007年以来,生态网络相关的研究文献产出量呈线性增长趋势;发表文献最多的国家(地区)主要是中国以及美国、英国、法国等欧美国家,其中中国的累积发文量最多;北京师范大学、中国科学院、巴西圣保罗大学、新西兰坎特伯雷大学等科研机构发表论文最多。检索到的2782篇文献主要来源于Ecological Modelling、Ecology Letters、Ecological Indicators、OIKOS等生态学领域的知名期刊;生态网络的研究主要集中于景观网络及生物多样性保护、气候变化和网络稳定性、微生物群落网络、动物-植物互惠及生物共现网络、生态网络分析的模型及应用等5个主题类群,其中,生态网络在研究全球变化对生态系统影响中的应用很有可能成为未来生态网络研究的主要方向。未来的研究应关注多层生态网络的构建、多层网络结构特征分析、多层网络稳定性机制等方面。
中图分类号:
蔡国俊, 袁桂香, 符辉. 基于文献计量分析的生态网络研究现状和趋势[J]. 生态环境学报, 2022, 31(8): 1690-1699.
CAI Guojun, YUAN Guixiang, FU Hui. Status and Trends on Ecological Networks Research: A Review Based on Bibliometric Analysis[J]. Ecology and Environment, 2022, 31(8): 1690-1699.
描述信息 Description | 结果 Results | 描述信息 Description | 结果 Results |
---|---|---|---|
出版期间 Period | 2007-2022 | 作者数 Authors | 8521 |
贡献文献的国家 (地区) 数量 Countries (Region) | 69 | 所有作者频数 Author appearances | 13957 |
文献源 (期刊、图书等) Sources (journals, books, etc.) | 565 | 仅发表一篇文献的作者数 Authors of single-authored documents | 136 |
文献数量 Documents | 2782 | 合作文献的作者数 Authors of multi-authored documents | 8385 |
期刊论文 Journal articles | 2514 | 单一作者文献数 Single-authored documents | 152 |
综述论文 Review articles | 158 | ||
图书章节 Book chapter | 54 | 平均每个作者的文献数 Number of documents per author | 0.326 |
评论文章 Editorials | 36 | ||
其他 Other (letter, note, etc.) | 20 | 平均每篇文献的作者数 Number of authors per document | 3.06 |
作者关键词 Author’s keywords | 5641 | 每篇论文合作作者数 Number of co-authors per document | 5.02 |
平均每篇文章引用量 Avg. citations per document | 29.84 | 协作指数 Collaboration index | 3.19 |
表1 检索数据集的主要描述性信息
Table 1 Descriptive information of the dataseton ecological networks research
描述信息 Description | 结果 Results | 描述信息 Description | 结果 Results |
---|---|---|---|
出版期间 Period | 2007-2022 | 作者数 Authors | 8521 |
贡献文献的国家 (地区) 数量 Countries (Region) | 69 | 所有作者频数 Author appearances | 13957 |
文献源 (期刊、图书等) Sources (journals, books, etc.) | 565 | 仅发表一篇文献的作者数 Authors of single-authored documents | 136 |
文献数量 Documents | 2782 | 合作文献的作者数 Authors of multi-authored documents | 8385 |
期刊论文 Journal articles | 2514 | 单一作者文献数 Single-authored documents | 152 |
综述论文 Review articles | 158 | ||
图书章节 Book chapter | 54 | 平均每个作者的文献数 Number of documents per author | 0.326 |
评论文章 Editorials | 36 | ||
其他 Other (letter, note, etc.) | 20 | 平均每篇文献的作者数 Number of authors per document | 3.06 |
作者关键词 Author’s keywords | 5641 | 每篇论文合作作者数 Number of co-authors per document | 5.02 |
平均每篇文章引用量 Avg. citations per document | 29.84 | 协作指数 Collaboration index | 3.19 |
期刊英文名 Abbreviate of Journals | 中文译名 Journals’ Chines Name | 总发文量Articles |
---|---|---|
Ecological Modelling | 《生态建模》 | 127 |
Ecology Letters | 《生态学通讯》 | 75 |
Ecological Indicators | 《生态指标》 | 71 |
Plos One | 《PLoS One》 | 63 |
Oikos | 《Oikos》 | 62 |
Science of the Total Environment | 《总环境科学》 | 60 |
Journal of Cleaner Production | 《清洁生产杂志》 | 59 |
Scientific Reports | 《科学报告》 | 58 |
Ecology | 《Ecology》 | 53 |
Landscape Ecology | 《景观生态学》 | 50 |
Journal of Animal Ecology | 《动物生态学杂志》 | 45 |
Sustainability | 《可持续发展》 | 43 |
Methods in Ecology and Evolution | 《生态学与演化学方法》 | 33 |
Proceedings of the Royal Society B: Biological Sciences | 《英国皇家学会会刊- 生物科学》 | 32 |
Ecological Complexity | 《生态复杂性》 | 31 |
表2 生态网络发文量前15的期刊
Table 2 Outputs of top 15 journals on ecological networks
期刊英文名 Abbreviate of Journals | 中文译名 Journals’ Chines Name | 总发文量Articles |
---|---|---|
Ecological Modelling | 《生态建模》 | 127 |
Ecology Letters | 《生态学通讯》 | 75 |
Ecological Indicators | 《生态指标》 | 71 |
Plos One | 《PLoS One》 | 63 |
Oikos | 《Oikos》 | 62 |
Science of the Total Environment | 《总环境科学》 | 60 |
Journal of Cleaner Production | 《清洁生产杂志》 | 59 |
Scientific Reports | 《科学报告》 | 58 |
Ecology | 《Ecology》 | 53 |
Landscape Ecology | 《景观生态学》 | 50 |
Journal of Animal Ecology | 《动物生态学杂志》 | 45 |
Sustainability | 《可持续发展》 | 43 |
Methods in Ecology and Evolution | 《生态学与演化学方法》 | 33 |
Proceedings of the Royal Society B: Biological Sciences | 《英国皇家学会会刊- 生物科学》 | 32 |
Ecological Complexity | 《生态复杂性》 | 31 |
国家 Countries | 论文数 Articles | 频率 Proportion/ % | 总被引数 Total citations | 平均被引数 Average citations |
---|---|---|---|---|
中国China | 601 | 21.67 | 10412 | 17.32 |
美国USA | 393 | 14.17 | 15948 | 40.58 |
英国United Kingdom | 217 | 7.82 | 8504 | 39.19 |
法国France | 159 | 5.73 | 4047 | 25.45 |
西班牙Spain | 148 | 5.34 | 8430 | 56.96 |
巴西Brazil | 133 | 4.80 | 1772 | 13.32 |
德国Germany | 109 | 3.93 | 5296 | 48.59 |
意大利Italy | 107 | 3.86 | 2172 | 20.3 |
加拿大Canada | 101 | 3.64 | 3158 | 31.27 |
澳大利亚Australia | 66 | 2.38 | 2013 | 30.5 |
南非South Africa | 58 | 2.09 | 1390 | 23.97 |
荷兰Netherlands | 55 | 1.98 | 2627 | 47.76 |
墨西哥Mexico | 50 | 1.80 | 505 | 10.1 |
瑞士Switzerland | 40 | 1.44 | 1832 | 45.8 |
瑞典Sweden | 39 | 1.41 | 2385 | 61.15 |
葡萄牙Portugal | 37 | 1.33 | 545 | 14.73 |
丹麦Denmark | 31 | 1.12 | 2828 | 91.23 |
新西兰 New Zealand | 31 | 1.12 | 1151 | 37.13 |
阿根廷Argentina | 26 | 0.94 | 1285 | 49.42 |
比利时Belgium | 26 | 0.94 | 719 | 27.65 |
智利Chile | 25 | 0.90 | 557 | 22.28 |
印度India | 23 | 0.83 | 239 | 10.39 |
日本Japan | 23 | 0.83 | 497 | 21.61 |
匈利亚Hungary | 20 | 0.72 | 502 | 25.1 |
韩国Korea | 19 | 0.69 | 97 | 5.11 |
表3 排名前25的国家/地区发文量和被引用频次
Table 3 Top 25-productivity countries/regions in ecological networks
国家 Countries | 论文数 Articles | 频率 Proportion/ % | 总被引数 Total citations | 平均被引数 Average citations |
---|---|---|---|---|
中国China | 601 | 21.67 | 10412 | 17.32 |
美国USA | 393 | 14.17 | 15948 | 40.58 |
英国United Kingdom | 217 | 7.82 | 8504 | 39.19 |
法国France | 159 | 5.73 | 4047 | 25.45 |
西班牙Spain | 148 | 5.34 | 8430 | 56.96 |
巴西Brazil | 133 | 4.80 | 1772 | 13.32 |
德国Germany | 109 | 3.93 | 5296 | 48.59 |
意大利Italy | 107 | 3.86 | 2172 | 20.3 |
加拿大Canada | 101 | 3.64 | 3158 | 31.27 |
澳大利亚Australia | 66 | 2.38 | 2013 | 30.5 |
南非South Africa | 58 | 2.09 | 1390 | 23.97 |
荷兰Netherlands | 55 | 1.98 | 2627 | 47.76 |
墨西哥Mexico | 50 | 1.80 | 505 | 10.1 |
瑞士Switzerland | 40 | 1.44 | 1832 | 45.8 |
瑞典Sweden | 39 | 1.41 | 2385 | 61.15 |
葡萄牙Portugal | 37 | 1.33 | 545 | 14.73 |
丹麦Denmark | 31 | 1.12 | 2828 | 91.23 |
新西兰 New Zealand | 31 | 1.12 | 1151 | 37.13 |
阿根廷Argentina | 26 | 0.94 | 1285 | 49.42 |
比利时Belgium | 26 | 0.94 | 719 | 27.65 |
智利Chile | 25 | 0.90 | 557 | 22.28 |
印度India | 23 | 0.83 | 239 | 10.39 |
日本Japan | 23 | 0.83 | 497 | 21.61 |
匈利亚Hungary | 20 | 0.72 | 502 | 25.1 |
韩国Korea | 19 | 0.69 | 97 | 5.11 |
主题群 Cluster Name | 热点主题(中文对照,词频) Hot Topics (Chinese name, Topics frequency) |
---|---|
类群1:生物多样性保护、景观网络 Cluster 1:Biodiversity Conservation, Landscape Network | biodiversity(生物多样性,440)、conservation(保护,264)、connectivity(连通性,94)、dispersal(扩散,93)、species richness(物种丰富度,77)、ecosystem services(生态系统服务,7,4)、landscape connectivity(景观连通性,69)、land-use(土地利用,67)、landscape(景观,64)、habitat(生境,59)、corridors(廊道,58)、habitat fragmentation(生境破碎化,56)、network(网络,54)、restoration(恢复,54)、scale(规模,51)、fragmentation(破碎,51) |
类群2:气候变化、食物网、稳定性 Cluster 2:Climate Change, Food Web, Stability | ecological networks(生态网络,533)、dynamics(动力学/动态,282)、stability(稳定性,274)、food webs(食物网,171)、climate-change(气候变化,140)、body-size(有机体大小,121)、robustness(鲁棒性,110)、interaction strengths(作用强度,87)、food-web structure(食物网结构,75)、complexity(复杂性,71)、trophic interactions(营养互作,65)、connectance(连接,64)、responses(反应,56)、increases(增加,39)、population-dynamics(种群动态,38) |
类群3:群落结构、微生物网络 Cluster 3:Community Structure, Microbial Network | diversity(多样性,444)、community(群落,115)、ecology(生态学,110)、networks(网络,107)、competition(竞争,106)、community structure(群落结构,90)、impact(影响,60)、diversity(多样性,444)、community(群落,115)、ecology(生态学,110)、networks(网络,107)、competition(竞争,106)、community structure(群落结构,90)、impact(影响,60)、microbial community(微生物群落,59)、growth(生长,41)、carbon(碳,40)、soil(土壤,38)、performance(性能/表现35)、bacteria(细菌,33)、degradation(降解,30)、nitrogen(氮,28) |
类群4:互惠网络、 网络结构 Cluster 4:Mutualistic Network, Network Structure | patterns(模式/参数,261)、specialization(物种特化/特化种,194)、communities(群落,188)、nestedness(嵌套结构,162)、architecture(构建/结构,159)、evolution(进化,117)、abundance(丰度,117)、modularity(模块化,114)、mutualistic networks(互惠网络,98)、animal mutualistic networks(动物互惠网络,89)、consequences(生态后果,87)、plant(植物,77)、forest(森林,66)、coevolutionary networks(共同进化网络,65)、pollination networks(传粉网络,62) |
类群5:生态网络分析模型 Cluster 5:Ecological Network Analysis Model | model(模型,138)、management(管理,128)、models(模型,124)、ecological network analysis(生态网络分析,104)、ecosystems(生态系统,98)、ecosystem(生态系统,96)、systems(系统,79)、impacts(影响,71)、system(系统,71)、network analysis(网络分析,68)、energy(能量,66)、food-web(食物网,64)、sustainability(可持续性,56)、consumption(消费者,56)、framework(框架,55) |
表4 生态网络研究热点主题分布
Table 4 Hot topics distribution of ecological networks research
主题群 Cluster Name | 热点主题(中文对照,词频) Hot Topics (Chinese name, Topics frequency) |
---|---|
类群1:生物多样性保护、景观网络 Cluster 1:Biodiversity Conservation, Landscape Network | biodiversity(生物多样性,440)、conservation(保护,264)、connectivity(连通性,94)、dispersal(扩散,93)、species richness(物种丰富度,77)、ecosystem services(生态系统服务,7,4)、landscape connectivity(景观连通性,69)、land-use(土地利用,67)、landscape(景观,64)、habitat(生境,59)、corridors(廊道,58)、habitat fragmentation(生境破碎化,56)、network(网络,54)、restoration(恢复,54)、scale(规模,51)、fragmentation(破碎,51) |
类群2:气候变化、食物网、稳定性 Cluster 2:Climate Change, Food Web, Stability | ecological networks(生态网络,533)、dynamics(动力学/动态,282)、stability(稳定性,274)、food webs(食物网,171)、climate-change(气候变化,140)、body-size(有机体大小,121)、robustness(鲁棒性,110)、interaction strengths(作用强度,87)、food-web structure(食物网结构,75)、complexity(复杂性,71)、trophic interactions(营养互作,65)、connectance(连接,64)、responses(反应,56)、increases(增加,39)、population-dynamics(种群动态,38) |
类群3:群落结构、微生物网络 Cluster 3:Community Structure, Microbial Network | diversity(多样性,444)、community(群落,115)、ecology(生态学,110)、networks(网络,107)、competition(竞争,106)、community structure(群落结构,90)、impact(影响,60)、diversity(多样性,444)、community(群落,115)、ecology(生态学,110)、networks(网络,107)、competition(竞争,106)、community structure(群落结构,90)、impact(影响,60)、microbial community(微生物群落,59)、growth(生长,41)、carbon(碳,40)、soil(土壤,38)、performance(性能/表现35)、bacteria(细菌,33)、degradation(降解,30)、nitrogen(氮,28) |
类群4:互惠网络、 网络结构 Cluster 4:Mutualistic Network, Network Structure | patterns(模式/参数,261)、specialization(物种特化/特化种,194)、communities(群落,188)、nestedness(嵌套结构,162)、architecture(构建/结构,159)、evolution(进化,117)、abundance(丰度,117)、modularity(模块化,114)、mutualistic networks(互惠网络,98)、animal mutualistic networks(动物互惠网络,89)、consequences(生态后果,87)、plant(植物,77)、forest(森林,66)、coevolutionary networks(共同进化网络,65)、pollination networks(传粉网络,62) |
类群5:生态网络分析模型 Cluster 5:Ecological Network Analysis Model | model(模型,138)、management(管理,128)、models(模型,124)、ecological network analysis(生态网络分析,104)、ecosystems(生态系统,98)、ecosystem(生态系统,96)、systems(系统,79)、impacts(影响,71)、system(系统,71)、network analysis(网络分析,68)、energy(能量,66)、food-web(食物网,64)、sustainability(可持续性,56)、consumption(消费者,56)、framework(框架,55) |
序号 Ordinal | 标题 Title | 第一作者 Author | 期刊源 Source | 被引频次 Citations | 研究问题 Research Topics |
---|---|---|---|---|---|
1 | Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life | Backhed, Fredrik | Cell Host & Microbe | 1162 | 肠道微生物、 分子网络 |
2 | Anticipating Critical Transitions | Scheffer, Marten | Science | 1019 | 复杂系统,综述 |
3 | The Modularity of Pollination Networks | Olesen, Jens M. | PNAS | 990 | 传粉网络、网络结构 |
4 | Plant-animal mutualistic networks: The Architecture of Biodiversity | Bascompte, Jordi | Annual Review of Ecology Evolution and Systematics | 893 | 互惠网络,图书章节 |
5 | Inferring Correlation Networks from Genomic Survey Data | Friedman, Jonathan | PLoS Computational Biology | 854 | 分子网络 |
6 | Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks | Thebault, Elisa | Science | 817 | 群落稳定性、 营养网络 |
7 | Community and Ecosystem Responses to Recent Climate Change | Walther, Gian-Reto | Philosophical Transactions of The Royal Society B | 716 | 生态系统稳定性 |
8 | Climate Change and Freshwater Ecosystems: Impacts Across Multiple Levels of Organization | Woodward, Guy | Philosophical Transactions of The Royal Society B | 632 | 食物网、 营养网络 |
9 | The Architecture of Mutualistic Networks Minimizes Competition and Increases Biodiversity | Bascompte, Jordi* | Nature | 593 | 互惠网络、 生物多样性 |
10 | Molecular Ecological Network Analyses | Zhou, Jizhong* | BMC Bioinformatics | 580 | 分子网络 |
11 | Ecological Networks - beyond Food Webs | Woodward, Guy* | Journal of Animal Ecology | 562 | 食物网,综述 |
12 | Parasites in Food Webs: the Ultimate Missing Links | Lafferty, Kevin D | Ecology Letters | 544 | 食物网 |
13 | Stability Criteria for Complex Ecosystems | Allesina, Stefano | Nature | 531 | 复杂系统、稳定性 |
14 | A New Habitat Availability Index to Integrate Connectivity in Landscape Conservation Planning: Comparison with Existing Indices and Application to A Case Study | Saura, Santiago | Landscape Urban Plan | 522 | 景观网络、生物多样性 |
15 | Widespread Crown Condition Decline, Food Web Disruption, and Amplified Tree Mortality with Increased Climate Change-type Drought | Carnicer, Jofre | PNAS | 507 | 食物网 |
表5 被引超过500次的高被引论文
Table 5 Ecological Networks research papers cited more than 100 times
序号 Ordinal | 标题 Title | 第一作者 Author | 期刊源 Source | 被引频次 Citations | 研究问题 Research Topics |
---|---|---|---|---|---|
1 | Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life | Backhed, Fredrik | Cell Host & Microbe | 1162 | 肠道微生物、 分子网络 |
2 | Anticipating Critical Transitions | Scheffer, Marten | Science | 1019 | 复杂系统,综述 |
3 | The Modularity of Pollination Networks | Olesen, Jens M. | PNAS | 990 | 传粉网络、网络结构 |
4 | Plant-animal mutualistic networks: The Architecture of Biodiversity | Bascompte, Jordi | Annual Review of Ecology Evolution and Systematics | 893 | 互惠网络,图书章节 |
5 | Inferring Correlation Networks from Genomic Survey Data | Friedman, Jonathan | PLoS Computational Biology | 854 | 分子网络 |
6 | Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks | Thebault, Elisa | Science | 817 | 群落稳定性、 营养网络 |
7 | Community and Ecosystem Responses to Recent Climate Change | Walther, Gian-Reto | Philosophical Transactions of The Royal Society B | 716 | 生态系统稳定性 |
8 | Climate Change and Freshwater Ecosystems: Impacts Across Multiple Levels of Organization | Woodward, Guy | Philosophical Transactions of The Royal Society B | 632 | 食物网、 营养网络 |
9 | The Architecture of Mutualistic Networks Minimizes Competition and Increases Biodiversity | Bascompte, Jordi* | Nature | 593 | 互惠网络、 生物多样性 |
10 | Molecular Ecological Network Analyses | Zhou, Jizhong* | BMC Bioinformatics | 580 | 分子网络 |
11 | Ecological Networks - beyond Food Webs | Woodward, Guy* | Journal of Animal Ecology | 562 | 食物网,综述 |
12 | Parasites in Food Webs: the Ultimate Missing Links | Lafferty, Kevin D | Ecology Letters | 544 | 食物网 |
13 | Stability Criteria for Complex Ecosystems | Allesina, Stefano | Nature | 531 | 复杂系统、稳定性 |
14 | A New Habitat Availability Index to Integrate Connectivity in Landscape Conservation Planning: Comparison with Existing Indices and Application to A Case Study | Saura, Santiago | Landscape Urban Plan | 522 | 景观网络、生物多样性 |
15 | Widespread Crown Condition Decline, Food Web Disruption, and Amplified Tree Mortality with Increased Climate Change-type Drought | Carnicer, Jofre | PNAS | 507 | 食物网 |
[1] | ALBERT L, FRANGOS J, 2001. Linked: The new science of networks science of networks[M]. New York: New York Perseus Books Group. |
[2] |
ARIA M, CUCCURULLO C, 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis[J]. Journal of Informetrics, 11(4): 959-975.
DOI URL |
[3] |
BARBERAN A, BATES S T, CASAMAYOR E O, et al., 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. ISME Journal, 6(2): 343-351.
DOI PMID |
[4] | BIANCONI G, 2018. Multilayer networks: Structure and function[M]. Oxford: Oxford University Press. |
[5] |
BODIN Ö, ALEXANDER S M, BAGGIO J, et al., 2019. Improving network approaches to the study of complex social-ecological interdependencies[J]. Nature Sustainability, 2(7): 551-559.
DOI URL |
[6] |
BORRETT S R, SCHARLER U M, 2019. Walk partitions of flow in Ecological Network Analysis: Review and synthesis of methods and indicators[J]. Ecological Indicators, 106(2019): 105451.
DOI URL |
[7] |
BORRETT S R, SHEBLE L, MOODY J, et al., 2018. Bibliometric review of ecological network analysis: 2010-2016[J]. Ecological Modelling, 382: 63-82.
DOI URL |
[8] |
CAGUA E F, WOOTTON K L, STOUFFER D B, et al., 2019. Keystoneness, centrality, and the structural controllability of ecological networks[J]. Journal of Ecology, 107(4): 1779-1790.
DOI URL |
[9] | CHEN S, CHEN B, 2014. Ecological modelling and engineering of lakes and wetlands[M]. Amsterdam: Elsevier Publishers. |
[10] |
CUFF J P, WINDSOR F M, TERCEL M P, et al., 2022. Overcoming the pitfalls of merging dietary metabarcoding into ecological networks[J]. Methods in Ecology and Evolution, 13(3): 545-559.
DOI URL |
[11] |
DA FONTOURA COSTA L, SILVA F N, 2006. Hierarchical characterization of complex networks[J]. Journal of Statistical Physics, 125(4): 841-872.
DOI URL |
[12] | DALE M R T, 2021. Quantitative analysis of ecological networks[M]. Cambridge: Cambridge University Press. |
[13] |
DALE M R T, FORTIN M J, 2010. From graphs to spatial graphs[J]. Annual Review of Ecology, Evolution, and Systematics, 41: 21-38.
DOI URL |
[14] |
DELMAS E, BESSON M, BRICE M H, et al., 2018. Analysing ecological networks of species interactions[J]. Biological Reviews of the Cambridge Philosophical Society, 94(1): 16-36.
DOI URL |
[15] |
DENG Y, JIANG Y H, YANG Y F, et al., 2012. Molecular ecological network analyses[J]. BMC Bioinformatics, 13(1): 113.
DOI URL |
[16] |
FATH B D, SCHARLER U M, ULANOWICZ R E, et al., 2007. Ecological network analysis: network construction[J]. Ecological Modelling, 208(1): 49-55.
DOI URL |
[17] |
FELIPE-LUCIA M R, SOLIVERES S, PENONE C, et al., 2020. Land-use intensity alters networks between biodiversity, ecosystem functions, and services[J]. Proceedings of the National Academy of Sciences, 117(45): 28140-28149.
DOI URL |
[18] | FENG K, PENG X, ZHANG Z, et al., 2022. iNAP: An integrated network analysis pipeline for microbiome studies[J]. iMeta, 1(2): e13. |
[19] | FREILICH M A, REBOLLEDO R, CORCORAN D, et al., 2020. Reconstructing ecological networks with noisy dynamics[J]. Proceedings. Mathematical, Physical, and Engineering Sciences, 476(2237): 20190739. |
[20] |
GOERLANDT F, LI J, RENIERS G, 2020. The landscape of risk communication research: A scientometric analysis[J]. International Journal of Environmental Research and Public Health, 17(9): 3255.
DOI URL |
[21] |
HE N P, LI Y, LIU C C, et al., 2020. Plant trait networks: Improved resolution of the dimensionality of adaptation[J]. Trends in Ecology & Evolution, 35(10): 908-918.
DOI URL |
[22] |
HE N P, LIU C C, PIAO S L, et al., 2019. Ecosystem Traits Linking Functional Traits to Macroecology[J]. Trends in Ecology & Evolution, 34(3): 200-210.
DOI URL |
[23] |
INGS T C, MONTOYA J M, BASCOMPTE J, et al., 2009. Ecological networks-beyond food webs[J]. Journal of Animal Ecology, 78(1): 253-269.
DOI URL |
[24] |
KAISER-BUNBURY C N, BLUTHGEN N, 2015. Integrating network ecology with applied conservation: A synthesis and guide to implementation[J]. AoB Plants, 7: plv076.
DOI URL |
[25] |
KLEYER M, TRINOGGA J, CEBRIáN-PIQUERAS M A, et al., 2019. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants[J]. Journal of Ecology, 107(2): 829-842.
DOI URL |
[26] |
LANDI P, MINOARIVELO H O, BRÄNNSTRÖM Å, et al., 2018. Complexity and stability of ecological networks: A review of the theory[J]. Population Ecology, 60(4): 319-345.
DOI URL |
[27] | LAU M K, BORRETT S R, BAISER B, et al., 2017. Ecological network metrics: Opportunities for synthesis[J]. Ecosphere, 8(8): e01900. |
[28] |
LI J, GOERLANDT F, RENIERS G, 2021. An overview of scientometric mapping for the safety science community: Methods, tools, and framework[J]. Safety Science, 134: 105093.
DOI URL |
[29] |
LI Y, LIU C C, SACK L, et al., 2022. Leaf trait network architecture shifts with species-richness and climate across forests at continental scale[J]. Ecology Letters, 25(6): 1442-1457.
DOI URL |
[30] |
LUNA P, VILLALOBOS F, ESCOBAR F, et al., 2022. Global trends in the trophic specialisation of flower-visitor networks are explained by current and historical climate[J]. Ecology Letters, 25(1): 113-124.
DOI URL |
[31] | MA A, LU X K, GRAY C, et al., 2019. Ecological networks reveal resilience of agro-ecosystems to changes in farming management[J]. Nature Ecology & Evolution, 3(2): 260-264. |
[32] |
MESSEDER J V S, GUERRA T J, DÁTTILO W, et al., 2020. Searching for keystone plant resources in fruit-frugivore interaction networks across the Neotropics[J]. Biotropica, 52(5): 857-870.
DOI URL |
[33] |
MONTOYA J M, PIMM S L, SOLE R V, 2006. Ecological networks and their fragility[J]. Nature, 442(7100): 259-264.
DOI URL |
[34] | NIELSEN S N, FATH B, BASTIANONI S, et al., 2019. A new ecology: Systems perspective[M]. Second Edition. Amsterdam: Elsevier Publishers. |
[35] | PILOSOF S, PORTER M A, PASCUAL M, et al., 2017. The multilayer nature of ecological networks[J]. Nature Ecology & Evolution, 1(4): 0101. |
[36] |
PRICE D, 1976. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science, 27(5): 292-306.
DOI URL |
[37] |
PROULX S R, PROMISLOW D E, PHILLIPS P C, 2005. Network thinking in ecology and evolution[J]. Trends in Ecology & Evolution, 20(6): 345-353.
DOI URL |
[38] |
SOLE R V, MONTOYA J M, 2001. Complexity and fragility in ecological networks[J]. Proceedings of the Royal Society B: Biological Sciences, 268(1480): 2039-2045.
PMID |
[39] |
TELESFORD Q K, JOYCE K E, HAYASAKA S, et al., 2011. The ubiquity of small-world networks[J]. Brain Connect, 1(5): 367-375.
DOI PMID |
[40] |
TYLIANAKIS J M, MORRIS R J, 2017. Ecological networks across environmental gradients[J]. Annual Review of Ecology, Evolution, and Systematics, 48(1): 25-48.
DOI URL |
[41] |
VAN ECK N J, WALTMAN L, 2010. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 84(2): 523-538.
PMID |
[42] |
WINDSOR F M, TAVELLA J, ROTHER D C, et al., 2021. Identifying plant mixes for multiple ecosystem service provision in agricultural systems using ecological networks[J]. Journal of Applied Ecology, 58(12): 2770-2782.
DOI URL |
[43] |
XING S, FAYLE T M, 2021. The rise of ecological network meta-analyses: Problems and prospects[J]. Global Ecology and Conservation, 30: e01805.
DOI URL |
[44] | YACKINOUS W S, 2015. Understanding complex ecosystem dynamics: A systems and engineering perspective[M]. Amsterdam: Elsevier Publishers. |
[45] |
YUAN M M, GUO X, WU L W, et al., 2021. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 11(4): 343-348.
DOI URL |
[46] | ZHOU J Z, DENG Y, LUO F, et al., 2010. Functional molecular ecological networks[J]. mBio, 1(4): e00169-e001610. |
[47] |
李海东, 吴新卫, 肖治术, 2021. 种间互作网络的结构、生态系统功能及稳定性机制研究[J]. 植物生态学报, 45(10): 1049-1063.
DOI |
LI H D, WU X W, XIAO Z S, 2020. Assembly, ecosystem functions, and stability in species interaction networks[J]. Chinese Journal of Plant Ecology, 45(10): 1049-1063.
DOI URL |
|
[48] | 罗芳, 潘扬, 鲁长虎, 2013. 动植物互惠网络结构及影响因素[J]. 生态学杂志, 32(8): 2179-2185. |
LUO F, PAN Y, LU C H, 2013. Structural characteristics of plant-animal mutualistic networks and related affecting factors[J]. Chinese Journal of Ecology, 32(8): 2179-2185. | |
[49] | JØRGENSEN S E, 2017. 生态系统生态学[M]// 曹建军, 赵斌, 张剑, 等, 译. 北京: 科学出版社. |
JØRGENSEN S E, 2017. Ecosystem Ecology[M]//Translated by CAO J J, ZHAO B, ZHANG J, et al., Beijing: Science Press. | |
[50] | 王少鹏, 2020. 食物网结构与功能:理论进展与展望[J]. 生物多样性, 28(11): 1391-1404. |
WANG S P, 2020. Food web structure and functioning: Theoretical advances and outlook[J]. Biodiversity Science, 28(11): 1391-1404.
DOI URL |
|
[51] | 王宇姝, 盛海彦, 罗莎莎, 等, 2021. 环青海湖4种生境土壤中原核微生物群落结构及分子网络特征[J]. 生态环境学报, 30(7): 1393-1403. |
WANG Y S, SHENG H Y, LUO S S, et al., 2021. Characteristics of prokaryotic microbial community structure and molecular ecological network in four habitat soils around Lake Qinghai[J]. Ecology and Environmental Sciences, 30(7): 1393-1403. | |
[52] | 肖显静, 何进, 2018. 生态系统生态学研究的关键问题及趋势--从“整体论与还原论的争论”看[J]. 生态学报, 38(1): 31-40. |
XIAO X J, HE J, 2018. Key problems and trends in the study of ecosystem ecology based on the debate of holism and reductionism[J]. Acta Ecologica Sinica, 38(1): 31-40. | |
[53] | 赵蓉英, 许丽敏, 2010. 文献计量学发展演进与研究前沿的知识图谱探析[J]. 中国图书馆学报, 36(5): 60-68. |
ZHAO R Y, XU L M, 2010. The knowledge map of the evolution and research frontiers of the bibliometrics[J]. Journal of Library Science in China, 36(5): 60-68. | |
[54] | 郑宏媚, 2022. 基于生态网络分析的京津冀城市群隐含碳代谢强度研究[J]. 环境科学学报, 42(3): 487-496. |
ZHENG H M, 2022. Embodied carbon intensity analysis of Beijing-Tianjin-Hebei urban metabolic system based on ecological network analysis method[J]. Acta Scientiae Circumstantiae, 42(3): 487-496. | |
[55] | 朱建明, 周进, 王慧, 等, 2021. 藻菌关系的生态网络研究方法: 回顾与展望[J]. 科学通报, 66(34): 4378-4394. |
ZHU J M, ZHOU J, WANG H, et al., 2021. The ecological network approach to algal-bacterial relationships: Review and prospects[J]. Chinese Science Bulletin, 66(34): 4378-4394. |
[1] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[2] | 张露, 何雨霏, 陈坦, 杨婷, 张冰, 金军. 2011—2020年汾渭平原农田生态系统碳足迹的时空格局演变[J]. 生态环境学报, 2023, 32(6): 1149-1162. |
[3] | 郝蕾, 翟涌光, 戚文超, 兰穹穹. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 2023, 32(5): 825-834. |
[4] | 翁升恒, 张玉琴, 姜冬昕, 潘卫华, 李丽纯, 张方敏. 福建省森林植被NEP时空变化及影响因子分析[J]. 生态环境学报, 2023, 32(5): 845-856. |
[5] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[6] | 许静, 廖星凯, 甘崎旭, 周茅先. 基于MSPA与电路理论的黄河流域甘肃段生态安全格局构建[J]. 生态环境学报, 2023, 32(4): 805-813. |
[7] | 张平江, 党国锋. 基于MCR模型与蚁群算法的洮河流域生态安全格局构建[J]. 生态环境学报, 2023, 32(3): 481-491. |
[8] | 朱锦维, 柯新利, 何利杰, 周婷, 王青, 任妍钰. 基于价值链理论的生态产品价值实现机制理论解析[J]. 生态环境学报, 2023, 32(2): 421-428. |
[9] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[10] | 张立进, 杜虎, 曾馥平, 黄国勤, 宋敏, 宋同清. 喀斯特峰丛洼地植被恢复过程中生产力与多样性关系探讨[J]. 生态环境学报, 2023, 32(1): 26-35. |
[11] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[12] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[13] | 陈乐, 卫伟. 西北旱区典型流域土地利用与生境质量的时空演变特征[J]. 生态环境学报, 2022, 31(9): 1909-1918. |
[14] | 李婷婷, 侯梦丹, 邓欣妍, 周徐平, 王顺莉, 黄丹, 曾芷若, 彭涛. 贵州习水国家级自然保护区4种植被类型树附生苔藓植物多样性研究[J]. 生态环境学报, 2022, 31(8): 1556-1565. |
[15] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||